PRIORITY QUEUES

e Stock trading (motivation)

e The priority queue ADT

* Implementing a priority queue with a sequence

* Elementary sorting

e ISsues in sorting
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Stock Trading

* WWe focus on the trading of a single security, say
Akamali Technologies, founded in 1998 by CS
professors and students at MHADQ employegs
$20B market cap

e Investors placerdersconsisting of three items
(action, price, sizg, whereaction s either i or
sell, price is the worst price you are willing to pay
for the purchase or get from your sale, amkis the
number of shares

o At equilibrium, all the buy orders (<) have prices
lower than all the sell orderagks

* A level 1 quotagives the highest bid and lowest ask
(as provided by popular financial sites, and e-
brokers for the naive public)

* A level 2 guotagives all the bids and asks for several
price steps (Island ECN on the Web and quote
subscriptions for professional traders)

e A tradeoccurs whenever a new order can be
matched with one or more existing orders, which
results in a series ofmovaltransactions

e Orders may beanceledat any time
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Data Structures for the Stock
Market

* For each security, we keep two structures, one fo
the buy orders (bids), and the other for the sell
orders (asks)

e Operations that need to be supported

Action Ask Structure
place an order insert(price, size)
get level 1 quote min()
trade removeMin)
cancel removéorder)

 These data structures are calteobrity qgueues

 The NASDAQ priority queues support an average
daily trading volume of 1B shares ($50B)
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Keys and Total Order Relations

« A Priority Queueaanks its elements ey with a
total orderrelation

e Keys:
- Every element has its own key
- Keys are not necessarily unigue

 Total Order Relation
- Denoted by<
- Reflexive:k < k
- Antisymetric: if k; < k, andks < kq, thenk; <k,
- Transitive: If ky < ky, andk, < ks, thenk; < ks

A Priority Queuesupports these fundamental
methods on key-element pairs:
- min()
- insertltem(k, e)
- removeMin()

Priority Queues 54




Sorting with a Priority Queue

« A Priority QueueP can be used for sorting a
sequencé by:

- Inserting the elements &into P with a series of
insertitem(e, €) operations

- removing the elements froRmin increasing order
and putting them back int®with a series of
removeMin() operations

Algorithm PriorityQueueSor&, P):
Input: A sequencé storingn elements, on which a
total order relation is defined, and a Priority Queu
P that compares keys with the same relation
Output: The SequencB8 sorted by the total order
relation

while !'SisEmpty() do
e — SremoveFirst()
P.insertitem(e, €)

while P is not emptydo
e — PremoveMin()
SinsertLast(€)

Priority Queues 5.5



The Priority Queue ADT

A prioriy queueP supports the following methods:

size():

Return the number of elementsHn
ISEmpty():

Test whetheP is empty
Insertltemk,e):

Insert a new elememtwith keyk into P

minElement():
Return (but don’t remove) an element ¢
P with smallest key; an error occurshHf
IS empty.

minKey():
Return the smallest key It an error
occurs IifP is empty

removeMin():
Remove fronP and return an element
with the smallest key; an error
condidtion occurs iP is empty.
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Comparators

 The most general and reusable form of a priority
gueue makes use cbmparator objects.

o Comparator objects are external to the keys that ar
to be compared and compare two objects.

* When the priority queue needs to compare two keys
It uses the comparator it was given to do the
comparison.

e Thus a priority queue can be general enough to stor
any object.

 The comparator ADT includes:
- IsLessThard, b)
- IsLessThanOrEqualTa)
- IsEqualTo4, b)
- IsGreaterThargb)
- IsGreaterThanOrEqualTap)
- IsComparable)
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Implementation with an
Unsorted Sequence

« Let's try to Implement a priority queue with an
unsorted sequenée

* The elements dbare a composition of two
elementsk, the key, an@, the element.

* \We can implemennsertitem()oy usinginsertLast()
on the sequence. This takegl) time.

OO

 However, because we always insert at the end,
Irrespectively of the key value, our sequence is n¢
ordered.
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Implementation with an
Unsorted Sequence (contd.)

e Thus, for methods such asnElement() minKey(),
andremoveMin() we need tdook at all the
elementf S The worst case time complexity for
these methods B(n).

V. Vi Y V.

e Performance summary

Insertltem O(1)
minKey, minElement O(n)
removeMin O(n)
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Implementation with a Sorted
Sequence

e Another implementation uses a sequefcsorted
by increasing keys

 minElement() minKey(), andremoveMin()take
O(1) time

 However, to implementsertltem() we must now
scan through the entire sequentéhe worst case
Thus,insertltem()runs inO(n) time

V. Vi V. V. VR

e Performance summary

Insertitem O(n)
minKey, minElement O(1)
removeMin O(1)
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Implementation with a Sorted
Seqguence(contd.)

public class SequenceSimplePriorityQueue
iImplements SimplePriorityQueue {

//Implementation of a priority queue
using a sorted sequence

protected Sequence seqg = new NodeSequence();
protected Comparator comp;

/[ auxiliary methods

protected Object key (Position pos) {
return ((Item)pos.element()).key();
} I/ note casting here

protected Object element (Position pos) {
return ((Item)pos.element()).element();
} Il casting here too

// methods of the SimplePriorityQueue ADT

public SequenceSimplePriorityQueue (Comparator c) {
comp = ¢; }

public int size () {return seq.size(); }

...Continued on next page..
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Implementation with a Sorted
Seqguence(contd.)

public void insertltem (Object k, Object e) throws
InvalidKeyException {

if (!comp.isComparable(k)) {
throw new InvalidKeyException("The key is not valid");

else {

if (seq.iIsEmpty()) {
/lif the sequence is empty, this is the
seq.insertFirst(new Item(k,e));//first item

else { //check if it fits right at the end
if (comp.isGreaterThan(k,key(seg.last()))) {
seq.insertAfter(segq.last(),new Item(k,e));

else {
//we have to find the right place for k.
Position curr = seq.first();

while (comp.isGreaterThan(k,key(curr))) {
curr = seq.after(curr);

seq.insertBefore(curr,new Iltem(k,e));

}
}

...Continued...
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Implementation with a Sorted
Seqguence(contd.)

public Object minElement () throws
EmptyContainerException {
If (seq.iIsEmpty()) {
throw new EmptyContainerException("The priority
gueue is empty");

}
else {

return element(seq.first());
}

public boolean isEmpty () {
return seq.isEmpty();

}
}
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Selection Sort

e Selection Sort is a variation of PriorityQueueSort
that uses annsorted sequenc®m implement the
priority queueP.

* Phase 1the insertion of an item inte takesO(1)
time

 Phase 2removing an item fror® takes time
proportional to the current number of elementR in

Sequenc& Priority QueueP

Input (7,4,8,2,5, 3,9) 0
Phase 1.

(@ 4,8,2,5,3,9) (7)

(b)| (8,2,5,3,9) (7,4)

(@) 0 (7,4,8,2,5,39)
Phase 2:

(a) (2) (7,4,8,5,3,9

(b) (2,3) (7,4,8,5, 9

(c) (2, 3,4) (7,8,5,9

(d) (2, 3,45 (7,8,9

(e)] (2,3,4,57) (8,9

M (2, 3,4,5,78) (9)

(9)] (2,3,4,5,7,89) 0
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Selection Sort (cont.)

e As you can tell, a bottleneck occurs in Phase 2. T

first removeMinElement operation tak¢n), the

secondd(n—-1), etc. until the last removal takes onl

O(1) time.

e The total time needed for phase 2 Is:

(N [
O(n+(n=-1)+...+2+1)=00 y 10
H=1U

e By a well-known fact:

* The total time complexity of phase 2 is thefm?).
Thus, the time complexity of the algorithmQ$n?).

h

/
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Insertion Sort

 Insertion sort is the sort that results when we
perform a PriorityQueueSort implementing the
priority queue with aorted sequence

Sequenc& Priority QueudP
Input (7,4,8,2,5,3,9) 0
Phase 1:
(@ 4,8,2,5,3,9) (7)
(b) (8, 2,5, 3,9) (4, 7)
(c) (2,5, 3,9 (4, 7,8)
(d) (5, 3, 9) (2,4, 7, 8)
(e) (3,9) (2,4,5,7, 8)
(f) (9) (2,3,4,5,7, 8)
(9) () (2,3,4,5,7, 89)
Phase 2:
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
)| (2.3,4,5,7, 89) 0
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Insertion Sort(cont.)
* \We improve phase 2 ©(n).

 However, phase 1 now becomes the bottleneck fq
the running time. The firstisertitem takesO(1) time,
the second on®(2), until the last opertation takes
O(n) time, for a total oD(n®) time

« Selection-sort and insertion-sort both tﬂ(elz)
time

» Selection-sort wilblwaysexecuts a number of
operations proportional o/, no matter what is the
Input sequence.

e The running time of insertion sort varies dependin

on the input seguence.

* Neither is a good sorting method, except for smal
sequences

* We have yet to see the ultimate priority queue....
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Sorting

* By now, you've seen a little bit of sorting, so let us
tell you a little more about it.

A4

e Sorting Is essential because efficis@archingin a
database can be performed only if the records are
sorted

e [t is estimated that about 20% of all the computing
time worldwide is devoted to sorting

e We shall see that there is a trade-off between the
“simplicity” and efficiency of sorting algorithms:

* The elementary sorting algorithms you’ve just seen
though easy to understand and implement, take
O(n?) time (unusable for large valuesnf

e more sophisticated algorithms taénlogn) time

o Comparison of Keysdo we base comparison upon
the entire key or upon parts of the key?

« Space Efficiencyin-placesorting vs. use of
auxiliary structures

 Stability: a stablesorting algorithm preserves the
initial relative order of equal keys
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