
1Hashing

Hashing

 A form of narcotic intake?

 A side order for your eggs?

 A combination of the two?

Hashing

What is it?

o

ime

s

Problem
• RT&T is a large phone company, and they want t

provide enhanced caller ID capability:
- given a phone number, return the caller’s name
- phone numbers are in the range 0 toR = 1010−1
- n is the number of phone numbers used
- want to do this as efficiently as possible

• We know two ways to design this dictionary:
- abalanced search tree(AVL, red-black) or a skip-

list with the phone number as the key has O(logn)
query time and O(n) space --- good space usage
and search time, but can we reduce the search t
to constant?

- abucket array indexed by the phone number ha
optimal O(1) query time, but there is a huge
amount of wasted space: O(n + R)

000-000-0000 000-000-0001 401-863-7639... 999-999-9999

......

...

Roberto(null) (null) (null)
2Hashing

3Hashing

Another Solution
• A Hash Tableis an alternative solution with O(1)

expected query time and O(n + N) space, whereN is
the size of the table

• Like an array, but with a function to map the large
range of keys into a smaller one
- e.g., take the original key,mod the size of the

table, and use that as an index

• Insert item (401-863-7639, Roberto) into a table of
size 5
- 4018637639 mod 5 = 4, so item (401-863-7639,

Roberto) is stored in slot 4 of the table

• A lookup uses the same process: map the key to an
index, then check the array cell at that index

• Insert (401-863-9350, Andy)

• And insert (401-863-2234, Devin). We have a
collision!

0 1 2 3

Roberto

401-
863-7639

5

e

e-
Collision Resolution
• How to deal with two keys which map to the sam

cell of the array?

• Usechaining
- Set uplists of items with the same index

• The expected, search/insertion/removal time is
O(n/N), provided the indices are uniformly
distributed

• The performance of the data structure can be fin
tuned by changing the table sizeN

0

1

2

3

4

4Hashing

5Hashing

From Keys to Indices
• The mapping of keys to indices of a hash table is

called ahash function

• A hash function is usually the composition of two
maps:
- hash code map: key→ integer

- compression map: integer → [0, N − 1]

• An essential requirement of the hash function is to
map equal keys to equal indices

• A “good” hash function minimizes the probability of
collisions

• Java provides ahashCode() method for the Object
class, which typically returns the 32-bit memory
address of the object.

• This default hash code would work poorly forInteger
andString objects

• ThehashCode() method should be suitably redefined
by classes.

6Hashing

Popular Hash-Code Maps
• Integer cast: for numeric types with 32 bits or less,

we can reinterpret the bits of the nuber as anint

• Component sum: for numeric types with more than
32 bits (e.g.,long anddouble), we can add the 32-bit
components.

• Polynomial accumulation: for strings of a natural
language, combine the character values (ASCII or
Unicode)a0a1 ... an−1 by viewing them as the
coefficients of a polynomial:

a0 + a1x + ...+ xn−1an−1
- The polynomial is computed withHorner’s rule,

ignoring overflows, at a fixed valuex:

a0 + x (a1+ x (a2+ ... x (an−2+ x an−1) ...))
- The choicex = 33, 37, 39, or 41gives at most 6

collisions on a vocabulary of 50,000 English
words

• Why is the component-sum hash code bad for
strings?

7Hashing

Popular Compression Maps
• Division: h(k) = |k| mod N

- the choiceN = 2k is bad because not all the bits are
taken into account

- the table sizeN is usually chosen as a prime
number

- certain patterns in the hash codes are propagated

• Multiply, Add, and Divide (MAD):
h(k) = |ak + b| mod N
- eliminates patterns provideda mod N ≠ 0
- same formula used in linear congruential (pseudo)

random number generators

8Hashing

More on Collisions
• A key is mapped to an already occupied table

location
- what to do?!?

• Use a collision handling technique

• We’ve seenChaining

• Can also useOpen Addressing
- Double Hashing
- Linear Probing

Man, that’s a lot of hash! Watch out for the
legal probe

9Hashing

Linear Probing
• If the current location is used, try the next table

location

linear_probing_insert(K)
if (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

• Lookups walk along table until the key or an empty
slot is found

• Uses less memory than chaining
- don’t have to store all those links

• Slower than chaining
- may have to walk along table for a long way

• Deletion is more complex
- either mark the deleted slot
- or fill in the slot by shifting some elements down

10Hashing

Linear Probing Example
• h(k) = k mod 13

• Insert keys:

73

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31

85 2 9 5 7 6 5

11Hashing

Linear Probing Example (cont.)

0 1 2 3 4 5 6 7 8 9 10 11 12

18 2241 44 59 32 31 73

12Hashing

Double Hashing
• Use two hash functions

• If M is prime, eventually will examine every
position in the table

double_hash_insert(K)
if(table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K

• Many of same (dis)advantages as linear probing

• Distributes keys more uniformly than linear probing
does

13Hashing

Double Hashing Example
• h1(K) = K mod 13

h2(K) = 8 - K mod 8
- we want h2 to be an offset to add

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31 73

14Hashing

Double Hashing Example (cont.)

0 1 2 3 4 5 6 7 8 9 10 11 12

1841 2244 5932 3173

15Hashing

Theoretical Results
• Let α = Ν/Μ

- the load factor: average number of keys per array
index

• Analysis is probabilistic, rather than worst-case

Expected Number of Probes

1 α+ 1 α
2
---+Chaining

Linear Probing
1
2
--- 1

2 1 α–()2
------------------------+ 1

2
--- 1

2 1 α–()
---------------------+

Double Hashing
1

1 α–()
----------------- 1

α
--- ln

1
1 α–

not found found

16Hashing

0.5 1.0

Successful
Unsuccessful

Linear Probing

Chaining

Double Hashing

Expected Number of Probes
vs. Load Factor

1.0

N
um

be
r

of
 P

ro
be

s

α

	Problem
	• RT&T is a large phone company, and they want to provide enhanced caller ID capability:
	- given a phone number, return the caller’s name
	- phone numbers are in the range 0 to R = 1010-1
	- n is the number of phone numbers used
	- want to do this as efficiently as possible

	• We know two ways to design this dictionary:
	- a balanced search tree (AVL, red-black) or a skip- list with the phone number as the key has O(...
	- a bucket array indexed by the phone number has optimal O(1) query time, but there is a huge amo...

	Collision Resolution
	• How to deal with two keys which map to the same cell of the array?
	• Use chaining
	- Set up lists of items with the same index

	• The expected, search/insertion/removal time is O(n/N), provided the indices are uniformly distr...
	• The performance of the data structure can be fine- tuned by changing the table size N

	Another Solution
	• A Hash Table is an alternative solution with O(1) expected query time and O(n + N) space, where...
	• Like an array, but with a function to map the large range of keys into a smaller one
	- e.g., take the original key, mod the size of the table, and use that as an index

	• Insert item (401-863-7639, Roberto) into a table of size 5
	- 4018637639 mod 5 = 4, so item (401-863-7639, Roberto) is stored in slot 4 of the table

	• A lookup uses the same process: map the key to an index, then check the array cell at that index
	• Insert (401-863-9350, Andy)
	• And insert (401-863-2234, Devin). We have a collision!

	From Keys to Indices
	• The mapping of keys to indices of a hash table is called a hash function
	• A hash function is usually the composition of two maps:
	- hash code map: key Æ integer
	- compression map: integer Æ [0, N - 1]

	• An essential requirement of the hash function is to map equal keys to equal indices
	• A “good” hash function minimizes the probability of collisions
	• Java provides a hashCode() method for the Object class, which typically returns the 32-bit memo...
	• This default hash code would work poorly for Integer and String objects
	• The hashCode() method should be suitably redefined by classes.

	Popular Hash-Code Maps
	• Integer cast: for numeric types with 32 bits or less, we can reinterpret the bits of the nuber ...
	• Component sum: for numeric types with more than 32 bits (e.g., long and double), we can add the...
	• Polynomial accumulation: for strings of a natural language, combine the character values (ASCII...
	a0 + a1x + ...+ xn-1an-1
	- The polynomial is computed with Horner’s rule, ignoring overflows, at a fixed value x:

	a0 + x (a1+ x (a2+ ... x (an-2+ x an-1) ...))
	- The choice x = 33, 37, 39, or 41gives at most 6 collisions on a vocabulary of 50,000 English words
	• Why is the component-sum hash code bad for strings?

	Popular Compression Maps
	• Division: h(k) = |k| mod N
	- the choice N = 2k is bad because not all the bits are taken into account
	- the table size N is usually chosen as a prime number
	- certain patterns in the hash codes are propagated

	• Multiply, Add, and Divide (MAD): h(k) = |ak + b| mod N
	- eliminates patterns provided a mod N ¹ 0
	- same formula used in linear congruential (pseudo) random number generators

	More on Collisions
	• A key is mapped to an already occupied table location
	- what to do?!?

	• Use a collision handling technique
	• We’ve seen Chaining
	• Can also use Open Addressing
	- Double Hashing
	- Linear Probing

	Linear Probing
	• If the current location is used, try the next table location
	linear_probing_insert(K)
	if (table is full) error
	probe = h(K)
	while (table[probe] occupied)
	probe = (probe + 1) mod M
	table[probe] = K

	• Lookups walk along table until the key or an empty slot is found
	• Uses less memory than chaining
	- don’t have to store all those links

	• Slower than chaining
	- may have to walk along table for a long way

	• Deletion is more complex
	- either mark the deleted slot
	- or fill in the slot by shifting some elements down

	Linear Probing Example
	• h(k) = k mod 13
	• Insert keys:

	Linear Probing Example (cont.)
	Double Hashing
	• Use two hash functions
	• If M is prime, eventually will examine every position in the table
	double_hash_insert(K)
	if(table is full) error
	probe = h1(K)
	offset = h2(K)
	while (table[probe] occupied)
	probe = (probe + offset) mod M
	table[probe] = K

	• Many of same (dis)advantages as linear probing
	• Distributes keys more uniformly than linear probing does

	Double Hashing Example
	• h1(K) = K mod 13 h2(K) = 8 - K mod 8
	- we want h2 to be an offset to add

	Double Hashing Example (cont.)
	Theoretical Results
	• Let a = N/M
	- the load factor: average number of keys per array index

	• Analysis is probabilistic, rather than worst-case

	Expected Number of Probes vs. Load Factor

