PRIORITY QUEUES

e Stock trading (motivation)

e The priority queue ADT

* Implementing a priority queue with a sequence

* Elementary sorting

e ISsues in sorting

Priority Queues

5.1

Stock Trading

* WWe focus on the trading of a single security, say
Akamali Technologies, founded in 1998 by CS
professors and students at MHADQ employegs
$20B market cap

e Investors placerdersconsisting of three items
(action, price, sizg, whereaction s either i or
sell, price is the worst price you are willing to pay
for the purchase or get from your sale, amkis the
number of shares

o At equilibrium, all the buy orders (<) have prices
lower than all the sell orderagks

* A level 1 quotagives the highest bid and lowest ask
(as provided by popular financial sites, and e-
brokers for the naive public)

* A level 2 guotagives all the bids and asks for several
price steps (Island ECN on the Web and quote
subscriptions for professional traders)

e A tradeoccurs whenever a new order can be
matched with one or more existing orders, which
results in a series ofmovaltransactions

e Orders may beanceledat any time

Priority Queues 5.2

Data Structures for the Stock
Market

* For each security, we keep two structures, one fo
the buy orders (bids), and the other for the sell
orders (asks)

e Operations that need to be supported

Action Ask Structure
place an order insert(price, size)
get level 1 quote min()
trade removeMin)
cancel removéorder)

 These data structures are calteobrity qgueues

 The NASDAQ priority queues support an average
daily trading volume of 1B shares ($50B)

Priority Queues 5.3

Keys and Total Order Relations

« A Priority Queueaanks its elements ey with a
total orderrelation

e Keys:
- Every element has its own key
- Keys are not necessarily unigue

 Total Order Relation
- Denoted by<
- Reflexive:k < k
- Antisymetric: if k; < k, andks < kq, thenk; <k,
- Transitive: If ky < ky, andk, < ks, thenk; < ks

A Priority Queuesupports these fundamental
methods on key-element pairs:
- min()
- insertltem(k, e)
- removeMin()

Priority Queues 54

Sorting with a Priority Queue

« A Priority QueueP can be used for sorting a
sequencé by:

- Inserting the elements &into P with a series of
insertitem(e, €) operations

- removing the elements froRmin increasing order
and putting them back int®with a series of
removeMin() operations

Algorithm PriorityQueueSor&, P):
Input: A sequencé storingn elements, on which a
total order relation is defined, and a Priority Queu
P that compares keys with the same relation
Output: The SequencB8 sorted by the total order
relation

while !'SisEmpty() do
e — SremoveFirst()
P.insertitem(e, €)

while P is not emptydo
e — PremoveMin()
SinsertLast(€)

Priority Queues 5.5

The Priority Queue ADT

A prioriy queueP supports the following methods:

size():

Return the number of elementsHn
ISEmpty():

Test whetheP is empty
Insertltemk,e):

Insert a new elememtwith keyk into P

minElement():
Return (but don’t remove) an element ¢
P with smallest key; an error occurshHf
IS empty.

minKey():
Return the smallest key It an error
occurs IifP is empty

removeMin():
Remove fronP and return an element
with the smallest key; an error
condidtion occurs iP is empty.

Priority Queues 5.6

Comparators

 The most general and reusable form of a priority
gueue makes use cbmparator objects.

o Comparator objects are external to the keys that ar
to be compared and compare two objects.

* When the priority queue needs to compare two keys
It uses the comparator it was given to do the
comparison.

e Thus a priority queue can be general enough to stor
any object.

 The comparator ADT includes:
- IsLessThard, b)
- IsLessThanOrEqualTa)
- IsEqualTo4, b)
- IsGreaterThargb)
- IsGreaterThanOrEqualTap)
- IsComparable)

Priority Queues 5.7

Implementation with an
Unsorted Sequence

« Let's try to Implement a priority queue with an
unsorted sequenée

* The elements dbare a composition of two
elementsk, the key, an@, the element.

* \We can implemennsertitem()oy usinginsertLast()
on the sequence. This takegl) time.

OO

 However, because we always insert at the end,
Irrespectively of the key value, our sequence is n¢
ordered.

Priority Queues 5.8

Implementation with an
Unsorted Sequence (contd.)

e Thus, for methods such asnElement() minKey(),
andremoveMin() we need tdook at all the
elementf S The worst case time complexity for
these methods B(n).

V. Vi Y V.

e Performance summary

Insertltem O(1)
minKey, minElement O(n)
removeMin O(n)

Priority Queues 5.9

Implementation with a Sorted
Sequence

e Another implementation uses a sequefcsorted
by increasing keys

 minElement() minKey(), andremoveMin()take
O(1) time

 However, to implementsertltem() we must now
scan through the entire sequentéhe worst case
Thus,insertltem()runs inO(n) time

V. Vi V. V. VR

e Performance summary

Insertitem O(n)
minKey, minElement O(1)
removeMin O(1)

Priority Queues 5.10

Implementation with a Sorted
Seqguence(contd.)

public class SequenceSimplePriorityQueue
iImplements SimplePriorityQueue {

//Implementation of a priority queue
using a sorted sequence

protected Sequence seqg = new NodeSequence();
protected Comparator comp;

/[auxiliary methods

protected Object key (Position pos) {
return ((Item)pos.element()).key();
} I/ note casting here

protected Object element (Position pos) {
return ((Item)pos.element()).element();
} Il casting here too

// methods of the SimplePriorityQueue ADT

public SequenceSimplePriorityQueue (Comparator c) {
comp = ¢; }

public int size () {return seq.size(); }

...Continued on next page..

Priority Queues 5.11

Implementation with a Sorted
Seqguence(contd.)

public void insertltem (Object k, Object e) throws
InvalidKeyException {

if (!comp.isComparable(k)) {
throw new InvalidKeyException("The key is not valid");

else {

if (seq.iIsEmpty()) {
/lif the sequence is empty, this is the
seq.insertFirst(new Item(k,e));//first item

else { //check if it fits right at the end
if (comp.isGreaterThan(k,key(seg.last()))) {
seq.insertAfter(segq.last(),new Item(k,e));

else {
//we have to find the right place for k.
Position curr = seq.first();

while (comp.isGreaterThan(k,key(curr))) {
curr = seq.after(curr);

seq.insertBefore(curr,new Iltem(k,e));

}
}

...Continued...

Priority Queues 5.12

Implementation with a Sorted
Seqguence(contd.)

public Object minElement () throws
EmptyContainerException {
If (seq.iIsEmpty()) {
throw new EmptyContainerException("The priority
gueue is empty");

}
else {

return element(seq.first());
}

public boolean isEmpty () {
return seq.isEmpty();

}
}

Priority Queues 5.13

Selection Sort

e Selection Sort is a variation of PriorityQueueSort
that uses annsorted sequenc®m implement the
priority queueP.

* Phase 1the insertion of an item inte takesO(1)
time

 Phase 2removing an item fror® takes time
proportional to the current number of elementR in

Sequenc& Priority QueueP

Input (7,4,8,2,5, 3,9) 0
Phase 1.

(@ 4,8,2,5,3,9) (7)

(b)| (8,2,5,3,9) (7,4)

(@) 0 (7,4,8,2,5,39)
Phase 2:

(a) (2) (7,4,8,5,3,9

(b) (2,3) (7,4,8,5, 9

(c) (2, 3,4) (7,8,5,9

(d) (2, 3,45 (7,8,9

(e)] (2,3,4,57) (8,9

M (2, 3,4,5,78) (9)

(9)] (2,3,4,5,7,89) 0

Priority Queues 5.14

Selection Sort (cont.)

e As you can tell, a bottleneck occurs in Phase 2. T

first removeMinElement operation tak¢n), the

secondd(n—-1), etc. until the last removal takes onl

O(1) time.

e The total time needed for phase 2 Is:

(N [
O(n+(n=-1)+...+2+1)=00 y 10
H=1U

e By a well-known fact:

* The total time complexity of phase 2 is thefm?).
Thus, the time complexity of the algorithmQ$n?).

h

/

Priority Queues

5.15

Insertion Sort

 Insertion sort is the sort that results when we
perform a PriorityQueueSort implementing the
priority queue with aorted sequence

Sequenc& Priority QueudP
Input (7,4,8,2,5,3,9) 0
Phase 1:
(@ 4,8,2,5,3,9) (7)
(b) (8, 2,5, 3,9) (4, 7)
(c) (2,5, 3,9 (4, 7,8)
(d) (5, 3, 9) (2,4, 7, 8)
(e) (3,9) (2,4,5,7, 8)
(f) (9) (2,3,4,5,7, 8)
(9) () (2,3,4,5,7, 89)
Phase 2:
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
)| (2.3,4,5,7, 89) 0
Priority Queues 5.16

Insertion Sort(cont.)
* \We improve phase 2 ©(n).

 However, phase 1 now becomes the bottleneck fq
the running time. The firstisertitem takesO(1) time,
the second on®(2), until the last opertation takes
O(n) time, for a total oD(n®) time

« Selection-sort and insertion-sort both tﬂ(elz)
time

» Selection-sort wilblwaysexecuts a number of
operations proportional o/, no matter what is the
Input sequence.

e The running time of insertion sort varies dependin

on the input seguence.

* Neither is a good sorting method, except for smal
sequences

* We have yet to see the ultimate priority queue....

Priority Queues 5.17

Sorting

* By now, you've seen a little bit of sorting, so let us
tell you a little more about it.

A4

e Sorting Is essential because efficis@archingin a
database can be performed only if the records are
sorted

e [t is estimated that about 20% of all the computing
time worldwide is devoted to sorting

e We shall see that there is a trade-off between the
“simplicity” and efficiency of sorting algorithms:

* The elementary sorting algorithms you’ve just seen
though easy to understand and implement, take
O(n?) time (unusable for large valuesnf

e more sophisticated algorithms taénlogn) time

o Comparison of Keysdo we base comparison upon
the entire key or upon parts of the key?

« Space Efficiencyin-placesorting vs. use of
auxiliary structures

 Stability: a stablesorting algorithm preserves the
initial relative order of equal keys

Priority Queues 5.18

	Priority Queues
	• Stock trading (motivation)
	• The priority queue ADT
	• Implementing a priority queue with a sequence
	• Elementary sorting
	• Issues in sorting
	Stock Trading
	• We focus on the trading of a single security, say Akamai Technologies, founded in 1998 by CS pr...
	• Investors place orders consisting of three items (action, price, size), where action is either ...
	• At equilibrium, all the buy orders (bids) have prices lower than all the sell orders (asks)
	• A level 1 quote gives the highest bid and lowest ask (as provided by popular financial sites, a...
	• A level 2 quote gives all the bids and asks for several price steps (Island ECN on the Web and ...
	• A trade occurs whenever a new order can be matched with one or more existing orders, which resu...
	• Orders may be canceled at any time

	Data Structures for the Stock Market
	• For each security, we keep two structures, one for the buy orders (bids), and the other for the...
	• Operations that need to be supported
	place an order
	insert(price, size)
	insert(price, size)
	get level 1 quote
	min()
	max()
	trade
	removeMin()
	removeMax()
	cancel
	remove(order)
	remove(order)
	• These data structures are called priority queues.
	• The NASDAQ priority queues support an average daily trading volume of 1B shares ($50B)

	Keys and Total Order Relations
	• A Priority Queue ranks its elements by key with a total order relation
	• Keys:
	- Every element has its own key
	- Keys are not necessarily unique

	• Total Order Relation
	- Denoted by £
	- Reflexive: k £ k
	- Antisymetric: if k1 £ k2 and k2 £ k1, then k1 £k2
	- Transitive: if k1 £ k2 and k2 £ k3, then k1 £ k3

	• A Priority Queue supports these fundamental methods on key-element pairs:
	- min()
	- insertItem(k, e)
	- removeMin()

	Sorting with a Priority Queue
	• A Priority Queue P can be used for sorting a sequence S by:
	- inserting the elements of S into P with a series of insertItem(e, e) operations
	- removing the elements from P in increasing order and putting them back into S with a series of ...
	Algorithm PriorityQueueSort(S, P):
	Input: A sequence S storing n elements, on which a total order relation is defined, and a Priorit...
	Output: The Sequence S sorted by the total order relation
	while !S.isEmpty() do
	e ¨ S.removeFirst()
	P.insertItem(e, e)
	while P is not empty do
	e ¨ P.removeMin()
	S.insertLast(e)

	The Priority Queue ADT
	• A prioriy queue P supports the following methods:
	- size(): Return the number of elements in P
	- isEmpty(): Test whether P is empty
	- insertItem(k,e): Insert a new element e with key k into P
	- minElement(): Return (but don’t remove) an element of P with smallest key; an error occurs if P...
	- minKey(): Return the smallest key in P; an error occurs if P is empty
	- removeMin(): Remove from P and return an element with the smallest key; an error condidtion occ...

	Comparators
	• The most general and reusable form of a priority queue makes use of comparator objects.
	• Comparator objects are external to the keys that are to be compared and compare two objects.
	• When the priority queue needs to compare two keys, it uses the comparator it was given to do th...
	• Thus a priority queue can be general enough to store any object.
	• The comparator ADT includes:
	- isLessThan(a, b)
	- isLessThanOrEqualTo(a,b)
	- isEqualTo(a, b)
	- isGreaterThan(a,b)
	- isGreaterThanOrEqualTo(a,b)
	- isComparable(a)

	Implementation with an Unsorted Sequence
	• Let’s try to implement a priority queue with an unsorted sequence S.
	• The elements of S are a composition of two elements, k, the key, and e, the element.
	• We can implement insertItem() by using insertLast() on the sequence. This takes O(1) time.
	5
	• However, because we always insert at the end, irrespectively of the key value, our sequence is ...

	Implementation with an Unsorted Sequence (contd.)
	• Thus, for methods such as minElement(), minKey(), and removeMin(), we need to look at all the e...
	8
	• Performance summary

	insertItem
	O(1)
	minKey, minElement
	O(n)
	removeMin
	O(n)

	Implementation with a Sorted Sequence
	• Another implementation uses a sequence S, sorted by increasing keys
	• minElement(), minKey(), and removeMin() take O(1) time
	4
	• However, to implement insertItem(), we must now scan through the entire sequence in the worst c...

	4
	• Performance summary

	insertItem
	O(n)
	minKey, minElement
	O(1)
	removeMin
	O(1)

	Implementation with a Sorted Sequence(contd.)
	public class SequenceSimplePriorityQueue implements SimplePriorityQueue {
	//Implementation of a priority queue using a sorted sequence

	protected Sequence seq = new NodeSequence();
	protected Comparator comp;
	// auxiliary methods
	protected Object key (Position pos) { return ((Item)pos.element()).key(); } // note casting here
	protected Object element (Position pos) { return ((Item)pos.element()).element(); } // casting he...
	// methods of the SimplePriorityQueue ADT
	public SequenceSimplePriorityQueue (Comparator c) { comp = c; }
	public int size () {return seq.size(); }
	...Continued on next page...

	Implementation with a Sorted Sequence(contd.)
	public void insertItem (Object k, Object e) throws InvalidKeyException {
	if (!comp.isComparable(k)) { throw new InvalidKeyException("The key is not valid"); } else {
	if (seq.isEmpty()) { //if the sequence is empty, this is the seq.insertFirst(new Item(k,e));//fir...
	if (comp.isGreaterThan(k,key(seq.last()))) {
	seq.insertAfter(seq.last(),new Item(k,e)); }
	else {
	//we have to find the right place for k.

	Position curr = seq.first();
	while (comp.isGreaterThan(k,key(curr))) { curr = seq.after(curr); } seq.insertBefore(curr,new Ite...
	}
	}
	}
	...Continued...

	Implementation with a Sorted Sequence(contd.)
	public Object minElement () throws EmptyContainerException {
	if (seq.isEmpty()) { throw new EmptyContainerException("The priority queue is empty"); } else { r...
	public boolean isEmpty () { return seq.isEmpty(); }
	}

	Selection Sort
	• Selection Sort is a variation of PriorityQueueSort that uses an unsorted sequence to implement ...
	• Phase 1, the insertion of an item into P takes O(1) time
	• Phase 2, removing an item from P takes time proportional to the current number of elements in P
	Input
	(7, 4, 8, 2, 5, 3, 9)
	()
	Phase 1:
	(a)
	(b)
	...
	(g)
	(4, 8, 2, 5, 3, 9)
	(8, 2, 5, 3, 9)
	...
	()
	(7)
	(7, 4)
	...
	(7, 4, 8, 2, 5, 3, ,9)
	Phase 2:
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	(2)
	(2, 3)
	(2, 3, 4)
	(2, 3, 4, 5)
	(2, 3, 4, 5, 7)
	(2, 3, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8, 9)
	(7, 4, 8, 5, 3, 9)
	(7, 4, 8, 5, 9)
	(7, 8, 5, 9)
	(7, 8, 9)
	(8, 9)
	(9)
	()

	Selection Sort (cont.)
	• As you can tell, a bottleneck occurs in Phase 2. The first removeMinElement operation take O(n)...
	• The total time needed for phase 2 is:
	• By a well-known fact:
	• The total time complexity of phase 2 is then O(n2). Thus, the time complexity of the algorithm ...

	Insertion Sort
	• Insertion sort is the sort that results when we perform a PriorityQueueSort implementing the pr...
	Input
	(7, 4, 8, 2, 5, 3, 9)
	()
	Phase 1:
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	(4, 8, 2, 5, 3, 9)
	(8, 2, 5, 3, 9)
	(2, 5, 3, 9)
	(5, 3, 9)
	(3, 9)
	(9)
	()
	(7)
	(4, 7)
	(4, 7, 8)
	(2, 4, 7, 8)
	(2, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8)
	(2, 3, 4, 5, 7, 8, 9)
	Phase 2:
	(a)
	(b)
	...
	(g)
	(2)
	(2, 3)
	...
	(2, 3, 4, 5, 7, 8, 9)
	(3, 4, 5, 7, 8, 9)
	(4, 5, 7, 8, 9)
	...
	()

	Insertion Sort(cont.)
	• We improve phase 2 to O(n).
	• However, phase 1 now becomes the bottleneck for the running time. The first insertItem takes O(...
	• Selection-sort and insertion-sort both take O(n2) time
	• Selection-sort will always executs a number of operations proportional to n2, no matter what is...
	• The running time of insertion sort varies depending on the input sequence.
	• Neither is a good sorting method, except for small sequences
	• We have yet to see the ultimate priority queue....

	Sorting
	• By now, you’ve seen a little bit of sorting, so let us tell you a little more about it.
	• Sorting is essential because efficient searching in a database can be performed only if the rec...
	• It is estimated that about 20% of all the computing time worldwide is devoted to sorting
	• We shall see that there is a trade-off between the “simplicity” and efficiency of sorting algor...
	• The elementary sorting algorithms you’ve just seen, though easy to understand and implement, ta...
	• more sophisticated algorithms take O(nlogn) time
	• Comparison of Keys: do we base comparison upon the entire key or upon parts of the key?
	• Space Efficiency : in-place sorting vs. use of auxiliary structures
	• Stability: a stable sorting algorithm preserves the initial relative order of equal keys

