
204(2,4) Trees

Red-Black Trees
• Insertion

• Deletion

205(2,4) Trees

Beyond (2,4) Trees

What do we know about (2,4)Trees?

• Balanced

• O(logn) search time

• Different node structures

Can we get the (2,4) tree advantages in a bina-
ry tree format???

 Welcome to the world ofRed-Black Trees!!!

Siskel

Ebert

Roberto

206(2,4) Trees

Red-Black Tree

A red-black tree is a binary search tree with the follow-
ing properties:

• edges are coloredred or black

• no two consecutive red edges on any root-leaf path

• same number of black edges on any root-leaf path
(black height)

• edges connecting leaves are black

1 3

2

4

5

6

7

8

9

207(2,4) Trees

(2,4) Tree Evolution

Note how (2,4) treesrelate tored-black trees

(2,4) Red-Black

Now we seered-black trees are just a way of
representing 2-3-4 trees!

or

a a

a b
a

ab

b

a b c
a

b

c

208(2,4) Trees

Red-Black Tree Properties

N # of internal nodes
L # leaves (= N + 1)
H height
B black height

Property 1: 2B ≤ N + 1 ≤ 4B

Property 2:

This implies that searches take timeO(log N)!

Property 3:

1
2
--- N 1+()log B N 1+()log≤ ≤

N 1+()log H 2 N 1+()log≤ ≤

209(2,4) Trees

Insertion into Red-Black
1.Perform a standard search to find the leaf

where the key should be added

2.Replace the leaf with an internal node with
the new key

3.Color the incoming edge of the new node
red

4.Add two new leaves, and color their
incoming edges black

5.If the parent had an incomingrededge, we
now have two consecutiverededges! We
must reorganize tree to remove that
violation. What must be done depends on
the sibling of the parent.

R

G

R

G

210(2,4) Trees

Let:
 n be the new node
 p be its parent
 g be its grandparent

Insertion - Plain and Simple

Case 1: Incoming edge ofp is black

g

p

n

STOP!

Pretty easy, huh?

Well... it gets messier...

No violation

211(2,4) Trees

We call this a “rotation”
• No further work necessary
• Inorder remains unchanged
• Black depth is preserved for all leaves
• No more consecutivered edges!
• Corrects “malformed” 4-node in the associ-

ated (2,4) tree

Case 2: Incoming edge ofp is red, and
 its sibling is black

g

p

n
g

p

n

Uh
oh!

Much

Better!

Restructuring

212(2,4) Trees

More Rotations

g

p

n
g

p

n

g

p

n

gp

n

g

p

n

g p

n

213(2,4) Trees

• We call this a “recoloring”

• The black depth remains unchanged for all
the descendants ofg

• This process will continue upward beyond
g if necessary: renameg asn and repeat.

• Splits 5-node of the associated (2,4) tree

Promotion

Case 3: Incoming edge ofp is red and its
sibling is alsored

g

p

n

g

p

n

214(2,4) Trees

Summary of Insertion

• If two red edges are present, we do either

• a restructuring(with a simple or double
rotation) andstop, or

• a recoloring andcontinue

• A restructuring takesconstant time and is
performed at most once. It reorganizes an
off-balanced section of the tree.

• Recolorings may continue up the tree and
are executedO(log N) times.

• Thetime complexity of an insertion is
O(log N).

215(2,4) Trees

An Example

Start by inserting “REDSOX” into an empty tree

E

Now, let’s insert “C U B S”...

X

O

RD

S

216(2,4) Trees

E

RD

A Cool Example
C

E

RD

C O

X

O

X

S

S

217(2,4) Trees

An Unbelievable Example
U E

RD

SO

X

C

E

RD

What should we do?

Oh No!

U

X

SOC

218(2,4) Trees

E

RD

S X

E

RD

X

Rotation
U

SC O

OC U

219(2,4) Trees

A Beautiful Example

B
E

RD

S

O

X

C U

E

R

S

O

X

D

U

B

C
What
now?

220(2,4) Trees

E

R

S

O

X

D

U

B

CRotation

E

RC

O UDB

S X

221(2,4) Trees

S

A Super Example
E

R

S

O

X

C

UDB

E

R

S

O

X

C

UDB

S

Holy Consecutive
Red Edges, Batman!

We could’ve
placed it on
either side

222(2,4) Trees

E

R

S

O

X

C

UDB

SE

R

S

O

X

C

UDB

S

BIFF!

223(2,4) Trees

E

R

SO XC

U

DB S

E

R

S

O

X

C

UDB

S

Rotation

The SUN lab
and Red-Bat
trees are safe...
 ...for now!!!

224(2,4) Trees

Cut/Link Restructure Algorithm
• Remember the cut/link restructure algorithm from

AVL tree lecture? We can use it to implement
rotation.

• We use an inorder traversal to restructure the tree as
before

• For example, below we have a subtree with two
consecutive red edges.

44

78

62

T2

g

p

n

1
2

3
4

5
6

7
T3

T1

T0

225(2,4) Trees

Cut/Link Restructure
Algorithm(cont.)

• But there is one more consideration in the case of a
red-black tree: recoloring.

• In this case, the root of the subtree should be the
same color as the former root was, and both of its
children should be colored red. This is the only
recoloring case for Insertion.

• For deletion, you will need to perform “color
compensation” (you’ll hear about it in a minute) on
the grandchildren.

62

y4

44 78

z x

1

2 6

3 5 7
T2

T3T0
T1

226(2,4) Trees

E

R

S X

C

DB

Deletion from Red-Black
Trees

R

UO

227(2,4) Trees

Setting Up Deletion

As with binary search trees, we can always
delete a node that has at least one external child

If the key to be deleted is stored at a node that
has no external children, we move there the key
of its inorder predecessor (or successor), and
delete that node instead

Example: to delete key 7, we move key 5 to
node u, and delete node v

7

4 8

2 5 9

5

4 8

2 9

u

v

u

228(2,4) Trees

1. Removevwith a removeAboveExternal op-
eration on a leaf childw of v

2. If v wasredoru is red, colorublack. Else,
coloru double black.

3. While adouble blackedge exists, perform
one of the following actions ...

v

v

u u

u u

w

Deletion Algorithm

229(2,4) Trees

How to Eliminate the
Double Black Edge

• The intuitive idea is to perform a “color
compensation’’

• Find a red edge nearby, and change the
pair (red , double black) into
 (black , black)

• As for insertion, we have two cases:
• restructuring, and
• recoloring(demotion, inverse of
 promotion)

• Restructuring resolves the problem lo-
cally, while recoloringmay propagate it
two levels up

• Slightly more complicated than inser-
tion, since two restructurings may occur
(instead of just one)

230(2,4) Trees

• If sibling is black and one of its children is
red, perform arestructuring

Case 1: black sibling with a
red child

v

p

s

v

p

s

v

p

s

z v

z

p s

z

z

231(2,4) Trees

(2,4) Tree Interpretation

30

20

x

y

10

40
r

z2010

40

... 30 ...
... ...

30

20
c

b

10

40
r

a

40

... 20 ...
... ...

3010

232(2,4) Trees

Case 2: black sibling with
black childern

• If sibling and its children areblack, per-
form arecoloring

• If parent becomesdouble black, continue
upward

v s

p

v

p
s

v

p

s v

p

s

233(2,4) Trees

(2,4) Tree Interpretation

30

20

x

y
40

r

40

10 30 ...

20

10

...

30

20

x

y
40

r

40

10 ...

20

10

...

30

234(2,4) Trees

Case 3: red sibling

• If sibling is red, perform anadjustment

• Now the sibling isblack and one the of pre-
vious cases applies

• If the next case is recoloring, there is no
propagation upward (parent is nowred)

v

p

s

v

p

s

235(2,4) Trees

How About an Example?

6

4 8

2 5 9

Remove 9

6

4 8

2 5 7

7

236(2,4) Trees

6

4

2 5

What do we know?
• Sibling is black with black

children

What do we do?
• Recoloring

7

6

4 8

2 5 7

Example

8

237(2,4) Trees

Delete 8
• no double black

6

4 8

2 5 7

Example

6

4 7

2 5

238(2,4) Trees

Delete 7
• Restructuring

Example

4

2 5

6

4 7

2 5

6

4

62

5

239(2,4) Trees

Example

4

7

5

14

12

16

15 18

17

4

7

5

14

16

15 18

17

240(2,4) Trees

Example

5

14

16

15 18

17

74

241(2,4) Trees

Summary of
Red-Black Trees

• An insertion or deletion may cause a local
perturbation(two consecutiverededges, or
adouble-black edge)

• The perturbation is either
• resolved locally (restructuring), or
• propagatedto a higher level in the tree

by recoloring (promotion or demotion)

• O(1) time for a restructuring or recoloring

• At most one restructuring per insertion, and
at most two restructurings per deletion

• O(log N) recolorings

• Total time: O(log N)

	Red-Black Trees
	• Insertion
	• Deletion

	Beyond (2,4) Trees
	What do we know about (2,4)Trees?
	• Balanced
	• O(log n) search time
	• Different node structures

	Can we get the (2,4) tree advantages in a binary tree format???
	Welcome to the world of Red-Black Trees!!!

	Red-Black Tree
	A red-black tree is a binary search tree with the following properties:
	• edges are colored red or black
	• no two consecutive red edges on any root-leaf path
	• same number of black edges on any root-leaf path (black height)
	• edges connecting leaves are black

	(2,4) Tree Evolution
	Note how (2,4) trees relate to red-black trees
	(2,4)
	Red-Black
	Now we see red-black trees are just a way of representing 2-3-4 trees!
	or

	Red-Black Tree Properties
	N # of internal nodes
	L # leaves (= N + 1)
	H height
	B black height
	Property 1: 2B £ N + 1 £ 4B
	Property 2:
	This implies that searches take time O(log N)!
	Property 3:

	Insertion into Red-Black Trees
	1. Perform a standard search to find the leaf where the key should be added
	2. Replace the leaf with an internal node with the new key
	3. Color the incoming edge of the new node red
	4. Add two new leaves, and color their �incoming edges black
	5. If the parent had an incoming red edge, we now have two consecutive red edges! We must reorgan...
	R
	R
	G

	Let:
	n be the new node
	p be its parent
	g be its grandparent

	Insertion - Plain and Simple
	Case 1: Incoming edge of p is black
	g
	p
	n
	STOP!
	We are done!
	Pretty easy, huh?
	Well... it gets messier...
	No violation
	We call this a “rotation”
	• No further work necessary
	• Inorder remains unchanged
	• Black depth is preserved for all leaves
	• No more consecutive red edges!
	• Corrects “malformed” 4-node in the associated (2,4) tree

	Case 2: Incoming edge of p is red, and
	its sibling is black
	g
	p
	n
	g
	p
	n
	Uh oh!
	Much
	Better!

	Restructuring
	More Rotations
	g
	p
	n
	g
	p
	n
	g
	p
	n
	g
	p
	n
	g
	p
	n
	g
	p
	n
	• We call this a “recoloring”
	• The black depth remains unchanged for all the descendants of g
	• This process will continue upward beyond g if necessary: rename g as n and repeat.
	• Splits 5-node of the associated (2,4) tree

	Promotion
	Case 3: Incoming edge of p is red and its
	sibling is also red
	g
	p
	n
	g
	p
	n

	Summary of Insertion
	• If two red edges are present, we do either
	• a restructuring (with a simple or double rotation) and stop, or
	• a recoloring and continue

	• A restructuring takes constant time and is performed at most once. It reorganizes an off-balanc...
	• Recolorings may continue up the tree and are executed O(log N) times.
	• The time complexity of an insertion is O(log N).

	An Example
	Start by �inserting “REDSOX” into an empty tree
	Now, let’s insert “C U B S”...

	A Cool Example
	C

	An Unbelievable Example
	U

	A Beautiful Example
	B
	S
	A Super Example
	We could’ve placed it on �either side

	Cut/Link Restructure Algorithm
	• Remember the cut/link restructure algorithm from AVL tree lecture? We can use it to implement r...
	• We use an inorder traversal to restructure the tree as before
	• For example, below we have a subtree with two consecutive red edges.

	Cut/Link Restructure Algorithm(cont.)
	• But there is one more consideration in the case of a red-black tree: recoloring.
	• In this case, the root of the subtree should be the same color as the former root was, and both...
	• For deletion, you will need to perform “color compensation” (you’ll hear about it in a minute) ...
	Deletion from Red-Black Trees
	Deletion from Red-Black Trees
	Deletion from Red-Black Trees

	Setting Up Deletion
	As with binary search trees, we can always �delete a node that has at least one external child
	If the key to be deleted is stored at a node that has no external children, we move there the key...
	Example: to delete key 7, we move key 5 to node u, and delete node v
	1. Remove v with a removeAboveExternal operation on a leaf child w of v
	2. If v was red or u is red, color u black. Else, color u double black.
	3. While a double black edge exists, �perform one of the following actions ...

	Deletion Algorithm
	How to Eliminate the Double Black Edge
	• The intuitive idea is to perform a “color compensation’’
	• Find a red edge nearby, and change the pair (red , double black) into (black , black)
	• As for insertion, we have two cases:
	• restructuring, and
	• recoloring (demotion, inverse of promotion)

	• Restructuring resolves the problem locally, while recoloring may propagate it two levels up
	• Slightly more complicated than insertion, since two restructurings may occur (instead of just one)
	• If sibling is black and one of its children is red, perform a restructuring

	Case 1: black sibling with a red child
	(2,4) Tree Interpretation
	Case 2: black sibling with black childern
	• If sibling and its children are black, perform a recoloring
	• If parent becomes double black, continue upward

	(2,4) Tree Interpretation
	Case 3: red sibling
	• If sibling is red, perform an adjustment
	• Now the sibling is black and one the of previous cases applies
	• If the next case is recoloring, there is no propagation upward (parent is now red)

	How About an Example?
	What do we know?
	• Sibling is black with black children

	What do we do?
	• Recoloring

	Example
	Delete 8
	• no double black

	Example
	Delete 7
	• Restructuring

	Example
	Example
	Example
	Summary of Red-Black Trees
	• An insertion or deletion may cause a local perturbation (two �consecutive red edges, or a doubl...
	• The perturbation is either
	• resolved locally (restructuring), or
	• propagated to a higher level in the tree by recoloring (promotion or demotion)

	• O(1) time for a restructuring or recoloring
	• At most one restructuring per insertion, and at most two restructurings per deletion
	• O(log N) recolorings
	• Total time: O(log N)

