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Red-Black Trees
• Insertion

• Deletion
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Beyond (2,4) Trees

What do we know about (2,4)Trees?

• Balanced

• O(logn) search time

• Different node structures

Can we get the (2,4) tree advantages in a bina-
ry tree format???

   Welcome to the world ofRed-Black Trees!!!
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Red-Black Tree

A red-black tree is a binary search tree with the follow-
ing properties:

• edges are coloredred or black

• no two consecutive red edges on any root-leaf path

• same number of black edges on any root-leaf path
(black height)

• edges connecting leaves are black
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(2,4) Tree Evolution

Note how (2,4) treesrelate tored-black trees

(2,4) Red-Black

Now we seered-black trees are just a way of
representing 2-3-4 trees!
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Red-Black Tree Properties

N # of internal nodes
L # leaves (= N + 1)
H height
B black height

Property 1:   2B ≤  N + 1  ≤  4B

Property 2:

This implies that searches take timeO(log N)!

Property 3:

1
2
--- N 1+( )log B N 1+( )log≤ ≤

N 1+( )log H 2 N 1+( )log≤ ≤
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Insertion into Red-Black
1.Perform a standard search to find the leaf

where the key should be added

2.Replace the leaf with an internal node with
the new key

3.Color the incoming edge of the new node
red

4.Add two new leaves, and color their
incoming edges black

5.If the parent had an incomingrededge, we
now have two consecutiverededges!  We
must reorganize tree to remove that
violation.  What must be done depends on
the sibling of the parent.
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Let:
      n  be the new node
      p  be its parent
      g  be its grandparent

Insertion - Plain and Simple

Case 1:  Incoming edge ofp is black

g

p

n

STOP!

Pretty easy, huh?

Well... it gets messier...

No violation
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We call this a “rotation”
• No further work necessary
• Inorder remains unchanged
• Black depth is preserved for all leaves
• No more consecutivered edges!
• Corrects “malformed” 4-node in the associ-

ated (2,4) tree

Case 2:  Incoming edge ofp is red, and
 its sibling is black

g
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n
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n

Uh
oh!

Much

Better!

Restructuring
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More Rotations
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• We call this a “recoloring”

• The black depth remains unchanged for all
the descendants ofg

• This process will continue upward beyond
g if necessary: renameg asn and repeat.

• Splits 5-node of the associated (2,4) tree

Promotion

Case 3: Incoming edge ofp is red and its
sibling is alsored
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Summary of Insertion

• If two red edges are present, we do either

• a restructuring(with a simple or double
rotation) andstop, or

• a recoloring andcontinue

• A restructuring takesconstant time and is
performed at most once.  It reorganizes an
off-balanced section of the tree.

• Recolorings may continue up the tree and
are executedO(log N) times.

• Thetime complexity of an insertion is
O(log N).
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An Example

Start by inserting “REDSOX” into an empty tree

E

Now, let’s insert “C U B S”...
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An Unbelievable Example
U E
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What should we do?

Oh No!
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A Beautiful Example

B
E

RD

S

O

X

C U

E

R

S

O

X

D

U

B

C
What
now?



220(2,4) Trees

E

R

S

O

X

D

U

B

CRotation

E

RC

O UDB

S X



221(2,4) Trees

S

A Super Example
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Holy Consecutive
Red Edges, Batman!

We could’ve
placed it on
either side
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Rotation

The SUN lab
and Red-Bat
trees are safe...
     ...for now!!!
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Cut/Link Restructure Algorithm
• Remember the cut/link restructure algorithm from

AVL tree lecture? We can use it to implement
rotation.

• We use an inorder traversal to restructure the tree as
before

• For example, below we have a subtree with two
consecutive red edges.
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Cut/Link Restructure
Algorithm(cont.)

• But there is one more consideration in the case of a
red-black tree: recoloring.

• In this case, the root of the subtree should be the
same color as the former root was, and both of its
children should be colored red. This is the only
recoloring case for Insertion.

• For deletion, you will need to perform “color
compensation” (you’ll hear about it in a minute) on
the grandchildren.
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E

R

S X

C

DB

Deletion from Red-Black
Trees
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Setting Up Deletion

As with binary search trees, we can always
delete a node that has at least one external child

If the key to be deleted is stored at a node that
has no external children, we move there the key
of its inorder predecessor (or successor), and
delete that node instead

Example: to delete key 7, we move key 5 to
node u, and delete node v
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1. Removevwith a removeAboveExternal op-
eration on a leaf childw of v

2. If v wasredoru is red, colorublack. Else,
coloru double black.

3. While adouble blackedge exists, perform
one of the following actions ...

v

v

u u

u u

w

Deletion Algorithm
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How to Eliminate the
Double Black Edge

• The intuitive idea is to perform a “color
compensation’’

• Find a red edge nearby, and change the
pair ( red , double black ) into
       (black , black )

• As for insertion, we have two cases:
• restructuring, and
• recoloring(demotion, inverse of
   promotion)

• Restructuring resolves the problem lo-
cally, while recoloringmay propagate it
two levels up

• Slightly more complicated than inser-
tion, since two restructurings may occur
(instead of just one)
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• If sibling is black and one of its children is
red, perform arestructuring

Case 1: black sibling with a
red child
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(2,4) Tree Interpretation
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Case 2: black sibling with
black childern

• If sibling and its children areblack, per-
form arecoloring

• If parent becomesdouble black, continue
upward
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(2,4) Tree Interpretation
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Case 3:  red sibling

• If sibling is red, perform anadjustment

• Now the sibling isblack and one the of pre-
vious cases applies

• If the next case is recoloring, there is no
propagation upward (parent is nowred)

v

p

s

v

p

s



235(2,4) Trees

How About an Example?
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6

4

2 5

What do we know?
• Sibling is black with black

children

What do we do?
• Recoloring
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Delete 8
• no double black
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2 5 7

Example
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Delete 7
• Restructuring

Example
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Example
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Example
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Summary of
Red-Black Trees

• An insertion or deletion may cause a local
perturbation(two consecutiverededges, or
adouble-black edge)

• The perturbation is either
• resolved locally (restructuring), or
• propagatedto a higher level in the tree

by recoloring (promotion or demotion)

• O(1) time for a restructuring or recoloring

• At most one restructuring per insertion, and
at most two restructurings per deletion

• O(log N) recolorings

• Total time:  O(log N)
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	Red-Black Tree
	A red-black tree is a binary search tree with the following properties:
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	Insertion into Red-Black Trees
	1. Perform a standard search to find the leaf where the key should be added
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	Insertion - Plain and Simple
	Case 1: Incoming edge of p is black
	g
	p
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	STOP!
	We are done!
	Pretty easy, huh?
	Well... it gets messier...
	No violation
	We call this a “rotation”
	• No further work necessary
	• Inorder remains unchanged
	• Black depth is preserved for all leaves
	• No more consecutive red edges!
	• Corrects “malformed” 4-node in the associated (2,4) tree
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	• We call this a “recoloring”
	• The black depth remains unchanged for all the descendants of g
	• This process will continue upward beyond g if necessary: rename g as n and repeat.
	• Splits 5-node of the associated (2,4) tree
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	Summary of Insertion
	• If two red edges are present, we do either
	• a restructuring (with a simple or double rotation) and stop, or
	• a recoloring and continue

	• A restructuring takes constant time and is performed at most once. It reorganizes an off-balanc...
	• Recolorings may continue up the tree and are executed O(log N) times.
	• The time complexity of an insertion is O(log N).
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	Cut/Link Restructure Algorithm
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	3. While a double black edge exists, �perform one of the following actions ...


	Deletion Algorithm
	How to Eliminate the Double Black Edge
	• The intuitive idea is to perform a “color compensation’’
	• Find a red edge nearby, and change the pair ( red , double black ) into ( black , black )
	• As for insertion, we have two cases:
	• restructuring, and
	• recoloring (demotion, inverse of promotion)

	• Restructuring resolves the problem locally, while recoloring may propagate it two levels up
	• Slightly more complicated than insertion, since two restructurings may occur (instead of just one)
	• If sibling is black and one of its children is red, perform a restructuring

	Case 1: black sibling with a red child
	(2,4) Tree Interpretation
	Case 2: black sibling with black childern
	• If sibling and its children are black, perform a recoloring
	• If parent becomes double black, continue upward

	(2,4) Tree Interpretation
	Case 3: red sibling
	• If sibling is red, perform an adjustment
	• Now the sibling is black and one the of previous cases applies
	• If the next case is recoloring, there is no propagation upward (parent is now red)

	How About an Example?
	What do we know?
	• Sibling is black with black children

	What do we do?
	• Recoloring


	Example
	Delete 8
	• no double black


	Example
	Delete 7
	• Restructuring
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	Example
	Example
	Summary of Red-Black Trees
	• An insertion or deletion may cause a local perturbation (two �consecutive red edges, or a doubl...
	• The perturbation is either
	• resolved locally (restructuring), or
	• propagated to a higher level in the tree by recoloring (promotion or demotion)

	• O(1) time for a restructuring or recoloring
	• At most one restructuring per insertion, and at most two restructurings per deletion
	• O(log N) recolorings
	• Total time: O(log N)


