MINIMUM SPANNING
TREE

e Prim-Jarnik algorithm

» Kruskal algorithm
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Weighted Graphs

(weight of subgrapks') =
(sum of weights of edges Gf)

weight( G') = 2 weight(e)

(e 0G")

weight( G') =800+ 400 + 1200
= 2400
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Minimum Spanning Tree

e spanning tree of minimum total weight

e e.g., connect all the computers in a building with tf
least amount of cable

e example
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Minimum Spanning Tree
Property

Let (V',V") be a partition of

the vertices of G

Let e= (V', V"), be an edge of
minimum weight across the partition

l.e.,v' ] V'and
There is a MS”

VAR RVAS
containing edge e.
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Proof of Property

If the MST does not contain a
minimum weight edge, then we
can find a better or equal MST by
exchanging for some edge.
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Prim-Jarnik Algorithm for
finding an MST

e grows the MSTT one vertex at a time

 cloud covering the portion of already computed

 labelsD[u] andE[u] associated with each vertex u

- E[u] is the best (lowest weight) edge connecting
toT

- D[u] (distance to the cloud) is the weight&jti]
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Differences between
Prim’s and Dijkstra’s

* For any vertex uD[u] represents the weight of the
current best edge for joining u to the rest of the
tree (as opposed to the total sum of edge weights pr
a path from start vertex to u).

« Use a priority queue Q whose keys are D labels, ant
whoseelements are vertex-edge pairs

« Any vertex v can be thgtarting vertex.

« We still initialize all the D[u] values to INFINITE,
but we alsanitialize E[u] (the edge associated
with u) to null.

e Return the minimum-spanning tree T.

We can reuse code from
Dijkstra’s, and we only have to
change a few things. Let’s look

at the pseudocode....
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Pseudo Code

Algorithm PrimJarniKG):
Input: A weighted graplt.
Output:A minimum spanning treé€ for G.
pick any vertew of G
{grow the tree starting with vertes
T « {V}
D[u] « O
E[u] « O
for each vertexi # v do
D[u] « +o
let Q be a priority queue that contains
vertices, using thB labels as keys
while Q # [0 do
{pull uinto the cloud C}
U~ Q.removeMinElement()
add vertexu and edgd=[u] to T
for each vertex adjacent ta do
If zisinQ
{perform therelaxation operationon edgey, 2) }
If weight(u, z) <D[Zz] then
D[z] —~ weight(u, 2)
El[z] « (u,2)
change the key dfin Q to D[Z]
return treeT
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Let’s go through it
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MSN
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LGA

400
1500

LAX

400

MIA

DFW 1000

neighbor DJu]
DFW I

LAX |DFW 1500
LGA | MSN 1000
MIA DEW 1000
MSN |

SEA | MSN

—

STL I

Minimum Spanning Tree

11




neighbor DJu]
DFW
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Running Time

T <« {V}
Dlu] « O
E[u] « O
for each vertexs # vdo
D[u] « oo
let Q be a priority queue that contains all the
vertices using th® labels as keys
while Q # 00 do
u — Q.removeMinElement()
add vertexu and edgé=[u] to T
for each vertex adjacent ta do
If zisinQ
If weight(u, z) <D[Z] then
D[Z] « weight(u, 2)
E[z] — (u,2)
change the key afin Q to D[Z]
return treeT

O((n+m) log n)
where n = num vertices, m=num edges,
and Q is implemented with a heap.
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Kruskal Algorithm

e add the edges one at a time, by increasing weigh

e accept an edge If it does not create a cycle
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Data Structure for Kruskal
Algortihm

 the algorithm maintains a forest of trees

e an edge Is accepted it if connects vertices of distinc
trees

e we need a data structure that maintaipardtion,
l.e.,a collection of disjoint sets, with the following
operations

- find(u): return the set storing u

- union(u,V): replace the sets storing u and v with
their union
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Representation of a Partition

e each set is stored in a sequence

e each element has a reference back to the set
e ORORORC)

N\ e

o operationfind(u) takes O(1) time, and returns the
set of which u is a member.

* In operatiorunion(u,v), we move the elements of the
smaller set to the sequence of the larger set and
update their references

e the time for operationnion(u,v) is min(R,,n,),
where n, and fy are the sizes of the sets storing u
and v

 whenever an element is processed, it goes into a|s
of size at least double

* hence, each element is processed at most log n tim
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Pseudo Code

Algorithm KruskalG):
Input: A weighted grapl.
Output:A minimum spanning treé for G.

let P be a partition of the vertices G, where each
vertex forms a separate set

let Q be a priority queue storing the edge$pforted
by their weights

T 0
while Q # [0 do
(u,v) « Q.removeMinElement()
if Pfind(u) # Pfind(u) then
add edge (u,v) td
P.union(u,Vv)

return T

Running time: O((n+m) log n)
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Let’s go through it
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Now examine LGA-MIA, but don’t add it
to T cause LGA and MIA are Iin the same set.

SEA MSN PVD
800 500
SFO LGA
400 1800 _mmm === ':
-~ 11500
LAX 1500 "~~~ :
MIA
DFW 1000
SEA MSN PVD
800 200
SFO LGA
400

LAX

DFW 1000

Now examine LAX-STL, but don’'t add it to
T cause LAX and STL are in the same set.

And we're done.
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