
1Minimum Spanning Tree

MINIMUM SPANNING
TREE

• Prim-Jarnik algorithm

• Kruskal algorithm

That’s a very nice hat.

That’s not a hat!
That’s my head!
I’m Tree Head!

2Minimum Spanning Tree

MIA

SFO

PVD

LAXLAX

DFW

LGA

STL
1500

1500

800

400

1500

1000
200

1000

400

800

1800

WeightedGraphs

(weight of subgraphG') =
(sum of weights of edges ofG')

weight(G') = Σ weight(e)
 (e ∈ G')

 weight(G') = 800 + 400 + 1200
 = 2400

G'

1200

SEA MSN

3Minimum Spanning Tree

Minimum Spanning Tree
• spanning tree of minimum total weight

• e.g., connect all the computers in a building with the
least amount of cable

• example

• not unique in general

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

4Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

Minimum Spanning Tree
Property

V' V"

Let e = (v', v"), be an edge of
minimum weight across the partition,
i.e.,v' ∈ V' andv" ∈ V".
There is a MST containing edge e.

Let (V',V") be a partition of
the vertices of G

5Minimum Spanning Tree

Proof of Property

If the MST does not contain a
minimum weight edgee, then we
can find a better or equal MST by
exchanginge for some edge.

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

e

6Minimum Spanning Tree

Prim-Jarnik Algorithm for
finding an MST

• grows the MSTT one vertex at a time

• cloud covering the portion ofT already computed

• labelsD[u] andE[u] associated with each vertex u
- E[u] is the best (lowest weight) edge connecting u

to T
- D[u] (distance to the cloud) is the weight ofE[u]

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

946
1235

1464

7Minimum Spanning Tree

Differences between
Prim’s and Dijkstra’s

• For any vertex u,D[u] represents the weight of the
current best edge for joining u to the rest of the
tree (as opposed to the total sum of edge weights on
a path from start vertex to u).

• Use a priority queue Q whose keys are D labels, and
whoseelements are vertex-edge pairs.

• Any vertex v can be thestarting vertex.

• We still initialize all the D[u] values to INFINITE,
but we alsoinitialize E[u] (the edge associated
with u) to null.

• Return the minimum-spanning tree T.

We can reuse code from
Dijkstra’s, and we only have to
change a few things. Let’s look

at the pseudocode....

8Minimum Spanning Tree

Pseudo Code

Algorithm PrimJarnik(G):
Input:A weighted graphG.
Output:A minimum spanning treeT for G.

pick any vertexv of G
{grow the tree starting with vertexv}
T ← {v}

D[u] ← 0
E[u] ← ∅

for each vertexu ≠ v do
D[u] ← +∞

let Q be a priority queue that contains
vertices, using theD labels as keys

while Q ≠ ∅ do
{pull u into the cloud C}
u← Q.removeMinElement()
add vertexu and edgeE[u] to T
for each vertexz adjacent tou do

if z is inQ
{perform therelaxation operation on edge (u, z) }
if weight(u, z) < D[z] then

D[z] ← weight(u, z)
E[z] ← (u, z)
change the key ofz in Q to D[z]

return treeT

9Minimum Spanning Tree

Let’s go through it

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

STL

STL
STL
STL

 800

1200
1800
 400

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

neighbor D[u]

1000DFW

10Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

STL

STL
DFW

 800

1200
1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

neighbor D[u]

1000DFW

DFW 1000

11Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

MSN
DFW

1000
1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

neighbor D[u]

1000DFW

DFW 1000

MSN 1500

12Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

DFW 1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

neighbor D[u]

1000DFW

DFW 1000

MSN 1500
LGA 200

13Minimum Spanning Tree

Running Time

T ← {v}
D[u] ← 0
E[u] ← ∅

for each vertexu ≠ v do
D[u] ← +∞

let Q be a priority queue that contains all the
vertices using theD labels as keys

while Q ≠ ∅ do
u ← Q.removeMinElement()
add vertexu and edgeE[u] to T
for each vertexz adjacent tou do

if z is inQ
if weight(u, z) < D[z] then
D[z] ← weight(u, z)
E[z] ← (u, z)
 change the key ofz in Q to D[z]

return treeT

O((n+m) log n)
where n = num vertices, m=num edges,

and Q is implemented with a heap.

14Minimum Spanning Tree

Kruskal Algorithm
• add the edges one at a time, by increasing weight

• accept an edge if it does not create a cycle

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

15Minimum Spanning Tree

Data Structure for Kruskal
Algortihm

• the algorithm maintains a forest of trees

• an edge is accepted it if connects vertices of distinct
trees

• we need a data structure that maintains apartition,
i.e.,a collection of disjoint sets, with the following
operations
- find(u): return the set storing u
- union(u,v): replace the sets storing u and v with

their union

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

16Minimum Spanning Tree

Representation of a Partition
• each set is stored in a sequence

• each element has a reference back to the set

• operationfind(u) takes O(1) time, and returns the
set of which u is a member.

• in operationunion(u,v), we move the elements of the
smaller set to the sequence of the larger set and
update their references

• the time for operationunion(u,v) is min(nu,nv),
where nu and nv are the sizes of the sets storing u
and v

• whenever an element is processed, it goes into a set
of size at least double

• hence, each element is processed at most log n times

A

9 3 6 2

17Minimum Spanning Tree

Pseudo Code

Algorithm Kruskal(G):
Input:A weighted graphG.
Output:A minimum spanning treeT for G.

let P be a partition of the vertices ofG, where each
vertex forms a separate set

let Q be a priority queue storing the edges ofG, sorted
by their weights

T ← ∅
while Q ≠ ∅ do

(u,v) ← Q.removeMinElement()
if P.find(u) ≠ P.find(u) then

add edge (u,v) toT
P.union(u,v)

return T

Running time: O((n+m) log n)

18Minimum Spanning Tree

Let’s go through it

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

19Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

20Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

21Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

22Minimum Spanning Tree

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

Now examine LGA-MIA, but don’t add it
to T cause LGA and MIA are in the same set.

Now examine LAX-STL, but don’t add it to
T cause LAX and STL are in the same set.

And we’re done.

	Minimum Spanning Tree
	• Prim-Jarnik algorithm
	• Kruskal algorithm
	Weighted Graphs
	Minimum Spanning Tree
	• spanning tree of minimum total weight
	• e.g., connect all the computers in a building with the least amount of cable
	• example
	• not unique in general

	Minimum Spanning Tree Property
	Proof of Property
	Prim-Jarnik Algorithm for finding an MST
	• grows the MST T one vertex at a time
	• cloud covering the portion of T already computed
	• labels D[u] and E[u] associated with each vertex u
	- E[u] is the best (lowest weight) edge connecting u to T
	- D[u] (distance to the cloud) is the weight of E[u]

	Differences between Prim’s and Dijkstra’s
	• For any vertex u, D[u] represents the weight of the current best edge for joining u to the rest...
	• Use a priority queue Q whose keys are D labels, and whose elements are vertex-edge pairs.
	• Any vertex v can be the starting vertex.
	• We still initialize all the D[u] values to INFINITE, but we also initialize E[u] (the edge asso...
	• Return the minimum-spanning tree T.

	We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at the pse...
	Pseudo Code
	Algorithm PrimJarnik(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	pick any vertex v of G
	{grow the tree starting with vertex v}
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains vertices, using the D labels as keys
	while Q ¹ Æ do
	{pull u into the cloud C}
	u¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	{perform the relaxation operation on edge (u, z) }
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T

	Let’s go through it
	Running Time
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains all the vertices using the D labels as keys
	while Q ¹ Æ do
	u ¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T
	O((n+m) log n)
	where n = num vertices, m=num edges,
	and Q is implemented with a heap.

	Kruskal Algorithm
	• add the edges one at a time, by increasing weight
	• accept an edge if it does not create a cycle

	Data Structure for Kruskal Algortihm
	• the algorithm maintains a forest of trees
	• an edge is accepted it if connects vertices of distinct trees
	• we need a data structure that maintains a partition, i.e.,a collection of disjoint sets, with t...
	- find(u): return the set storing u
	- union(u,v): replace the sets storing u and v with their union

	Representation of a Partition
	• each set is stored in a sequence
	• each element has a reference back to the set
	• operation find(u) takes O(1) time, and returns the set of which u is a member.
	• in operation union(u,v), we move the elements of the smaller set to the sequence of the larger ...
	• the time for operation union(u,v) is min(nu,nv), where nu and nv are the sizes of the sets stor...
	• whenever an element is processed, it goes into a set of size at least double
	• hence, each element is processed at most log n times

	Pseudo Code
	Algorithm Kruskal(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	let P be a partition of the vertices of G , where each vertex forms a separate set
	let Q be a priority queue storing the edges of G, sorted by their weights
	T °¨ Æ
	while Q ¹ Æ do
	(u,v) ¨ Q.removeMinElement()
	if P.find(u) ¹ P.find(u) then
	add edge (u,v) to T
	P.union(u,v)
	return T
	Running time: O((n+m) log n)

	Let’s go through it

