SEARCHING

e the dictionary ADT
 binary search

* binary search trees

Searching

The Dictionary ADT

« a dictionary is an abstract model of a database

e like a priority queue, a dictionary stores key-element
pairs

» the main operation supported by a dictionary is
searching by key

simple container methods:
- size()

- isEmpty()

- elements()

guery methods:
- findElement(Kk)
- findAllElements(K)

update methods:

- insertitem(k, €)

- removeElement(K)

- removeAllElements(K)

special element

- NO_SUCH_KEY, returned by an unsuccessful
search

Searching 2

Implementing a Dictionary with
a Sequence

e unordered seguence

- searching and removing takesnP(ime

- Inserting takes O(1) time

- applications to log files (frequent insertions, rare
searches and removals)

| =4

e array-based ordered seqguen@ssumes keys can be
ordered)

- searching takes O(lag) time (inary search
- Inserting and removing takes@)time

- application to look-up tables (frequent searches,
rare insertions and removals)

Searching 3

Binary Search
e narrow down the search range in stages
* “high-low” game

e findElement(22)

2 (41 5| 7| 8| 9| 14314 17| 19| 22| 25 24 24 33 37

|§w rrﬁd high
2[4l s 78] o] 14 14 17 19 2po5|27] 28] 33] 37
|£w rrﬁd high

2 141 5|1 7|8 9 17 14 1119|22| 25| 27| 28] 33 37

low mid high

2 al 5[78] 9] 14 14 17 1997| 25] 27] 28] 33 37

low=mid=high

Searching

Pseudocode for Binary Search

Algorithm BinarySearc(s, k, low, high)
If low > highthen
return NO SUCH KEY
else
mid —~ (low+high) /2
If k = key(mid)then
return key(mid)
else ifk < key(mid)then
return BinarySearc(s, k, low, mid-1)
else
return BinarySearc(s, k, midr1, high)

low mid high

2 (4 5| 78| 9 1747 14 171 19 2po25| 27| 28| 33| 37

! ! !

low mid high

2 141 51 7|8 9 172 14 1119|22| 25| 27| 28] 33 37

low mid high

Searching 5

Running Time of Binary Search

* The range of candidate items to be searched is
halved after each comarison

comparison search range
0 n
1 n/2
2 n/4
2! n/2
log, N 1

 In the array-based implementation, access by rar
takes O(1) time, thukinary search runs i®(log n)
time

1K

Searching 6

Binary Search Trees

e A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are les

than or equal to k.

- keys stored at nodes in the right subtree of v are

greater than or equal to k.

- kxternal nodes do not hold elements but serve ¢
place holders.

LS

Searching 7

Search

* A binary search tre¢€ is adecision tregwhere the
guestion asked at an internal nads whether the
search ke s less than, equal to, or greater than tf
key stored av.

* Pseudocode:
Algorithm TreeSearchg, v):

Input : A search ke and a node of a binary search
treeT.

Ouput: A node w of the subtreEv) of T rooted av,
such that either w is an internal node storing
key k or w is the external node encountered |
the inorder traversal @i(v) after all the inter
nal nodes with keys smaller themand before
all the internal nodes with keys greater tkan

If vis an external nodihen

return v
If k= key() then

return v
else ifk < key() then

return TreeSearcfk, T.leftChild(v))
else

{ k>keyl) }
return TreeSearcfk, T.rightChild(v))

N

Searching 8

Search Example |

« SuccessfuiindElement(76)

» A successful search traverses a path starting at the
root and ending at an internal node

e How aboutindAllelements(k)?

Searching 9

Search Example Il

e UnsuccessfuindElement(25)

* An unsuccessful search traverses a path starting

the root and ending at an external node

Searching

10

a

Insertion

e To performinsertitem(k, €), letw be the node
returned byTreeSearcfk, T.root())

e If wis external, we know thatis not stored IinT. We
call expandExternal(w) on T and storek,) in w

Searching 11

Insertion |1

 If wis internal, we know another item with kieys
stored atv. We call the algorithm recursively
starting afT.rightChild(w) or T.leftChild(w)

Searching

12

Removal |

* We locate the node where the key Is stored with
algorithmTreeSearch

o If whas an external childz, we removev andz
with removeAboveExternal(z)

Searching 13

Removal Il

e If whas an no external children
- find the internal nodg following w in inorder

- move the item & intow

- performremoveAboveExternal(x), wherexis the left
child ofy (guaranteed to be external)

Searching 14

e A search, insertion, or removal, visits the nodes

Time Complexity

along aroot-to leaf path plus possibly theiblings
of such nodes

 Time O(1) is spent at each node

* The running time of each operation isl)(whereh
IS the height of the tree

e The height of binary serch tree isnm the worst

case, where a binary search tree looks like a sort

sequence

e To achive good running time, we need to keep the

treebalanced i.e., with O(logn) height

« Various balancing schemes will be explored in the

next lectures

E(

\J

| >4

Searching

15

	Searching
	• the dictionary ADT
	• binary search
	• binary search trees
	The Dictionary ADT
	• a dictionary is an abstract model of a database
	• like a priority queue, a dictionary stores key-element pairs
	• the main operation supported by a dictionary is searching by key
	• simple container methods:
	- size()
	- isEmpty()
	- elements()

	• query methods:
	- findElement(k)
	- findAllElements(k)

	• update methods:
	- insertItem(k, e)
	- removeElement(k)
	- removeAllElements(k)

	• special element
	- NO_SUCH_KEY, returned by an unsuccessful search

	Implementing a Dictionary with a Sequence
	• unordered sequence
	- searching and removing takes O(n) time
	- inserting takes O(1) time
	- applications to log files (frequent insertions, rare searches and removals)

	• array-based ordered sequence (assumes keys can be ordered)
	- searching takes O(log n) time (binary search)
	- inserting and removing takes O(n) time
	- application to look-up tables (frequent searches, rare insertions and removals)

	Binary Search
	• narrow down the search range in stages
	• “high-low” game
	• findElement(22)

	Pseudocode for Binary Search
	Algorithm Bin arySearch(S, k, low, high)
	if low > high then
	return NO_SUCH_KEY
	else
	mid ¨ (low+high) / 2
	if k = key(mid) then
	return key(mid)
	else if k < key(mid) then
	return Bin arySearch(S, k, low, mid-1)
	else
	return Bin arySearch(S, k, mid+1, high)

	Running Time of Binary Search
	• The range of candidate items to be searched is halved after each comarison
	• In the array-based implementation, access by rank takes O(1) time, thus binary search runs in O...

	Binary Search Trees
	• A binary search tree is a binary tree T such that
	- each internal node stores an item (k, e) of a dictionary.
	- keys stored at nodes in the left subtree of v are less than or equal to k.
	- keys stored at nodes in the right subtree of v are greater than or equal to k.
	- kxternal nodes do not hold elements but serve as place holders.

	Search
	• A binary search tree T is a decision tree, where the question asked at an internal node v is wh...
	• Pseudocode:
	Algorithm TreeSearch(k, v):
	Input: A search key k and a node v of a binary search tree T.
	Ouput: A node w of the subtree T(v) of T rooted at v, such that either w is an internal node stor...
	if v is an external node then
	return v
	if k = key(v) then
	return v
	else if k < key(v) then
	return TreeSearch(k, T.leftChild(v))
	else
	{ k > key(v) }
	return TreeSearch(k, T.rightChild(v))

	Search Example I
	• Successful findElement(76)
	• A successful search traverses a path starting at the root and ending at an internal node
	• How about findAllelements(k)?

	Search Example II
	• Unsuccessful findElement(25)
	• An unsuccessful search traverses a path starting at the root and ending at an external node

	Insertion
	• To perform insertItem(k, e), let w be the node returned by TreeSearch(k, T.root())
	• If w is external, we know that k is not stored in T. We call expandExternal(w) on T and store (...

	Insertion II
	• If w is internal, we know another item with key k is stored at w. We call the algorithm recursi...

	Removal I
	• We locate the node w where the key is stored with algorithm TreeSearch
	• If w has an external child z, we remove w and z with removeAboveExternal(z)

	Removal II
	• If w has an no external children:
	- find the internal node y following w in inorder
	- move the item at y into w
	- perform removeAboveExternal(x), where x is the left child of y (guaranteed to be external)

	Time Complexity
	• A search, insertion, or removal, visits the nodes along a root-to leaf path, plus possibly the ...
	• Time O(1) is spent at each node
	• The running time of each operation is O(h), where h is the height of the tree
	• The height of binary serch tree is in n in the worst case, where a binary search tree looks lik...
	• To achive good running time, we need to keep the tree balanced, i.e., with O(log n) height
	• Various balancing schemes will be explored in the next lectures

