MINIMUM SPANNING
TREE

e Prim-Jarnik algorithm

» Kruskal algorithm

That’s a very nice hat.

)

" That’s not a hat!
That’s my head!
_I'm TreeHead!

\

/

/
A A

Minimum Spanning Tree

Weighted Graphs

(weight of subgrapks') =
(sum of weights of edges Gf)

weight(G') = 2 weight(e)

(e 0G")

weight(G') =800+ 400 + 1200
= 2400

Minimum Spanning Tree

Minimum Spanning Tree

e spanning tree of minimum total weight

e e.g., connect all the computers in a building with tf
least amount of cable

e example
1500

800 200

400

e not unique in general
1500

800 200

400

1€

Minimum Spanning Tree 3

Minimum Spanning Tree
Property

Let (V',V") be a partition of

the vertices of G

Let e= (V', V"), be an edge of
minimum weight across the partition

l.e.,v'] V'and
There is a MS”

VAR RVAS
containing edge e.

Minimum Spanning Tree

Proof of Property

If the MST does not contain a
minimum weight edge, then we
can find a better or equal MST by
exchanging for some edge.

Minimum Spanning Tree 5

Prim-Jarnik Algorithm for
finding an MST

e grows the MSTT one vertex at a time

 cloud covering the portion of already computed

 labelsD[u] andE[u] associated with each vertex u

- E[u] is the best (lowest weight) edge connecting
toT

- D[u] (distance to the cloud) is the weight&jti]

Minimum Spanning Tree 6

u

Differences between
Prim’s and Dijkstra’s

* For any vertex uD[u] represents the weight of the
current best edge for joining u to the rest of the
tree (as opposed to the total sum of edge weights pr
a path from start vertex to u).

« Use a priority queue Q whose keys are D labels, ant
whoseelements are vertex-edge pairs

« Any vertex v can be thgtarting vertex.

« We still initialize all the D[u] values to INFINITE,
but we alsanitialize E[u] (the edge associated
with u) to null.

e Return the minimum-spanning tree T.

We can reuse code from
Dijkstra’s, and we only have to
change a few things. Let’s look

at the pseudocode....

Minimum Spanning Tree 7

Pseudo Code

Algorithm PrimJarniKG):
Input: A weighted graplt.
Output:A minimum spanning treé€ for G.
pick any vertew of G
{grow the tree starting with vertes
T « {V}
D[u] « O
E[u] « O
for each vertexi # v do
D[u] « +o
let Q be a priority queue that contains
vertices, using thB labels as keys
while Q # [0 do
{pull uinto the cloud C}
U~ Q.removeMinElement()
add vertexu and edgd=[u] to T
for each vertex adjacent ta do
If zisinQ
{perform therelaxation operationon edgey, 2) }
If weight(u, z) <D[Zz] then
D[z] —~ weight(u, 2)
El[z] « (u,2)
change the key dfin Q to D[Z]
return treeT

Minimum Spanning Tree

Let’s go through it

MSN

1500

800"

Minimum Spanning Tree

LAX
LGA
MIA
MSN

STL Il IS

neighbor
DFW I

DEW

STL

Dl[u]

1500
1200

DEW
STL

I

Minimum Spanning Tree

10

MSN

SEA §m’” 1500
800 e 200

LGA

400
1500

LAX

400

MIA

DFW 1000

neighbor DJu]
DFW I

LAX |DFW 1500
LGA | MSN 1000
MIA DEW 1000
MSN |

SEA | MSN

—

STL I

Minimum Spanning Tree

11

neighbor DJu]
DFW

LAX
LGA

MIA
MSN

PVD A
SEA | MSN

STL I

Minimum Spanning Tree

12

Running Time

T <« {V}
Dlu] « O
E[u] « O
for each vertexs # vdo
D[u] « oo
let Q be a priority queue that contains all the
vertices using th® labels as keys
while Q # 00 do
u — Q.removeMinElement()
add vertexu and edgé=[u] to T
for each vertex adjacent ta do
If zisinQ
If weight(u, z) <D[Z] then
D[Z] « weight(u, 2)
E[z] — (u,2)
change the key afin Q to D[Z]
return treeT

O((n+m) log n)
where n = num vertices, m=num edges,
and Q is implemented with a heap.

Minimum Spanning Tree 13

Kruskal Algorithm

e add the edges one at a time, by increasing weigh

e accept an edge If it does not create a cycle

Minimum Spanning Tree 14

Data Structure for Kruskal
Algortihm

 the algorithm maintains a forest of trees

e an edge Is accepted it if connects vertices of distinc
trees

e we need a data structure that maintaipardtion,
l.e.,a collection of disjoint sets, with the following
operations

- find(u): return the set storing u

- union(u,V): replace the sets storing u and v with
their union

Minimum Spanning Tree 15

Representation of a Partition

e each set is stored in a sequence

e each element has a reference back to the set
e ORORORC)

N\ e

o operationfind(u) takes O(1) time, and returns the
set of which u is a member.

* In operatiorunion(u,v), we move the elements of the
smaller set to the sequence of the larger set and
update their references

e the time for operationnion(u,v) is min(R,,n,),
where n, and fy are the sizes of the sets storing u
and v

 whenever an element is processed, it goes into a|s
of size at least double

* hence, each element is processed at most log n tim

Minimum Spanning Tree 16

Pseudo Code

Algorithm KruskalG):
Input: A weighted grapl.
Output:A minimum spanning treé for G.

let P be a partition of the vertices G, where each
vertex forms a separate set

let Q be a priority queue storing the edge$pforted
by their weights

T 0
while Q # [0 do
(u,v) « Q.removeMinElement()
if Pfind(u) # Pfind(u) then
add edge (u,v) td
P.union(u,Vv)

return T

Running time: O((n+m) log n)

Minimum Spanning Tree 17

Let’s go through it

400 1800

.----------
L
Ny
~
i

Minimum Spanning Tree 18

Minimum Spanning Tree

19

Minimum Spanning Tree

Minimum Spanning Tree

21

Now examine LGA-MIA, but don’t add it
to T cause LGA and MIA are Iin the same set.

SEA MSN PVD
800 500
SFO LGA
400 1800 _mmm === ':
-~ 11500
LAX 1500 "~~~ :
MIA
DFW 1000
SEA MSN PVD
800 200
SFO LGA
400

LAX

DFW 1000

Now examine LAX-STL, but don’'t add it to
T cause LAX and STL are in the same set.

And we're done.

Minimum Spanning Tree 22

	Minimum Spanning Tree
	• Prim-Jarnik algorithm
	• Kruskal algorithm
	Weighted Graphs
	Minimum Spanning Tree
	• spanning tree of minimum total weight
	• e.g., connect all the computers in a building with the least amount of cable
	• example
	• not unique in general

	Minimum Spanning Tree Property
	Proof of Property
	Prim-Jarnik Algorithm for finding an MST
	• grows the MST T one vertex at a time
	• cloud covering the portion of T already computed
	• labels D[u] and E[u] associated with each vertex u
	- E[u] is the best (lowest weight) edge connecting u to T
	- D[u] (distance to the cloud) is the weight of E[u]

	Differences between Prim’s and Dijkstra’s
	• For any vertex u, D[u] represents the weight of the current best edge for joining u to the rest...
	• Use a priority queue Q whose keys are D labels, and whose elements are vertex-edge pairs.
	• Any vertex v can be the starting vertex.
	• We still initialize all the D[u] values to INFINITE, but we also initialize E[u] (the edge asso...
	• Return the minimum-spanning tree T.

	We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at the pse...
	Pseudo Code
	Algorithm PrimJarnik(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	pick any vertex v of G
	{grow the tree starting with vertex v}
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains vertices, using the D labels as keys
	while Q ¹ Æ do
	{pull u into the cloud C}
	u¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	{perform the relaxation operation on edge (u, z) }
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T

	Let’s go through it
	Running Time
	T ¨ {v}
	D[u] °¨ 0
	E[u] °¨ Æ
	for each vertex u ¹ v do
	D[u] °¨ +•
	let Q be a priority queue that contains all the vertices using the D labels as keys
	while Q ¹ Æ do
	u ¨ Q.removeMinElement()
	add vertex u and edge E[u] to T
	for each vertex z adjacent to u do
	if z is in Q
	if weight(u, z) < D[z] then
	D[z] ¨ weight(u, z)
	E[z] ¨ (u, z)
	change the key of z in Q to D[z]
	return tree T
	O((n+m) log n)
	where n = num vertices, m=num edges,
	and Q is implemented with a heap.

	Kruskal Algorithm
	• add the edges one at a time, by increasing weight
	• accept an edge if it does not create a cycle

	Data Structure for Kruskal Algortihm
	• the algorithm maintains a forest of trees
	• an edge is accepted it if connects vertices of distinct trees
	• we need a data structure that maintains a partition, i.e.,a collection of disjoint sets, with t...
	- find(u): return the set storing u
	- union(u,v): replace the sets storing u and v with their union

	Representation of a Partition
	• each set is stored in a sequence
	• each element has a reference back to the set
	• operation find(u) takes O(1) time, and returns the set of which u is a member.
	• in operation union(u,v), we move the elements of the smaller set to the sequence of the larger ...
	• the time for operation union(u,v) is min(nu,nv), where nu and nv are the sizes of the sets stor...
	• whenever an element is processed, it goes into a set of size at least double
	• hence, each element is processed at most log n times

	Pseudo Code
	Algorithm Kruskal(G):
	Input: A weighted graph G.
	Output: A minimum spanning tree T for G.
	let P be a partition of the vertices of G , where each vertex forms a separate set
	let Q be a priority queue storing the edges of G, sorted by their weights
	T °¨ Æ
	while Q ¹ Æ do
	(u,v) ¨ Q.removeMinElement()
	if P.find(u) ¹ P.find(u) then
	add edge (u,v) to T
	P.union(u,v)
	return T
	Running time: O((n+m) log n)

	Let’s go through it

