
1Minimum Spanning Tree

MINIMUM SPANNING
TREE

• Prim-Jarnik algorithm

• Kruskal algorithm

That’s a very nice hat.

That’s not a hat!
That’s my head!
I’m Tree Head!
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WeightedGraphs

(weight of subgraphG') =
(sum of weights of edges ofG')

weight( G') = Σ  weight(e)
                       (e ∈ G')

 weight( G') = 800 + 400 + 1200
              = 2400
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Minimum Spanning Tree
• spanning tree of minimum total weight

• e.g., connect all the computers in a building with the
least amount of cable

• example

• not unique in general
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Minimum Spanning Tree
Property

V' V"

Let e = (v', v"), be an edge of
minimum weight across the partition,
i.e.,v' ∈ V' andv" ∈ V".
There is a MST containing edge e.

Let (V',V") be a partition of
the vertices of G
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Proof of Property

If the MST does not contain a
minimum weight edgee, then we
can find a better or equal MST by
exchanginge for some edge.
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Prim-Jarnik Algorithm for
finding an MST

• grows the MSTT one vertex at a time

• cloud covering the portion ofT already computed

• labelsD[u] andE[u] associated with each vertex u
- E[u] is the best (lowest weight) edge connecting u

to T
- D[u] (distance to the cloud) is the weight ofE[u]
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Differences between
Prim’s and Dijkstra’s

• For any vertex u,D[u] represents the weight of the
current best edge for joining u to the rest of the
tree (as opposed to the total sum of edge weights on
a path from start vertex to u).

• Use a priority queue Q whose keys are D labels, and
whoseelements are vertex-edge pairs.

• Any vertex v can be thestarting vertex.

• We still initialize all the D[u] values to INFINITE,
but we alsoinitialize E[u] (the edge associated
with u) to null.

• Return the minimum-spanning tree T.

We can reuse code from
Dijkstra’s, and we only have to
change a few things. Let’s look

at the pseudocode....



8Minimum Spanning Tree

Pseudo Code

Algorithm PrimJarnik(G):
Input:A weighted graphG.
Output:A minimum spanning treeT for G.

pick any vertexv of G
{grow the tree starting with vertexv}
T ← {v}

D[u] ← 0
E[u] ← ∅

for  each vertexu ≠ v do
D[u] ← +∞

let Q be a priority queue that contains
vertices, using theD labels as keys

while Q ≠ ∅ do
{pull u into the cloud C}
u← Q.removeMinElement()
add vertexu and edgeE[u] to T
for  each vertexz adjacent tou do

if z is inQ
{perform therelaxation operation on edge (u, z) }
if weight(u, z) < D[z] then

D[z] ← weight(u, z)
E[z] ← (u, z)
change the key ofz in Q to D[z]

return  treeT
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Let’s go through it
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Running Time

T ← {v}
D[u] ← 0
E[u] ← ∅

for  each vertexu ≠ v do
D[u] ← +∞

let Q be a priority queue that contains all the
vertices using theD labels as keys

while Q ≠ ∅ do
u ← Q.removeMinElement()
add vertexu and edgeE[u] to T
for  each vertexz adjacent tou do

if z is inQ
if weight(u, z) < D[z] then
D[z] ← weight(u, z)
E[z] ← (u, z)
 change the key ofz in Q to D[z]

return  treeT

O((n+m) log n)
where n = num vertices, m=num edges,

and Q is implemented with a heap.
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Kruskal Algorithm
• add the edges one at a time, by increasing weight

• accept an edge if it does not create a cycle
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Data Structure for Kruskal
Algortihm

• the algorithm maintains a forest of trees

• an edge is accepted it if connects vertices of distinct
trees

• we need a data structure that maintains apartition,
i.e.,a collection of disjoint sets, with the following
operations
- find(u): return the set storing u
- union(u,v): replace the sets storing u and v with

their union
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Representation of a Partition
• each set is stored in a sequence

• each element has a reference back to the set

• operationfind(u) takes O(1) time, and returns the
set of which u is a member.

• in operationunion(u,v), we move the elements of the
smaller set to the sequence of the larger set and
update their references

• the time for operationunion(u,v) is min(nu,nv),
where nu and nv are the sizes of the sets storing u
and v

• whenever an element is processed, it goes into a set
of size at least double

• hence, each element is processed at most log n times

A

9 3 6 2
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Pseudo Code

Algorithm Kruskal(G):
Input:A weighted graphG.
Output:A minimum spanning treeT for G.

let P be a partition of the vertices ofG, where each
vertex forms a separate set

let Q be a priority queue storing the edges ofG, sorted
by their weights

T ← ∅
while Q ≠ ∅ do

(u,v) ← Q.removeMinElement()
if P.find(u) ≠ P.find(u) then

add edge (u,v) toT
P.union(u,v)

return T

Running time: O((n+m) log n)
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Let’s go through it
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Now examine LGA-MIA, but don’t add it
to T cause LGA and MIA are in the same set.

Now examine LAX-STL, but don’t add it to
T cause LAX and STL are in the same set.

And we’re done.


	Minimum Spanning Tree
	• Prim-Jarnik algorithm
	• Kruskal algorithm
	Weighted Graphs
	Minimum Spanning Tree
	• spanning tree of minimum total weight
	• e.g., connect all the computers in a building with the least amount of cable
	• example
	• not unique in general

	Minimum Spanning Tree Property
	Proof of Property
	Prim-Jarnik Algorithm for finding an MST
	• grows the MST T one vertex at a time
	• cloud covering the portion of T already computed
	• labels D[u] and E[u] associated with each vertex u
	- E[u] is the best (lowest weight) edge connecting u to T
	- D[u] (distance to the cloud) is the weight of E[u]


	Differences between Prim’s and Dijkstra’s
	• For any vertex u, D[u] represents the weight of the current best edge for joining u to the rest...
	• Use a priority queue Q whose keys are D labels, and whose elements are vertex-edge pairs.
	• Any vertex v can be the starting vertex.
	• We still initialize all the D[u] values to INFINITE, but we also initialize E[u] (the edge asso...
	• Return the minimum-spanning tree T.

	We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at the pse...
	Pseudo Code
	Algorithm PrimJarnik(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	pick any vertex v of G
	{grow the tree starting with vertex v}
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains vertices, using the D labels as keys
	while Q ¹ Æ do
	{pull u into the cloud C}
	u¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	{perform the relaxation operation on edge (u, z) }
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T

	Let’s go through it
	Running Time
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains all the vertices using the D labels as keys
	while Q ¹ Æ do
	u ¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T
	O((n+m) log n)
	where n = num vertices, m=num edges,
	and Q is implemented with a heap.

	Kruskal Algorithm
	• add the edges one at a time, by increasing weight
	• accept an edge if it does not create a cycle

	Data Structure for Kruskal Algortihm
	• the algorithm maintains a forest of trees
	• an edge is accepted it if connects vertices of distinct trees
	• we need a data structure that maintains a partition, i.e.,a collection of disjoint sets, with t...
	- find(u): return the set storing u
	- union(u,v): replace the sets storing u and v with their union


	Representation of a Partition
	• each set is stored in a sequence
	• each element has a reference back to the set
	• operation find(u) takes O(1) time, and returns the set of which u is a member.
	• in operation union(u,v), we move the elements of the smaller set to the sequence of the larger ...
	• the time for operation union(u,v) is min(nu,nv), where nu and nv are the sizes of the sets stor...
	• whenever an element is processed, it goes into a set of size at least double
	• hence, each element is processed at most log n times

	Pseudo Code
	Algorithm Kruskal(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	let P be a partition of the vertices of G , where each vertex forms a separate set
	let Q be a priority queue storing the edges of G, sorted by their weights
	T °¨ Æ
	while Q ¹ Æ do
	(u,v) ¨ Q.removeMinElement()
	if P.find(u) ¹ P.find(u) then
	add edge (u,v) to T
	P.union(u,v)
	return T
	Running time: O((n+m) log n)

	Let’s go through it


