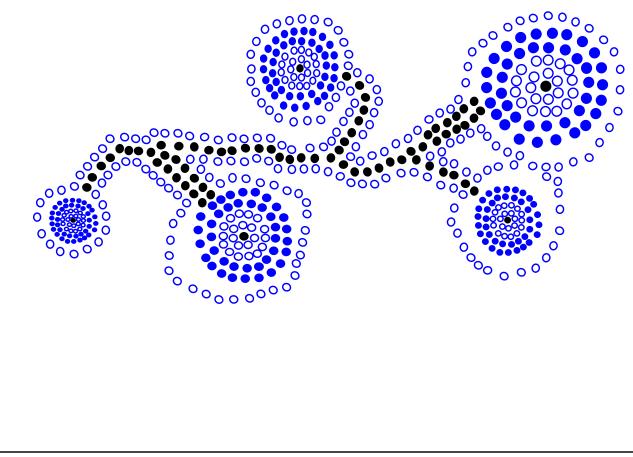
PRIORITY QUEUES

- Stock trading (motivation)
- The priority queue ADT
- Implementing a priority queue with a sequence
- Elementary sorting
- Issues in sorting



Stock Trading

- We focus on the trading of a single security, say Akamai Technologies, founded in 1998 by CS professors and students at MIT (200 employees, \$20B market cap)
- Investors place *orders* consisting of three items (*action*, *price*, *size*), where *action* is either *buy* or *sell*, *price* is the worst price you are willing to pay for the purchase or get from your sale, and *size* is the number of shares
- At equilibrium, all the buy orders (*bids*) have prices lower than all the sell orders (*asks*)
- A *level 1 quote* gives the highest bid and lowest ask (as provided by popular financial sites, and e-brokers for the naive public)
- A *level 2 quote* gives all the bids and asks for several price steps (Island ECN on the Web and quote subscriptions for professional traders)
- A *trade* occurs whenever a new order can be matched with one or more existing orders, which results in a series of *removal* transactions
- Orders may be *canceled* at any time

Data Structures for the Stock Market

- For each security, we keep two structures, one for the buy orders (bids), and the other for the sell orders (asks)
- Operations that need to be supported

Action	Ask Structure	Bid Structure
place an order	<i>insert</i> (price, size)	<i>insert</i> (price, size)
get level 1 quote	min()	<i>max</i> ()
trade	removeMin()	removeMax()
cancel	<i>remove</i> (order)	<i>remove</i> (order)

- These data structures are called *priority queues*.
- The NASDAQ priority queues support an average daily trading volume of 1B shares (\$50B)

Keys and Total Order Relations

- A Priority Queue ranks its elements by *key* with a *total order* relation
- Keys:
 - Every element has its own key
 - Keys are not necessarily unique
- Total Order Relation
 - Denoted by \leq
 - **Reflexive:** $k \leq k$
 - Antisymetric: if $k_1 \leq k_2$ and $k_2 \leq k_1$, then $k_1 \leq k_2$
 - **Transitive:** if $k_1 \leq k_2$ and $k_2 \leq k_3$, then $k_1 \leq k_3$
- A Priority Queue supports these fundamental methods on key-element pairs:
 - min()
 - insertItem(k, e)
 - removeMin()

Sorting with a Priority Queue

- A Priority Queue *P* can be used for sorting a sequence *S* by:
 - inserting the elements of *S* into *P* with a series of insertItem(*e*, *e*) operations
 - removing the elements from *P* in increasing order and putting them back into *S* with a series of removeMin() operations

Algorithm PriorityQueueSort(S, P):
Input: A sequence S storing n elements, on which a total order relation is defined, and a Priority Queue P that compares keys with the same relation
Output: The Sequence S sorted by the total order relation

while !S.isEmpty() do $e \leftarrow S.removeFirst()$ P.insertItem(e, e)while P is not empty do $e \leftarrow P.removeMin()$ S.insertLast(e)

The Priority Queue ADT

- A prioriy queue *P* supports the following methods:
 - size():
- Return the number of elements in P
- isEmpty():

Test whether *P* is empty

- insertItem(*k*,*e*):

Insert a new element e with key k into P

- minElement():

Return (but don't remove) an element of P with smallest key; an error occurs if P is empty.

- minKey():

Return the smallest key in *P*; an error occurs if *P* is empty

- removeMin():

Remove from *P* and return an element with the smallest key; an error condidtion occurs if *P* is empty.

Comparators

- The most general and reusable form of a priority queue makes use of **comparator** objects.
- Comparator objects are external to the keys that are to be compared and compare two objects.
- When the priority queue needs to compare two keys, it uses the comparator it was given to do the comparison.
- Thus a priority queue can be general enough to store any object.
- The comparator ADT includes:
 - isLessThan(*a*, *b*)
 - isLessThanOrEqualTo(*a*,*b*)
 - isEqualTo(*a*, *b*)
 - isGreaterThan(*a*,*b*)
 - isGreaterThanOrEqualTo(*a*,*b*)
 - isComparable(*a*)

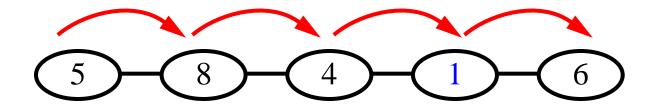
Implementation with an Unsorted Sequence

- Let's try to implement a priority queue with an unsorted sequence *S*.
- The elements of *S* are a composition of two elements, *k*, the key, and *e*, the element.
- We can implement insertItem() by using insertLast() on the sequence. This takes *O*(1) time.

• However, because we always insert at the end, irrespectively of the key value, our sequence is not ordered.

Implementation with an Unsorted Sequence (contd.)

Thus, for methods such as minElement(), minKey(), and removeMin(), we need to *look at all the elements* of *S*. The worst case time complexity for these methods is *O*(*n*).



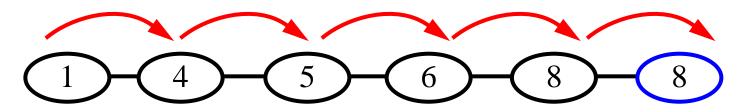
• Performance summary

insertItem	<i>O</i> (1)
minKey, minElement	O (n)
<i>removeMin</i>	O (n)

Implementation with a Sorted Sequence

- Another implementation uses a sequence *S*, sorted by increasing keys
- minElement(), minKey(), and removeMin() take *O*(1) time

However, to implement insertItem(), we must now scan through the entire sequence *in the worst case*. Thus, insertItem() runs in O(n) time



• Performance summary

<i>insertItem</i>	O (n)	
minKey, minElement	<i>O</i> (1)	
<i>removeMin</i>	<i>O</i> (1)	

Implementation with a Sorted Sequence(contd.)

```
public class SequenceSimplePriorityQueue
implements SimplePriorityQueue {
  //Implementation of a priority queue
  using a sorted sequence
 protected Sequence seq = new NodeSequence();
 protected Comparator comp;
// auxiliary methods
 protected Object key (Position pos) {
   return ((Item)pos.element()).key();
 }// note casting here
 protected Object element (Position pos) {
   return ((Item)pos.element()).element();
 }// casting here too
 // methods of the SimplePriorityQueue ADT
 public SequenceSimplePriorityQueue (Comparator c) {
   comp = c; \}
 public int size () {return seq.size(); }
```

...Continued on next page...

Implementation with a Sorted Sequence(contd.)

```
public void insertitem (Object k, Object e) throws
InvalidKeyException {
  if (!comp.isComparable(k)) {
    throw new InvalidKeyException("The key is not valid");
  }
  else {
    if (seq.isEmpty()) {
      //if the sequence is empty, this is the
      seq.insertFirst(new Item(k,e));//first item
    else { //check if it fits right at the end
      if (comp.isGreaterThan(k,key(seq.last()))) {
        seq.insertAfter(seq.last(),new Item(k,e));
      }
      else {
        //we have to find the right place for k.
         Position curr = seq.first();
        while (comp.isGreaterThan(k,key(curr))) {
          curr = seq.after(curr);
        seq.insertBefore(curr, new Item(k,e));
      }
    }
 }
                     ...Continued...
```

Implementation with a Sorted Sequence(contd.)

```
public Object minElement () throws
EmptyContainerException {
if (seq.isEmpty()) {
    throw new EmptyContainerException("The priority
    queue is empty");
}
else {
    return element(seq.first());
}
public boolean isEmpty () {
    return seq.isEmpty();
}
```

}

Selection Sort

- Selection Sort is a variation of PriorityQueueSort that uses an *unsorted sequence* to implement the priority queue *P*.
- **Phase 1**, the insertion of an item into *P* takes *O*(1) time
- Phase 2, removing an item from *P* takes time proportional to the current number of elements in *P*

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	0
Phase 1:			
	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(7, 4)
	•••	•••	•••
	(g)	0	(7, 4, 8, 2, 5, 3, ,9)
Phase 2:			
	(a)	(2)	(7, 4, 8, 5, 3, 9)
	(b)	(2, 3)	(7, 4, 8, 5, 9)
	(c)	(2, 3, 4)	(7, 8, 5, 9)
	(d)	(2, 3, 4, 5)	(7, 8, 9)
	(e)	(2, 3, 4, 5, 7)	(8, 9)
	(f)	(2, 3, 4, 5, 7, 8)	(9)
	(g)	(2, 3, 4, 5, 7, 8, 9)	()

Selection Sort (cont.)

- As you can tell, a bottleneck occurs in Phase 2. The first removeMinElement operation take O(n), the second O(n-1), etc. until the last removal takes only O(1) time.
- The total time needed for phase 2 is:

$$O(n + (n - 1) + \dots + 2 + 1) \equiv O\left(\sum_{i=1}^{n} i\right)$$

• By a well-known fact:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• The total time complexity of phase 2 is then $O(n^2)$. Thus, the time complexity of the algorithm is $O(n^2)$.

Insertion Sort

• Insertion sort is the sort that results when we perform a PriorityQueueSort implementing the priority queue with a *sorted sequence*.

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	()
Phase 1:			
	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(4, 7)
	(c)	(2, 5, 3, 9)	(4, 7, 8)
	(d)	(5, 3, 9)	(2, 4, 7, 8)
	(e)	(3, 9)	(2, 4, 5, 7, 8)
	(f)	(9)	(2, 3, 4, 5, 7, 8)
	(g)	()	(2, 3, 4, 5, 7, 8, 9)
Phase 2:			
	(a)	(2)	(3, 4, 5, 7, 8, 9)
	(b)	(2, 3)	(4, 5, 7, 8, 9)
	•••	•••	••••
	(g)	(2, 3, 4, 5, 7, 8, 9)	()

Insertion Sort(cont.)

- We improve phase 2 to O(n).
- However, phase 1 now becomes the bottleneck for the running time. The first insertItem takes O(1) time, the second one O(2), until the last opertation takes O(n) time, for a total of O(n²) time
- Selection-sort and insertion-sort both take $O(n^2)$ time
- Selection-sort will *always* executs a number of operations proportional to n^2 , no matter what is the input sequence.
- The running time of insertion sort varies depending on the input sequence.
- Neither is a good sorting method, except for small sequences
- We have yet to see the ultimate priority queue....

Sorting

- By now, you've seen a little bit of sorting, so let us tell you a little more about it.
- Sorting is essential because efficient *searching* in a database can be performed only if the records are sorted
- It is estimated that about 20% of all the computing time worldwide is devoted to sorting
- We shall see that there is a trade-off between the "simplicity" and efficiency of sorting algorithms:
- The elementary sorting algorithms you've just seen, though easy to understand and implement, take O(n²) time (unusable for large values of n)
- more sophisticated algorithms take $O(n \log n)$ time
- Comparison of Keys: *do we base comparison upon the entire key or upon parts of the key?*
- Space Efficiency: *in-place* sorting vs. use of auxiliary structures
- Stability: a *stable* sorting algorithm preserves the initial relative order of equal keys