GRAPHS

e Definitions
« The Graph ADT

 Data structures for graphs

Graphs

What is a Graph?
A graph G = (V,E) Is composed of:
V: set ofvertices
E: set ofedgesconnecting theerticesin V
e An edge e= (u,v) is a pair ofertices

e Example:

V={a,b,c,d,e}

F=
{(a,b),(a,c),(a,d),
(b.e),(c,d).(c.e),
(d.e)}

Graphs

Applications

e electronic circuits

CS16

| 2 +”J

find the path of least resistance to CS16

* networks(roads, flights, communications)

Graphs

Mo’ better examples
A Spike Lee Joint Production

» scheduling (project planning)

wake upl A typical student day

. eat
csl6 medltatlovV

work

more csl

cs16 progran

/ battletris

make cookie
for cs16 HT.
slee

dream of cslb

Graphs

Graph Terminology

» adjacent verticesconnected by an edge

o degreg(of averteX: # of adjacent vertices

2 deg(v) = 2(# edges)
vV

e Since adjacent vertices
each count the
adjoining edge, it will
be counted twice

path sequence of vertices,v,,. . .\j; such that
consecutive vertices and vy, ; are adjacent.

Graphs 5

More Graph Terminology

e simple path no repeated vertices

bec

e cycle simple path, except that the last vertex is the
same as the first vertex

Graphs 6

Even More Terminology

e connected graplany two vertices are connected b
some path

— —

| I |
I [I
I [I
I [I
I [I
I [I
I [I
I I I
I [I
I | I
I | I

— e e e e e — e e e e— — — — — e e e e e — e e e e— — — —

connected not connected

» subgraphsubset of vertices and edges forming a
graph

e connected componemnaximal connected
subgraph. E.g., the graph below has 3 connected
components.

— —

YA B

— e e e e e e e e e e e e e e e e e e o e e e e m— — — — — —

Graphs 7

iCarambal! Another
Terminology Slide!

* (free) tree- connected graph without cycles

e forest- collection of trees

tree @
|
Q tree

forest

tree

tree

Graphs

Connectivity

Let n = #vertices
m = #edges

- complete graph all pairs of vertices are adjacent

m= (1/2)2degl) = (1/2)2-(n - 1) =n(n-1)/2

vV vV

e Each of then vertices Is incident ta - 1 edges,

however, we would have counted each edge twice|!!

Therefore, intuitivelym =n(n-1)/2.

n=>5
m=(504)/2=10

* Therefore, if a graph isot complete,
m <n(n-1)/2

Graphs 9

More Connectivity

n = #vertices
m = #edges

e Foratreen=n-1

3 5
THL
N o1

e [fm<n-1, Gis not connected

3 5

Graphs

10

Spanning Tree

e A spanning treeof G is a subgraph which
- IS a tree
- contains all vertices db

G spanning tree of G

 Failure on any edge disconnects system (least faul
tolerant)

Graphs 11

AT&T vs. RT&T

(Roberto Tamassia & Telephone)

* Roberto wants to call the TA's to suggest an
extension for the next program...

But Plant-Ops
‘accidentally’ cuts
a phone cable!!!

* One fault will disconnect part of graph!!

A cycle would be more fault tolerant and only
requiresn edges

oo

Graphs 12

Euler and the Bridges of
Koenlgsberg

A
Hﬁ@%

o

Can one walk across each bridge
exactly once and return at the
starting point?

e Consider if you were a UPS driver, and you didn’t
want to retrace your steps.

e In 1736, Euler proved that this is not possible

Graphs 13

Graph Model(with parallel
edges)

C

B

e Eulerian Tour path that traverses every edge
exactly once and returns to the first vertex

e Euler's TheoremA graph has a Eulerian Tour if and
only if all vertices have even degree

e Do you find such ideas interesting?

« WWould you enjoy spending a whole semester doing
such proofs?

Well, look into CS22!

If you dare...

Graphs 14

The Graph ADT

e TheGraph ADT Is apositional containewhose
positions are the vertices and the edges of the grar

size() Return the number of vertices plus the
number of edges db.

ISEmpty()
elements()
positions()
swap()
replaceElement()

Notation: GraplG; Verticesv, w, Edgee; Objecto
numVertices()
Return the number of vertices Gf

numEdges()
Return the number of edges®f

vertices() Return an enumeration of the vertices
of G.

edges() Return an enumeration of the edges of
G.

Graphs 15

The Graph ADT (contd.)

directedEdges()
Return an enumeration of all directed
edges IrnG.
- undirectedEdges()
Return an enumeration of all
undirected edges BG.
- incidentEdges/)
Return an enumeration of all edges
iIncident onv.

- InIncidentEdges()
Return an enumeration of all the
Incoming edges to.

- outincidentEdgesy
Return an enumeration of all the
outgoing edges from
- oppositey, e)
Return an endpoint & distinct fromv
- degreey)
Return the degree of
- InDegreey)
Return the in-degree of

outDegreey)
Return the out-degree af

Graphs 16

More Methods ...

adjacent\Vertices|
Return an enumeration of the vertices
adjacent tov.

InAdjacent\Vertices()
Return an enumeration of the vertices
adjacent tos along incoming edges.

outAdjacent\Vertices
Return an enumeration of the vertices
adjacent tos along outgoing edges.

areAdjacent(,w)
Return whether verticesand w are
adjacent.

end\Verticex)
Return an array of size 2 storing the
end vertices oé.

origin(e)
Return the end vertex from whieh
leaves.

destinationg)
Return the end vertex at whieh
arrives.

ISDirectedg)
Return true iffe is directed.

Graphs

17

Update Methods

makeUndirected)
Sete to be an undirected edge.

reverseDirectiord)
Switch the origin and destination
vertices ofe.

setDirectionFrons, v)
Sets the direction a#away fromv, one
of its end vertices.

setDirectionTog, V)
Sets the direction af towardv, one of
Its end vertices.

iInsertEdgey, w, o)
Insert and return an undirected edge
betweenv andw, storingo at this
position.

InsertDirectedEdge(w, 0)
Insert and return a directed edge
betweenv andw, storingo at this
position.

InsertVertexog)
Insert and return a new (isolated)
vertex storingp at this position.

removeEdgead)
Remove edge.

Graphs

18

Data Structures for Graphs

A Graph! How can we represent it?

 To start with, we store theerticesand theedgesnto

two containers, and each edge object has referer

to the vertices it connects.

TW 45
(805

« Additional structures can be used to perform
efficiently the methods of the Graph ADT

|C

Graphs

19

Edge List

* Theedge liststructure simply stores the vertices and
the edges into unsorted sequences.

e Easy to implement.

* Finding the edges incident on a given vertex Is
Inefficient since it requires examining the entire
edge sequence

(")
NW 35jdDL 24 7jad AA 49 fd DL 335a\A 138 dAA 52FdAA 41 UJUA 120dAA Q0FJUA 87 7 TW 45
BN SN LY | \ 1/ N1/ \ Z 1\ Z 1/ l //./ /

\ N VY VAV < |/

Graphs 20

Performance of the Edge List

Structure

Operation Time
size, ISEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destinationO(1)
IsDirected
IncidentEdges, inincidentEdges, outinci{ O(m)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacentdegree, inDegree, outDegree
iInsertVertex, insertEdge, insertDirected-| O(1)
Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo
removeVertex O(m)

Graphs

21

Adjacency List
(traditional)

e adjacency list of a vertex v
sequence of vertices adjacent/to

» represent the graph by the adjacency lists of all tt

vertices e @
o

(d) &
@~(—0—0)
O E0)

O~@—a0—©)
O~b—0—0)

e Space (N + Zdeg&)) =O(N + M)

Graphs 22

Adjacency List
(modern)

* Theadjacency liststructure extends the edge list
structure by addingicidence containern® each
vertex.

(")

NW 35}dDL 24 7 AA 49 fu DL 33af\A 138 fdAA S52FdAA 41 UAJUA 12(dAA O0FdUA 87 7 TW 45

N D GV H SNV ANV 7 VAV AP 7V,

NW 35 | AA49JUA 124 | AA138f DL335) | NW 354 AA138] | DL 247 AA523) JUA 1200 UA 877 | TW 49
DL 247 | AA 41] UA 87F AA 49 AA 903 | AA 903 AA 411 | DL 335

AA 523 TW 45

Nl HZ2 i VA U B U BV U A N B\ N

* The space requirement is O(n + m).

Graphs 23

Performance of the A
List Structure

djacency

Operation Time
size, ISEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedeEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destina- O(1)
tion, isDirected, degree, inDegree, out-
Degree
iIncidentEdges(v), inincidentEdges(v), O(deg(v))
outincidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdjar
centVertices(v)
areAdjacent(u, v) O(min(deg(u),

deg(v)))

InsertVertex, insertEdge, insertDirected(1)
Edge, removeEdge, makeUndirected,
reverseDirection,
removeVertex(v) O(deg(Vv))

Graphs

24

Adjacency Matrix
(traditional)

a b c d e
alF T T T F
b|lT F F FT
CIT F FT T
d|T FTF T
e|lF T T T F

« matrix M with entries for all pairs of vertices

™4

* MI[i,j] = true means that there is an edge (i,)) in the
graph.

* MIi,j] = false means that there is no edge (i,)) in the
graph.

* There is an entry for every possible edge, therefofre
Space =O(N?)

Graphs 25

Adjacency Matrix
(modern)

* The adjacency matrix structures augments the edg
list structure with a matrix where each row and
column corresponds to a vertex.

0 1 2 3 4 5 6
0|l 9| 9 | \wW| @ |DL| @ | @
35 247
11 @ | @ | @ |AA| @ | DL | ©@
49 335
21 @ | AA| @ | @ |AA| @ | TW
1387 903 45
3| @ | 9| @| 9| @ |UA| O
120
A @ |AA| @ | AA | @ | @ | @
523 411
5| @ VA| @ | 9| 9| 9| @
877
6| 9 | 9| 9| 9| @| @| ©

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 S 6

« The space requirement is G m)

Graphs 26

Performance of the Adjacency

Matrix Structure

Operation Time
size, ISEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destinationO(1)
IsDirected, degree, inDegree, outDegree
iIncidentEdges, inincidentEdges, outlnci{ O(n)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent O(1)
InsertEdge, insertDirectedEdge, remov- | O(1)
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo
iInsertVertex, removeVertex O(?)

Graphs

27

	Graphs
	• Definitions
	• The Graph ADT
	• Data structures for graphs
	What is a Graph?
	• A graph G = (V,E) is composed of:
	V: set of vertices
	E: set of edges connecting the vertices in V
	• An edge e = (u,v) is a pair of vertices
	• Example:

	Applications
	• electronic circuits
	find the path of least resistance to CS16
	• networks (roads, flights, communications)

	mo’ better examples A Spike Lee Joint Production
	• scheduling (project planning)

	Graph Terminology
	• adjacent vertices: connected by an edge
	• degree (of a vertex): # of adjacent vertices path: sequence of vertices v1,v2,. . .vk such that...

	More Graph Terminology
	• simple path: no repeated vertices
	• cycle: simple path, except that the last vertex is the same as the first vertex

	Even More Terminology
	• connected graph: any two vertices �are connected by some path
	• subgraph: subset of vertices and edges forming a graph
	• connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

	¡Caramba! Another Terminology Slide!
	• (free) tree - connected graph without cycles
	• forest - collection of trees

	Connectivity
	Let n = #vertices m = #edges
	- complete graph - all pairs of vertices are � �adjacent

	m= (1/2)Sdeg(v) = (1/2)S(n - 1) = n(n-1)/2 vŒV vŒV
	• Each of the n vertices is incident to n - 1 edges, however, we would have counted each edge twi...
	• Therefore, if a graph is not complete, � m < n(n-1)/2

	More Connectivity
	n = #vertices m = #edges
	• For a tree m = n - 1
	• If m < n - 1, G is not connected

	Spanning Tree
	• A spanning tree of G is a subgraph which
	- is a tree
	- contains all vertices of G

	• Failure on any edge disconnects system (least fault tolerant)

	AT&T vs. RT&T
	(Roberto Tamassia & Telephone)
	• Roberto wants to call the TA’s to suggest an extension for the next program...
	• One fault will disconnect part of graph!!
	• A cycle would be more fault tolerant and only requires n edges

	Euler and the Bridges of Koenigsberg
	Can one walk across each bridge �exactly once and return at the �starting point?
	• Consider if you were a UPS driver, and you didn’t want to retrace your steps.
	• In 1736, Euler proved that this is not possible

	Graph Model (with parallel edges)
	• Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
	• Euler’s Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree
	• Do you find such ideas interesting?
	• Would you enjoy spending a whole semester doing such proofs?
	Well, look into CS22! if you dare...

	The Graph ADT
	• The Graph ADT is a positional container whose positions are the vertices and the edges of the g...
	- size() Return the number of vertices plus the number of edges of G.
	- isEmpty()
	- elements()
	- positions()
	- swap()
	- replaceElement()

	Notation: Graph G; Vertices v, w; Edge e; Object o
	- numVertices() Return the number of vertices of G.
	- numEdges() Return the number of edges of G.
	- vertices() Return an enumeration of the vertices of G.
	- edges() Return an enumeration of the edges of G.

	The Graph ADT (contd.)
	- directedEdges() Return an enumeration of all directed edges in G.
	- undirectedEdges() Return an enumeration of all undirected edges in G.
	- incidentEdges(v) Return an enumeration of all edges incident on v.
	- inIncidentEdges(v) Return an enumeration of all the incoming edges to v.
	- outIncidentEdges(v) Return an enumeration of all the outgoing edges from v.
	- opposite(v, e) Return an endpoint of e distinct from v
	- degree(v) Return the degree of v.
	- inDegree(v) Return the in-degree of v.
	- outDegree(v) Return the out-degree of v.

	More Methods ...
	- adjacentVertices(v) Return an enumeration of the vertices adjacent to v.
	- inAdjacentVertices(v) Return an enumeration of the vertices adjacent to v along incoming edges.
	- outAdjacentVertices(v) Return an enumeration of the vertices adjacent to v along outgoing edges.
	- areAdjacent(v,w) Return whether vertices v and w are adjacent.
	- endVertices(e) Return an array of size 2 storing the end vertices of e.
	- origin(e) Return the end vertex from which e leaves.
	- destination(e) Return the end vertex at which e arrives.
	- isDirected(e) Return true iff e is directed.

	Update Methods
	- makeUndirected(e) Set e to be an undirected edge.
	- reverseDirection(e) Switch the origin and destination vertices of e.
	- setDirectionFrom(e, v) Sets the direction of e away from v, one of its end vertices.
	- setDirectionTo(e, v) Sets the direction of e toward v, one of its end vertices.
	- insertEdge(v, w, o) Insert and return an undirected edge between v and w, storing o at this pos...
	- insertDirectedEdge(v, w, o) Insert and return a directed edge between v and w, storing o at thi...
	- insertVertex(o) Insert and return a new (isolated) vertex storing o at this position.
	- removeEdge(e) Remove edge e.

	Data Structures for Graphs
	• A Graph! How can we represent it?
	• To start with, we store the vertices and the edges into two containers, and each edge object ha...
	• Additional structures can be used to perform efficiently the methods of the Graph ADT

	Edge List
	• The edge list structure simply stores the vertices and the edges into unsorted sequences.
	• Easy to implement.
	• Finding the edges incident on a given vertex is inefficient since it requires examining the ent...

	Performance of the Edge List Structure
	Adjacency List (modern)
	• The adjacency list structure extends the edge list structure by adding incidence containers to ...
	• The space requirement is O(n + m).

	Performance of the Adjacency List Structure
	Adjacency Matrix (modern)
	• The adjacency matrix structures augments the edge list structure with a matrix where each row a...
	BOS DFW JFK LAX MIA ORD SFO
	0 1 2 3 4 5 6
	• The space requirement is O(n2 + m)

	Performance of the Adjacency Matrix Structure
	• Since adjacent �vertices each count the adjoining edge, it will be counted twice

	Adjacency List (traditional)
	• adjacency list of a vertex v: sequence of vertices adjacent to v
	• represent the graph by the adjacency lists of all the vertices
	• Space = Q(N + Sdeg(v)) = Q(N + M)

	Adjacency Matrix (traditional)
	• matrix M with entries for all pairs of vertices
	• M[i,j] = true means that there is an edge (i,j) in the graph.
	• M[i,j] = false means that there is no edge (i,j) in the graph.
	• There is an entry for every possible edge, therefore: Space = Q(N2)

