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HEAPS
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6.2Heaps

Heaps
• A heap is a binary treeT that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property:key(parent)≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)
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Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)
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6.4Heaps

Height of a Heap
A heapT storingn keys has heighth = log(n + 1),
which is O(logn)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1)≤ h ≤ log n + 1

• Which impliesh = log(n+1)
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Heap Insertion

So here we go ...

The key to insert is6
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Add the key in thenext available positionin the
heap.

Now beginUpheap.

Heap Insertion
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Upheap
• Swap parent-child keys out of order
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Upheap Continues
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6.9Heaps

• Upheap terminates when new key is greater
than the key of its parentor the top of the heap
is reached

• (total #swaps)  ≤  (h − 1), which is O(logn)
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End of Upheap
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Removal From a Heap

RemoveMin()
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• The removal of the top key leaves a hole

• We need to fix the heap

• First, replace the hole with the last key in
the heap

• Then, beginDownheap
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Downheap
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Downheapcompares the parent with the smallest
child.  If the child is smaller, it switches the two.
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Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6
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Downheap Continues
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End of Downheap
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• Downheap terminates when the key is greater
than the keys of both its childrenor the bottom
of the heap is reached.

• (total #swaps)  ≤  (h − 1), which is O(logn)
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Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}
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6.16Heaps

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:
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6.17Heaps

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at ranki has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond toinsertLast andremoveLast on the
vector, respectively
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Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue,insertItem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

• We always have at mostn elements in the heap, so
the worst case time complexity of these methods is
O(logn).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known asheap-sort.

• TheO(n log n) run timeof heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation
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Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them
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Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps
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Bottom-Up Heap Construction
(cont.)
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Bottom-Up Heap Construction
(cont.)

The End
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Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction withn
keys takesO(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts,n/2 upheaps with totalO(n) running time

4

6

207

811

5

9

1214

15

2516 23 27



6.24Heaps

Locators
• Locators can be used to keep track of elements as

they are moved around inside a container.

• A locatorsticks with a specific element, even if that
element changes positions in the container.

• The locator ADT supports the following
fundamental methods:
- element(): return the element of the item

associated with thelocator.
- key(): return the key of the item assocated with the

locator.

• Using locators, we define additional methods for the
priority queue ADT
- insert(k,e): insert (k,e) into P and return itslocator
- min(): return thelocator of an element witih

smallest key
- remove(l): remove the element withlocatorl

• In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellation
is requested
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Positions and Locators
• At this point, you may be wondering what the

difference is between locators and positions, and
why we need to distinguish between them.

• It’s true that they have very similar methods

• The difference is in their primary usage

• Positions abstract the specific implementation of
accessors to elements (indices vs. nodes).

• Positions are defined relatively to each other (e.g.,
previous-next, parent-child)

• Locatorskeep track of where elements are stored. In
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

• Locators associate elements with their keys
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Locators and Positions at Work
• For example, consider the CS16 Valet Parking

Service (started by the TA staff because they had too
much free time on their hands).

• When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

• Andy suggested having aposition represent what
parking space the car was in.

• However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

• So they decided to install alocator (awireless
tracking device) in each car. Each locator had a
unique code, which was written on the claim check.

• When a customer demanded her car, the HTAs
activated the locator. The horn of the car would honk
and the lights would flash.

• If the car was parked, Andy and Devin would know
where to retrieve it in the lot.

• Otherwise, the TA driving the car knew it was time
to bring it back.
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