Hashing

What Is it?

A form of narcotic intake?
A side order for your eggs”?

A combination of the two?

Hashing

Problem

« RT&T is a large phone company, and they want to
provide enhanced caller ID capability:

- given a phone number, return the caller's name
- phone numbers are in the range ®Rte 10'°-1

- n is the number of phone numbers used

- want to do this as efficiently as possible

* We know two ways to design this dictionary:

- abalanced search treAVL, red-black) or a skip-
list with the phone number as the key has O(hpg
guery time and) space --- good space usage
and search time, but can we reduce the search ti
to constant?

- abucket arrayindexed by the phone number has
optimal O(1) query time, but there is a huge
amount of wasted space:.rfOf R)

(null) (null) |...| Roberto|...| (null)

000-000-0000 000-000-0001. 401-863-7639 999-999-9999

Hashing 2

« A Hash Tableis an alternative solution with O(1)

Another Solution

expected query time and @¢ N) space, wherdl is
the size of the table

Like an array, but with a function to map the large
range of keys into a smaller one

- e.g., take the original kespodthe size of the
table, and use that as an index

Insert item (401-863-7639, Roberto) into a table ¢
size 5

- 4018637639 mod 5 =4, so item (401-863-7639|

Roberto) is stored in slot 4 of the table

401-
863-7639

Roberto|

0 1 2 3 S

A lookup uses the same process: map the key to
iIndex, then check the array cell at that index

Insert (401-863-9350, Andy)

And insert (401-863-2234, Devin). We have a
collision!

f

A

al

Hashing 3

Collision Resolution

 How to deal with two keys which map to the same
cell of the array?

|1 ™4

e Usechaining
- Set uplists of items with the same index

ol +—» L —
=S

2 _——> — — —
3[-

4 _——> >

* The expected, search/insertion/removal time is
O(n/N), provided the indices are uniformly
distributed

* The performance of the data structure can be fine-
tuned by changing the table siXe

Hashing 4

From Keys to Indices

e The mapping of keys to indices of a hash table is
called ahash function

« A hash function is usually the composition of two
maps:
- hash code mapkey - integer
- compression mapnteger — [0, N — 1]

e An essential requirement of the hash function is tp
map equal keys to equal indices

e A*good” hash function minimizes the probability of
collisions

« Java provides BashCode() method for the Object
class, which typically returns the 32-bit memory
address of the object.

* This default hash code would work poorly fateger
andstring objects

e ThehashCode() method should be suitably redefined
by classes.

Hashing 5

Popular Hash-Code Maps

 Integer cast for numeric types with 32 bits or less
we can reinterpret the bits of the nuber agian

o Component sumfor numeric types with more than
32 bits (e.g.long anddouble), we can add the 32-bit
components.

e Polynomial accumulationfor strings of a natural
language, combine the character values (ASCII o
Unicode)aga, ... &,-1 by viewing them as the
coefficients of a polynomial:

dp + aiX + ...+ Xn_lan_l
- The polynomial is computed witHorner’s rule,
ignoring overflows, at a fixed value

g + X (agt X (> ... X(8p—2t X @p-9) ...)
- The choicex = 33, 37, 39, or 41gives at most 6
collisions on a vocabulary of 50,000 English
words

 Why is the component-sum hash code bad for
strings?

I

Hashing 6

Popular Compression Maps

 Division: h(k) = k| mod N
- the choiceN = 2Xis bad because not all the bits ar
taken into account

- the table siz& is usually chosen as a prime
number

- certain patterns in the hash codes are propagat

e Multiply, Add, and Divide(MAD):
h(k) = lak + i mod N
- eliminates patterns providedmod N # O

- same formula used in linear congruential (pseuc
random number generators

e

E(

Hashing 7

More on Collisions

« A key iIs mapped to an already occupied table
location

- what to do?!?
e Use a collision handling technigue
« We've seerChaining

e Can also us®pen Addressing
- Double Hashing
- Linear Probing

Man, that's a lot of hash! Watch out for the
legal probe

Hashing

Linear Probing

o If the current location is used, try the next table
location

linear_probing_insert(K)
If (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

» Lookups walk along table until the key or an empt
slot is found

» Uses less memory than chaining
- don’t have to store all those links

 Slower than chaining
- may have to walk along table for a long way

e Deletion is more complex
- either mark the deleted slot
- or fill in the slot by shifting some elements dowr

Hashing 9

Linear Probing Example
* h(k) =k mod 13

 Insert keys:

18 41 22 44 59 32 3173

01 2 3 4 5 6 7 8 910 1112

Hashing

10

Linear Probing Example (cont.)

41

18

44 5

) 3!

222 31

13

012 34 56 7 8 910 1112

Hashing

11

Double Hashing

e Use two hash functions

 If M Is prime, eventually will examine every
position in the table

double_hash_insert(K)
If(table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K
 Many of same (dis)advantages as linear probing

e Distributes keys more uniformly than linear probin
does

0

Hashing 12

Double Hashing Example

 h1(K) = Kmod 13
h2(K) =8 - Kmod 8
- we want h2 to be an offset to add

18 41 22 44 59 32 31 /3

01 2 3 4 5 6 7 8 910 1112

Hashing 13

Double Hashing Example (cont.)

44 |41|73 |1832 5931 22

01 2 3 4 56 7 8 910 1112

Hashing 14

Theoretical Results
e Leta =N/M

- the load factor: average number of keys per art:

Index

* Analysis is probabilistic, rather than worst-case

Expected Number of Probes

not found found
Chaining 1+a 1+%
Linear Probing %+ L 5 1, 1
2(1-a)” 2 2(1-a)
. 1 1 1
Double Hashing 1—0) alnm

Y

Hashing

15

Expected Number of Probes
vs. Load Factor

%

o A

®)

DE_ Linear Probing

© \

O Double Hashing
O

-

S

Z

i

1.0

0.5 1.0

Unsuccessful
Successful

Hashing 16

	Problem
	• RT&T is a large phone company, and they want to provide enhanced caller ID capability:
	- given a phone number, return the caller’s name
	- phone numbers are in the range 0 to R = 1010-1
	- n is the number of phone numbers used
	- want to do this as efficiently as possible

	• We know two ways to design this dictionary:
	- a balanced search tree (AVL, red-black) or a skip- list with the phone number as the key has O(...
	- a bucket array indexed by the phone number has optimal O(1) query time, but there is a huge amo...

	Collision Resolution
	• How to deal with two keys which map to the same cell of the array?
	• Use chaining
	- Set up lists of items with the same index

	• The expected, search/insertion/removal time is O(n/N), provided the indices are uniformly distr...
	• The performance of the data structure can be fine- tuned by changing the table size N

	Another Solution
	• A Hash Table is an alternative solution with O(1) expected query time and O(n + N) space, where...
	• Like an array, but with a function to map the large range of keys into a smaller one
	- e.g., take the original key, mod the size of the table, and use that as an index

	• Insert item (401-863-7639, Roberto) into a table of size 5
	- 4018637639 mod 5 = 4, so item (401-863-7639, Roberto) is stored in slot 4 of the table

	• A lookup uses the same process: map the key to an index, then check the array cell at that index
	• Insert (401-863-9350, Andy)
	• And insert (401-863-2234, Devin). We have a collision!

	From Keys to Indices
	• The mapping of keys to indices of a hash table is called a hash function
	• A hash function is usually the composition of two maps:
	- hash code map: key Æ integer
	- compression map: integer Æ [0, N - 1]

	• An essential requirement of the hash function is to map equal keys to equal indices
	• A “good” hash function minimizes the probability of collisions
	• Java provides a hashCode() method for the Object class, which typically returns the 32-bit memo...
	• This default hash code would work poorly for Integer and String objects
	• The hashCode() method should be suitably redefined by classes.

	Popular Hash-Code Maps
	• Integer cast: for numeric types with 32 bits or less, we can reinterpret the bits of the nuber ...
	• Component sum: for numeric types with more than 32 bits (e.g., long and double), we can add the...
	• Polynomial accumulation: for strings of a natural language, combine the character values (ASCII...
	a0 + a1x + ...+ xn-1an-1
	- The polynomial is computed with Horner’s rule, ignoring overflows, at a fixed value x:

	a0 + x (a1+ x (a2+ ... x (an-2+ x an-1) ...))
	- The choice x = 33, 37, 39, or 41gives at most 6 collisions on a vocabulary of 50,000 English words
	• Why is the component-sum hash code bad for strings?

	Popular Compression Maps
	• Division: h(k) = |k| mod N
	- the choice N = 2k is bad because not all the bits are taken into account
	- the table size N is usually chosen as a prime number
	- certain patterns in the hash codes are propagated

	• Multiply, Add, and Divide (MAD): h(k) = |ak + b| mod N
	- eliminates patterns provided a mod N ¹ 0
	- same formula used in linear congruential (pseudo) random number generators

	More on Collisions
	• A key is mapped to an already occupied table location
	- what to do?!?

	• Use a collision handling technique
	• We’ve seen Chaining
	• Can also use Open Addressing
	- Double Hashing
	- Linear Probing

	Linear Probing
	• If the current location is used, try the next table location
	linear_probing_insert(K)
	if (table is full) error
	probe = h(K)
	while (table[probe] occupied)
	probe = (probe + 1) mod M
	table[probe] = K

	• Lookups walk along table until the key or an empty slot is found
	• Uses less memory than chaining
	- don’t have to store all those links

	• Slower than chaining
	- may have to walk along table for a long way

	• Deletion is more complex
	- either mark the deleted slot
	- or fill in the slot by shifting some elements down

	Linear Probing Example
	• h(k) = k mod 13
	• Insert keys:

	Linear Probing Example (cont.)
	Double Hashing
	• Use two hash functions
	• If M is prime, eventually will examine every position in the table
	double_hash_insert(K)
	if(table is full) error
	probe = h1(K)
	offset = h2(K)
	while (table[probe] occupied)
	probe = (probe + offset) mod M
	table[probe] = K

	• Many of same (dis)advantages as linear probing
	• Distributes keys more uniformly than linear probing does

	Double Hashing Example
	• h1(K) = K mod 13 h2(K) = 8 - K mod 8
	- we want h2 to be an offset to add

	Double Hashing Example (cont.)
	Theoretical Results
	• Let a = N/M
	- the load factor: average number of keys per array index

	• Analysis is probabilistic, rather than worst-case

	Expected Number of Probes vs. Load Factor

