
5.1Priority Queues

PRIORITY QUEUES

• Stock trading (motivation)

• The priority queue ADT

• Implementing a priority queue with a sequence

• Elementary sorting

• Issues in sorting

5.2Priority Queues

Stock Trading
• We focus on the trading of a single security, say

Akamai Technologies, founded in 1998 by CS
professors and students at MIT (200 employees,
$20B market cap)

• Investors placeorders consisting of three items
(action, price, size), whereaction is eitherbuy or
sell, price is the worst price you are willing to pay
for the purchase or get from your sale, andsizeis the
number of shares

• At equilibrium, all the buy orders (bids) have prices
lower than all the sell orders (asks)

• A level 1 quote gives the highest bid and lowest ask
(as provided by popular financial sites, and e-
brokers for the naive public)

• A level 2 quotegives all the bids and asks for several
price steps (Island ECN on the Web and quote
subscriptions for professional traders)

• A trade occurs whenever a new order can be
matched with one or more existing orders, which
results in a series ofremovaltransactions

• Orders may becanceled at any time

5.3Priority Queues

Data Structures for the Stock
Market

• For each security, we keep two structures, one for
the buy orders (bids), and the other for the sell
orders (asks)

• Operations that need to be supported

• These data structures are calledpriority queues.

• The NASDAQ priority queues support an average
daily trading volume of 1B shares ($50B)

Action Ask Structure Bid Structure

place an order insert(price, size) insert(price, size)

get level 1 quote min() max()
trade removeMin() removeMax()
cancel remove(order) remove(order)

5.4Priority Queues

Keys and Total Order Relations
• A Priority Queue ranks its elements bykey with a

total order relation

• Keys:
- Every element has its own key
- Keys are not necessarily unique

• Total Order Relation
- Denoted by≤
- Reflexive:k ≤ k
- Antisymetric: if k1 ≤ k2 andk2 ≤ k1, thenk1 ≤k2
- Transitive: if k1 ≤ k2 andk2 ≤ k3, thenk1 ≤ k3

• A Priority Queue supports these fundamental
methods on key-element pairs:
- min()
- insertItem(k, e)
- removeMin()

5.5Priority Queues

Sorting with a Priority Queue
• A Priority QueueP can be used for sorting a

sequenceS by:
- inserting the elements ofS into P with a series of

insertItem(e, e) operations
- removing the elements fromP in increasing order

and putting them back intoS with a series of
removeMin() operations

Algorithm PriorityQueueSort(S, P):
Input: A sequenceS storingn elements, on which a

total order relation is defined, and a Priority Queue
P that compares keys with the same relation

Output: The SequenceS sorted by the total order
relation

while !S.isEmpty() do
e← S.removeFirst()
P.insertItem(e, e)

while P is not emptydo
e← P.removeMin()
S.insertLast(e)

5.6Priority Queues

The Priority Queue ADT
• A prioriy queueP supports the following methods:

- size():
Return the number of elements inP

- isEmpty():
Test whetherP is empty

- insertItem(k,e):
Insert a new elemente with keyk into P

- minElement():
Return (but don’t remove) an element of
P with smallest key; an error occurs ifP
is empty.

- minKey():
Return the smallest key inP; an error
occurs ifP is empty

- removeMin():
Remove fromP and return an element
with the smallest key; an error
condidtion occurs ifP is empty.

5.7Priority Queues

Comparators
• The most general and reusable form of a priority

queue makes use ofcomparator objects.

• Comparator objects are external to the keys that are
to be compared and compare two objects.

• When the priority queue needs to compare two keys,
it uses the comparator it was given to do the
comparison.

• Thus a priority queue can be general enough to store
any object.

• The comparator ADT includes:
- isLessThan(a, b)
- isLessThanOrEqualTo(a,b)
- isEqualTo(a, b)
- isGreaterThan(a,b)
- isGreaterThanOrEqualTo(a,b)
- isComparable(a)

5.8Priority Queues

 Implementation with an
Unsorted Sequence

• Let’s try to implement a priority queue with an
unsorted sequenceS.

• The elements ofS are a composition of two
elements,k, the key, ande, the element.

• We can implementinsertItem()by usinginsertLast()
on the sequence. This takes O(1) time.

• However, because we always insert at the end,
irrespectively of the key value, our sequence is not
ordered.

5 8 4 1 6

5.9Priority Queues

Implementation with an
Unsorted Sequence (contd.)

• Thus, for methods such asminElement(), minKey(),
andremoveMin(), we need tolook at all the
elementsof S. The worst case time complexity for
these methods isO(n).

• Performance summary

insertItem O(1)
minKey, minElement O(n)

removeMin O(n)

8 4 1 65

5.10Priority Queues

Implementation with a Sorted
Sequence

• Another implementation uses a sequenceS, sorted
by increasing keys

• minElement(), minKey(), andremoveMin() take
O(1) time

• However, to implementinsertItem(), we must now
scan through the entire sequencein the worst case.
Thus,insertItem() runs inO(n) time

• Performance summary

insertItem O(n)
minKey, minElement O(1)

removeMin O(1)

4 5 6 81

4 5 6 81 8

5.11Priority Queues

Implementation with a Sorted
Sequence(contd.)

public class SequenceSimplePriorityQueue
implements SimplePriorityQueue {
 //Implementation of a priority queue

using a sorted sequence

protected Sequence seq = new NodeSequence();
protected Comparator comp;

// auxiliary methods

protected Object key (Position pos) {
return ((Item)pos.element()).key();

} // note casting here

protected Object element (Position pos) {
return ((Item)pos.element()).element();

} // casting here too

// methods of the SimplePriorityQueue ADT

public SequenceSimplePriorityQueue (Comparator c) {
comp = c; }

public int size () {return seq.size(); }

...Continued on next page...

5.12Priority Queues

Implementation with a Sorted
Sequence(contd.)

public void insertItem (Object k, Object e) throws
InvalidKeyException {

if (!comp.isComparable(k)) {
throw new InvalidKeyException("The key is not valid");

}
else {

if (seq.isEmpty()) {
//if the sequence is empty, this is the
seq.insertFirst(new Item(k,e));//first item

}
else { //check if it fits right at the end

if (comp.isGreaterThan(k,key(seq.last()))) {
seq.insertAfter(seq.last(),new Item(k,e));

}
else {

//we have to find the right place for k.

 Position curr = seq.first();
while (comp.isGreaterThan(k,key(curr))) {

curr = seq.after(curr);
}
seq.insertBefore(curr,new Item(k,e));

}
 }
 }

...Continued...

5.13Priority Queues

Implementation with a Sorted
Sequence(contd.)

public Object minElement () throws
EmptyContainerException {

if (seq.isEmpty()) {
throw new EmptyContainerException("The priority
queue is empty");

}
else {

return element(seq.first());
}

public boolean isEmpty () {
return seq.isEmpty();

}

}

5.14Priority Queues

Selection Sort
• Selection Sort is a variation of PriorityQueueSort

that uses anunsorted sequence to implement the
priority queueP.

• Phase 1, the insertion of an item intoP takesO(1)
time

• Phase 2, removing an item fromP takes time
proportional to the current number of elements inP

SequenceS Priority QueueP

Input (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
...

(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)

...
()

(7)
(7, 4)

...
(7, 4, 8, 2, 5, 3, ,9)

Phase 2:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(2)
(2, 3)

(2, 3,4)
(2, 3, 4,5)

(2, 3, 4, 5,7)
(2, 3, 4, 5, 7,8)

(2, 3, 4, 5, 7, 8,9)

(7, 4, 8, 5, 3, 9)
(7, 4, 8, 5, 9)
(7, 8, 5, 9)
(7, 8, 9)
(8, 9)
(9)
()

5.15Priority Queues

Selection Sort (cont.)
• As you can tell, a bottleneck occurs in Phase 2. The

first removeMinElement operation takeO(n), the
secondO(n−1), etc. until the last removal takes only
O(1) time.

• The total time needed for phase 2 is:

• By a well-known fact:

• The total time complexity of phase 2 is thenO(n2).
Thus, the time complexity of the algorithm isO(n2).

O n n 1–() … 2 1+ + + +() O i
i 1=

n
∑

≡

i
i 1=

n
∑

n n 1+()
2

--------------------=

5.16Priority Queues

Insertion Sort
• Insertion sort is the sort that results when we

perform a PriorityQueueSort implementing the
priority queue with asorted sequence.

SequenceS Priority QueueP

Input (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)
(2, 5, 3, 9)
(5, 3, 9)
(3, 9)
(9)
()

(7)
(4, 7)

(4, 7,8)
(2, 4, 7, 8)

(2, 4,5, 7, 8)
(2, 3, 4, 5, 7, 8)

(2, 3, 4, 5, 7, 8,9)

Phase 2:
(a)
(b)
...

(g)

(2)
(2, 3)

...
(2, 3, 4, 5, 7, 8,9)

(3, 4, 5, 7, 8, 9)
(4, 5, 7, 8, 9)

...
()

5.17Priority Queues

Insertion Sort(cont.)
• We improve phase 2 toO(n).

• However, phase 1 now becomes the bottleneck for
the running time. The firstinsertItem takesO(1) time,
the second oneO(2), until the last opertation takes
O(n) time, for a total ofO(n2) time

• Selection-sort and insertion-sort both takeO(n2)
time

• Selection-sort willalways executs a number of
operations proportional ton2, no matter what is the
input sequence.

• The running time of insertion sort varies depending
on the input sequence.

• Neither is a good sorting method, except for small
sequences

• We have yet to see the ultimate priority queue....

5.18Priority Queues

Sorting
• By now, you’ve seen a little bit of sorting, so let us

tell you a little more about it.

• Sorting is essential because efficientsearching in a
database can be performed only if the records are
sorted

• It is estimated that about 20% of all the computing
time worldwide is devoted to sorting

• We shall see that there is a trade-off between the
“simplicity” and efficiency of sorting algorithms:

• The elementary sorting algorithms you’ve just seen,
though easy to understand and implement, take
O(n2) time (unusable for large values ofn)

• more sophisticated algorithms takeO(nlogn) time

• Comparison of Keys:do we base comparison upon
the entire key or upon parts of the key?

• Space Efficiency:in-place sorting vs. use of
auxiliary structures

• Stability: a stablesorting algorithm preserves the
initial relative order of equal keys

	Priority Queues
	• Stock trading (motivation)
	• The priority queue ADT
	• Implementing a priority queue with a sequence
	• Elementary sorting
	• Issues in sorting
	Stock Trading
	• We focus on the trading of a single security, say Akamai Technologies, founded in 1998 by CS pr...
	• Investors place orders consisting of three items (action, price, size), where action is either ...
	• At equilibrium, all the buy orders (bids) have prices lower than all the sell orders (asks)
	• A level 1 quote gives the highest bid and lowest ask (as provided by popular financial sites, a...
	• A level 2 quote gives all the bids and asks for several price steps (Island ECN on the Web and ...
	• A trade occurs whenever a new order can be matched with one or more existing orders, which resu...
	• Orders may be canceled at any time

	Data Structures for the Stock Market
	• For each security, we keep two structures, one for the buy orders (bids), and the other for the...
	• Operations that need to be supported
	place an order
	insert(price, size)
	insert(price, size)
	get level 1 quote
	min()
	max()
	trade
	removeMin()
	removeMax()
	cancel
	remove(order)
	remove(order)
	• These data structures are called priority queues.
	• The NASDAQ priority queues support an average daily trading volume of 1B shares ($50B)

	Keys and Total Order Relations
	• A Priority Queue ranks its elements by key with a total order relation
	• Keys:
	- Every element has its own key
	- Keys are not necessarily unique

	• Total Order Relation
	- Denoted by £
	- Reflexive: k £ k
	- Antisymetric: if k1 £ k2 and k2 £ k1, then k1 £k2
	- Transitive: if k1 £ k2 and k2 £ k3, then k1 £ k3

	• A Priority Queue supports these fundamental methods on key-element pairs:
	- min()
	- insertItem(k, e)
	- removeMin()

	Sorting with a Priority Queue
	• A Priority Queue P can be used for sorting a sequence S by:
	- inserting the elements of S into P with a series of insertItem(e, e) operations
	- removing the elements from P in increasing order and putting them back into S with a series of ...
	Algorithm PriorityQueueSort(S, P):
	Input: A sequence S storing n elements, on which a total order relation is defined, and a Priorit...
	Output: The Sequence S sorted by the total order relation
	while !S.isEmpty() do
	e ¨ S.removeFirst()
	P.insertItem(e, e)
	while P is not empty do
	e ¨ P.removeMin()
	S.insertLast(e)

	The Priority Queue ADT
	• A prioriy queue P supports the following methods:
	- size(): Return the number of elements in P
	- isEmpty(): Test whether P is empty
	- insertItem(k,e): Insert a new element e with key k into P
	- minElement(): Return (but don’t remove) an element of P with smallest key; an error occurs if P...
	- minKey(): Return the smallest key in P; an error occurs if P is empty
	- removeMin(): Remove from P and return an element with the smallest key; an error condidtion occ...

	Comparators
	• The most general and reusable form of a priority queue makes use of comparator objects.
	• Comparator objects are external to the keys that are to be compared and compare two objects.
	• When the priority queue needs to compare two keys, it uses the comparator it was given to do th...
	• Thus a priority queue can be general enough to store any object.
	• The comparator ADT includes:
	- isLessThan(a, b)
	- isLessThanOrEqualTo(a,b)
	- isEqualTo(a, b)
	- isGreaterThan(a,b)
	- isGreaterThanOrEqualTo(a,b)
	- isComparable(a)

	Implementation with an Unsorted Sequence
	• Let’s try to implement a priority queue with an unsorted sequence S.
	• The elements of S are a composition of two elements, k, the key, and e, the element.
	• We can implement insertItem() by using insertLast() on the sequence. This takes O(1) time.
	5
	• However, because we always insert at the end, irrespectively of the key value, our sequence is ...

	Implementation with an Unsorted Sequence (contd.)
	• Thus, for methods such as minElement(), minKey(), and removeMin(), we need to look at all the e...
	8
	• Performance summary

	insertItem
	O(1)
	minKey, minElement
	O(n)
	removeMin
	O(n)

	Implementation with a Sorted Sequence
	• Another implementation uses a sequence S, sorted by increasing keys
	• minElement(), minKey(), and removeMin() take O(1) time
	4
	• However, to implement insertItem(), we must now scan through the entire sequence in the worst c...

	4
	• Performance summary

	insertItem
	O(n)
	minKey, minElement
	O(1)
	removeMin
	O(1)

	Implementation with a Sorted Sequence(contd.)
	public class SequenceSimplePriorityQueue implements SimplePriorityQueue {
	//Implementation of a priority queue using a sorted sequence

	protected Sequence seq = new NodeSequence();
	protected Comparator comp;
	// auxiliary methods
	protected Object key (Position pos) { return ((Item)pos.element()).key(); } // note casting here
	protected Object element (Position pos) { return ((Item)pos.element()).element(); } // casting he...
	// methods of the SimplePriorityQueue ADT
	public SequenceSimplePriorityQueue (Comparator c) { comp = c; }
	public int size () {return seq.size(); }
	...Continued on next page...

	Implementation with a Sorted Sequence(contd.)
	public void insertItem (Object k, Object e) throws InvalidKeyException {
	if (!comp.isComparable(k)) { throw new InvalidKeyException("The key is not valid"); } else {
	if (seq.isEmpty()) { //if the sequence is empty, this is the seq.insertFirst(new Item(k,e));//fir...
	if (comp.isGreaterThan(k,key(seq.last()))) {
	seq.insertAfter(seq.last(),new Item(k,e)); }
	else {
	//we have to find the right place for k.

	Position curr = seq.first();
	while (comp.isGreaterThan(k,key(curr))) { curr = seq.after(curr); } seq.insertBefore(curr,new Ite...
	}
	}
	}
	...Continued...

	Implementation with a Sorted Sequence(contd.)
	public Object minElement () throws EmptyContainerException {
	if (seq.isEmpty()) { throw new EmptyContainerException("The priority queue is empty"); } else { r...
	public boolean isEmpty () { return seq.isEmpty(); }
	}

	Selection Sort
	• Selection Sort is a variation of PriorityQueueSort that uses an unsorted sequence to implement ...
	• Phase 1, the insertion of an item into P takes O(1) time
	• Phase 2, removing an item from P takes time proportional to the current number of elements in P
	Input
	(7, 4, 8, 2, 5, 3, 9)
	()
	Phase 1:
	(a)
	(b)
	...
	(g)
	(4, 8, 2, 5, 3, 9)
	(8, 2, 5, 3, 9)
	...
	()
	(7)
	(7, 4)
	...
	(7, 4, 8, 2, 5, 3, ,9)
	Phase 2:
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	(2)
	(2, 3)
	(2, 3, 4)
	(2, 3, 4, 5)
	(2, 3, 4, 5, 7)
	(2, 3, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8, 9)
	(7, 4, 8, 5, 3, 9)
	(7, 4, 8, 5, 9)
	(7, 8, 5, 9)
	(7, 8, 9)
	(8, 9)
	(9)
	()

	Selection Sort (cont.)
	• As you can tell, a bottleneck occurs in Phase 2. The first removeMinElement operation take O(n)...
	• The total time needed for phase 2 is:
	• By a well-known fact:
	• The total time complexity of phase 2 is then O(n2). Thus, the time complexity of the algorithm ...

	Insertion Sort
	• Insertion sort is the sort that results when we perform a PriorityQueueSort implementing the pr...
	Input
	(7, 4, 8, 2, 5, 3, 9)
	()
	Phase 1:
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	(4, 8, 2, 5, 3, 9)
	(8, 2, 5, 3, 9)
	(2, 5, 3, 9)
	(5, 3, 9)
	(3, 9)
	(9)
	()
	(7)
	(4, 7)
	(4, 7, 8)
	(2, 4, 7, 8)
	(2, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8, 9)
	Phase 2:
	(a)
	(b)
	...
	(g)
	(2)
	(2, 3)
	...
	(2, 3, 4, 5, 7, 8, 9)
	(3, 4, 5, 7, 8, 9)
	(4, 5, 7, 8, 9)
	...
	()

	Insertion Sort(cont.)
	• We improve phase 2 to O(n).
	• However, phase 1 now becomes the bottleneck for the running time. The first insertItem takes O(...
	• Selection-sort and insertion-sort both take O(n2) time
	• Selection-sort will always executs a number of operations proportional to n2, no matter what is...
	• The running time of insertion sort varies depending on the input sequence.
	• Neither is a good sorting method, except for small sequences
	• We have yet to see the ultimate priority queue....

	Sorting
	• By now, you’ve seen a little bit of sorting, so let us tell you a little more about it.
	• Sorting is essential because efficient searching in a database can be performed only if the rec...
	• It is estimated that about 20% of all the computing time worldwide is devoted to sorting
	• We shall see that there is a trade-off between the “simplicity” and efficiency of sorting algor...
	• The elementary sorting algorithms you’ve just seen, though easy to understand and implement, ta...
	• more sophisticated algorithms take O(nlogn) time
	• Comparison of Keys: do we base comparison upon the entire key or upon parts of the key?
	• Space Efficiency : in-place sorting vs. use of auxiliary structures
	• Stability: a stable sorting algorithm preserves the initial relative order of equal keys

