
6.1Heaps

HEAPS

• Heaps

• Properties of Heaps

• HeapSort

• Bottom-Up Heap Construction

• Locators

6.2Heaps

Heaps
• A heap is a binary treeT that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property:key(parent)≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)

4

6

207

811

5

9

1214

15

2516

6.3Heaps

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.4Heaps

Height of a Heap
A heapT storingn keys has heighth = log(n + 1),
which is O(logn)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1)≤ h ≤ log n + 1

• Which impliesh = log(n+1)

4

6

207

5

915

16h − 1

0

1

h − 2

h

h − 1

0

1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.5Heaps

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is6

19

6.6Heaps

3

74

21 10 20 8

22 28 13 19

Add the key in thenext available positionin the
heap.

Now beginUpheap.

Heap Insertion

25 6

6.7Heaps

Upheap
• Swap parent-child keys out of order

3

74

21 10 20 8

22 28 13 19 25 6

3

74

21 10 6 8

22 28 13 19 25 20

6.8Heaps

Upheap Continues

3

74

21 10

20

8

22 28 13 19 25

6

3

64

21 10

20

8

22 28 13 19 25

7

6.9Heaps

• Upheap terminates when new key is greater
than the key of its parentor the top of the heap
is reached

• (total #swaps) ≤ (h − 1), which is O(logn)

3

7

4

21 10

20

8

22 28 13 19 25

6

End of Upheap

6.10Heaps

Removal From a Heap

RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole

• We need to fix the heap

• First, replace the hole with the last key in
the heap

• Then, beginDownheap

3

20

6.11Heaps

Downheap

20

7

4

21 10 8

22 28 13 19 25

6

Downheapcompares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.12Heaps

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.13Heaps

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.14Heaps

End of Downheap

4

7

10

21 13 8

22 28 20 19 25

6

• Downheap terminates when the key is greater
than the keys of both its childrenor the bottom
of the heap is reached.

• (total #swaps) ≤ (h − 1), which is O(logn)

6.15Heaps

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.16Heaps

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.17Heaps

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at ranki has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond toinsertLast andremoveLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.18Heaps

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue,insertItem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

• We always have at mostn elements in the heap, so
the worst case time complexity of these methods is
O(logn).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known asheap-sort.

• TheO(n log n) run timeof heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation

6.19Heaps

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.20Heaps

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.21Heaps

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4

6.22Heaps

Bottom-Up Heap Construction
(cont.)

The End

4

6

207

811

5

9

1214

15

2516 23 27

6.23Heaps

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction withn
keys takesO(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts,n/2 upheaps with totalO(n) running time

4

6

207

811

5

9

1214

15

2516 23 27

6.24Heaps

Locators
• Locators can be used to keep track of elements as

they are moved around inside a container.

• A locatorsticks with a specific element, even if that
element changes positions in the container.

• The locator ADT supports the following
fundamental methods:
- element(): return the element of the item

associated with thelocator.
- key(): return the key of the item assocated with the

locator.

• Using locators, we define additional methods for the
priority queue ADT
- insert(k,e): insert (k,e) into P and return itslocator
- min(): return thelocator of an element witih

smallest key
- remove(l): remove the element withlocatorl

• In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellation
is requested

6.25Heaps

Positions and Locators
• At this point, you may be wondering what the

difference is between locators and positions, and
why we need to distinguish between them.

• It’s true that they have very similar methods

• The difference is in their primary usage

• Positions abstract the specific implementation of
accessors to elements (indices vs. nodes).

• Positions are defined relatively to each other (e.g.,
previous-next, parent-child)

• Locatorskeep track of where elements are stored. In
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

• Locators associate elements with their keys

6.26Heaps

Locators and Positions at Work
• For example, consider the CS16 Valet Parking

Service (started by the TA staff because they had too
much free time on their hands).

• When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

• Andy suggested having aposition represent what
parking space the car was in.

• However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

• So they decided to install alocator (awireless
tracking device) in each car. Each locator had a
unique code, which was written on the claim check.

• When a customer demanded her car, the HTAs
activated the locator. The horn of the car would honk
and the lights would flash.

• If the car was parked, Andy and Devin would know
where to retrieve it in the lot.

• Otherwise, the TA driving the car knew it was time
to bring it back.

	Heaps
	• Heaps
	• Properties of Heaps
	• HeapSort
	• Bottom-Up Heap Construction
	• Locators
	Heaps
	• A heap is a binary tree T that stores a collection of keys (or key-element pairs) at its intern...
	- Order Property: key(parent) £ key(child)
	- Structural Property: all levels are full, except the last one, which is left-filled (complete b...

	Not Heaps
	• bottom level is not left-filled
	• key(parent)> key(child)

	Height of a Heap
	A heap T storing n keys has height h = Èlog(n + 1)˘, which is O(log n)
	• n ³ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1
	• n £ 1 + 2 + 4 + ... +2h-1 = 2h - 1
	• Therefore 2h-1 £ n £ 2h - 1
	• Taking logs, we get log (n + 1) £ h £ log n + 1
	• Which implies h = Èlog(n+1)˘

	Heap Insertion
	Heap Insertion
	Upheap
	Upheap Continues
	Removal From a Heap
	RemoveMin()
	Downheap
	Downheap Continues
	Downheap Continues
	End of Downheap
	Implementation of a Heap
	public class HeapPriorityQueue implements PriorityQueue {
	BinaryTree T;
	Position last;
	Comparator comparator;
	...
	}

	Implementation of a Heap(cont.)
	• Two ways to find the insertion position z in a heap:

	Vector Based Implementation
	• Updates in the underlying tree occur only at the “last element”
	• A heap can be represented by a vector, where the node at rank i has
	- left child at rank 2i and
	- right child at rank 2i + 1

	• The leaves do no need to be explicitly stored
	• Insertion and removals into/from the heap correspond to insertLast and removeLast on the vector...

	Heap Sort
	• All heap methods run in logarithmic time or better
	• If we implement PriorityQueueSort using a heap for our priority queue, insertItem and removeMin...
	• We always have at most n elements in the heap, so the worst case time complexity of these metho...
	• Thus each phase takes O(n log n) time, so the algorithm runs in O(n log n) time also.
	• This sort is known as heap-sort.
	• The O(n log n) run time of heap-sort is much better than the O(n2) run time of selection and in...

	In-Place Heap-Sort
	• Do not use an external heap
	• Embed the heap into the sequence, using the vector representation

	Bottom-Up Heap Construction
	• build (n + 1)/2 trivial one-element heaps
	• now build three-element heaps on top of them

	Bottom-Up Heap Construction
	• downheap to preserve the order property
	• now form seven-element heaps

	Bottom-Up Heap Construction (cont.)
	Bottom-Up Heap Construction (cont.) The End
	Analysis of Bottom-Up Heap Construction
	• Proposition: Bottom-up heap construction with n keys takes O(n) time.
	- Insert (n + 1)/2 nodes
	- Insert (n + 1)/4 nodes and downheap them
	- Insert (n + 1)/8 nodes and downheap them
	- ...
	- visual analysis:

	• n inserts, n/2 upheaps with total O(n) running time

	Locators
	• Locators can be used to keep track of elements as they are moved around inside a container.
	• A locator sticks with a specific element, even if that element changes positions in the container.
	• The locator ADT supports the following fundamental methods:
	- element(): return the element of the item associated with the locator.
	- key(): return the key of the item assocated with the locator.

	• Using locators, we define additional methods for the priority queue ADT
	- insert(k,e): insert (k,e) into P and return its locator
	- min(): return the locator of an element witih smallest key
	- remove(l): remove the element with locator l

	• In the stock trading application, we return a locator when an order is placed. The locator allo...

	Positions and Locators
	• At this point, you may be wondering what the difference is between locators and positions, and ...
	• It’s true that they have very similar methods
	• The difference is in their primary usage
	• Positions abstract the specific implementation of accessors to elements (indices vs. nodes).
	• Positions are defined relatively to each other (e.g., previous-next, parent-child)
	• Locators keep track of where elements are stored. In the implementation of an ADT withy locator...
	• Locators associate elements with their keys

	Locators and Positions at Work
	• For example, consider the CS16 Valet Parking Service (started by the TA staff because they had ...
	• When they began their business, Andy and Devin decided to create a data structure to keep track...
	• Andy suggested having a position represent what parking space the car was in.
	• However, Devin knew that the TAs were driving the customers’ cars around campus and would not a...
	• So they decided to install a locator (a wireless tracking device) in each car. Each locator had...
	• When a customer demanded her car, the HTAs activated the locator. The horn of the car would hon...
	• If the car was parked, Andy and Devin would know where to retrieve it in the lot.
	• Otherwise, the TA driving the car knew it was time to bring it back.

