
1Graphs

GRAPHS

• Definitions

• The Graph ADT

• Data structures for graphs

LAX

PVD

LAX

DFW

FTL

STL

HNL

What is a Graph?
• A graph G = (V,E) is composed of:

V: set ofvertices

E: set ofedges connecting thevertices in V

• An edge e = (u,v) is a pair ofvertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}
2Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW

FTL

STL

HNL
3Graphs

mo’ better examples
A Spike Lee Joint Production

• scheduling (project planning)

wake up

eat

work

cs16 meditation

more cs16

play

make cookies
for cs16 HTA

sleep

dream of cs16

cs16 program

A typical student day

battletris
4Graphs

Graph Terminology
• adjacent vertices: connected by an edge

• degree (of avertex): # of adjacent vertices

path: sequence of vertices v1,v2,. . .vk such that
consecutive vertices vi and vi+1 are adjacent.

a b

c

d e

a b

c

d e

a b e d c b e d c

3

3 3

3

2
Σ deg(v) = 2(# edges)
v∈V

• Since adjacent vertices
each count the
adjoining edge, it will
be counted twice
5Graphs

he
More Graph Terminology
• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is t
same as the first vertex

a b

c

d e

b e c

a c d a

a b

c

d e
6Graphs

y

Even More Terminology
• connected graph: any two vertices are connected b

some path

• subgraph: subset of vertices and edges forming a
graph

• connected component:maximal connected
subgraph. E.g., the graph below has 3 connected
components.

connected not connected
7Graphs

¡Caramba! Another
Terminology Slide!

• (free) tree- connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree
8Graphs

t

!!!
Connectivity
Let n = #vertices

m = #edges

- complete graph - all pairs of vertices are adjacen

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) =n(n-1)/2
v∈V v∈V

• Each of then vertices is incident ton - 1 edges,
however, we would have counted each edge twice
Therefore, intuitively,m = n(n-1)/2.

• Therefore, if a graph isnot complete,
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10
9Graphs

More Connectivity
n = #vertices
m = #edges

• For a treem = n - 1

• If m < n - 1, G is not connected

n = 5
m = 4

n = 5
m = 3
10Graphs

ult
Spanning Tree
• A spanning tree of G is a subgraph which

- is a tree
- contains all vertices ofG

• Failure on any edge disconnects system (least fa
tolerant)

G spanning tree of G
11Graphs

AT&T vs. RT&T
(Roberto Tamassia & Telephone)

• Roberto wants to call the TA’s to suggest an
extension for the next program...

• One fault will disconnect part of graph!!

• A cycle would be more fault tolerant and only
requiresn edges

TA

TA

TA

TA

TA

But Plant-Ops
‘accidentally’ cuts
a phone cable!!!
12Graphs

t

Euler and the Bridges of
Koenigsberg

• Consider if you were a UPS driver, and you didn’
want to retrace your steps.

• In 1736, Euler proved that this is not possible

A

B

C

DPregal River

Can one walk across each bridge
exactly once and return at the
starting point?

Gilligan’s Isle?
13Graphs

g

Graph Model(with parallel
edges)

• Eulerian Tour: path that traverses every edge
exactly once and returns to the first vertex

• Euler’s Theorem:A graph has a Eulerian Tour if and
only if all vertices have even degree

• Do you find such ideas interesting?

• Would you enjoy spending a whole semester doin
such proofs?

Well, look into CS22!
if you dare...

C

A

B

D

14Graphs

aph.

e

s

of
The Graph ADT
• TheGraph ADT is apositional container whose

positions are the vertices and the edges of the gr

- size() Return the number of vertices plus th
number of edges ofG.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: GraphG; Verticesv, w; Edgee; Objecto
- numVertices()

Return the number of vertices ofG.
- numEdges()

Return the number of edges ofG.
- vertices() Return an enumeration of the vertice

of G.
- edges() Return an enumeration of the edges

G.
15Graphs

The Graph ADT (contd.)
- directedEdges()

Return an enumeration of all directed
edges inG.

- undirectedEdges()
Return an enumeration of all
undirected edges inG.

- incidentEdges(v)
Return an enumeration of all edges
incident onv.

- inIncidentEdges(v)
Return an enumeration of all the
incoming edges tov.

- outIncidentEdges(v)
Return an enumeration of all the
outgoing edges fromv.

- opposite(v, e)
Return an endpoint ofe distinct fromv

- degree(v)
Return the degree ofv.

- inDegree(v)
Return the in-degree ofv.

- outDegree(v)
Return the out-degree ofv.
16Graphs

s

s

s

More Methods ...
- adjacentVertices(v)

Return an enumeration of the vertice
adjacent tov.

- inAdjacentVertices(v)
Return an enumeration of the vertice
adjacent tov along incoming edges.

- outAdjacentVertices(v)
Return an enumeration of the vertice
adjacent tov along outgoing edges.

- areAdjacent(v,w)
Return whether verticesv and w are
adjacent.

- endVertices(e)
Return an array of size 2 storing the
end vertices ofe.

- origin(e)
Return the end vertex from whiche
leaves.

- destination(e)
Return the end vertex at whiche
arrives.

- isDirected(e)
Return true iffe is directed.
17Graphs

Update Methods
- makeUndirected(e)

Sete to be an undirected edge.
- reverseDirection(e)

Switch the origin and destination
vertices ofe.

- setDirectionFrom(e, v)
Sets the direction ofeaway fromv, one
of its end vertices.

- setDirectionTo(e, v)
Sets the direction ofe towardv, one of
its end vertices.

- insertEdge(v, w, o)
Insert and return an undirected edge
betweenv andw, storingo at this
position.

- insertDirectedEdge(v, w, o)
Insert and return a directed edge
betweenv andw, storingo at this
position.

- insertVertex(o)
Insert and return a new (isolated)
vertex storingo at this position.

- removeEdge(e)
Remove edgee.
18Graphs

ces
Data Structures for Graphs
• A Graph! How can we represent it?

• To start with, we store theverticesand theedgesinto
two containers, and each edge object has referen
to the vertices it connects.

• Additional structures can be used to perform
efficiently the methods of the Graph ADT

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

24
7

AA 523

N
W

 3
5

U
A

 8
77

D
L

33
5

AA 49

UA 120

JFK

BOS

MIA

ORD

LAX
DFW

SFO
19Graphs

d

Edge List
• Theedge list structure simply stores the vertices an

the edges into unsorted sequences.

• Easy to implement.

• Finding the edges incident on a given vertex is
inefficient since it requires examining the entire
edge sequence

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

20Graphs

Performance of the Edge List
Structure

Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent, degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)
21Graphs

22Graphs

Adjacency List
(traditional)

• adjacency list of a vertex v:
sequence of vertices adjacent tov

• represent the graph by the adjacency lists of all the
vertices

• Space =Θ(N + Σdeg(v)) = Θ(N + M)

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

a

b

c

d

e

Adjacency List
(modern)

• Theadjacency list structure extends the edge list
structure by addingincidence containers to each
vertex.

• The space requirement is O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 411

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387
23Graphs

24Graphs

Performance of the Adjacency
List Structure

Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree, out-
Degree

O(1)

incidentEdges(v), inIncidentEdges(v),
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
deg(v)))

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection,

O(1)

removeVertex(v) O(deg(v))

25Graphs

Adjacency Matrix
(traditional)

• matrix M with entries for all pairs of vertices

• M[i,j] = true means that there is an edge (i,j) in the
graph.

• M[i,j] = false means that there is no edge (i,j) in the
graph.

• There is an entry for every possible edge, therefore:
Space =Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e

ge
Adjacency Matrix
(modern)

• The adjacency matrix structures augments the ed
list structure with a matrix where each row and
column corresponds to a vertex.

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

• The space requirement is O(n2 + m)

0 1 2 3 4 5 6

0 Ø Ø NW
35

Ø DL
247

Ø Ø

1 Ø Ø Ø AA
49

Ø DL
335

Ø

2 Ø AA
1387

Ø Ø AA
903

Ø TW
45

3 Ø Ø Ø Ø Ø UA
120

Ø

4 Ø AA
523

Ø AA
411

Ø Ø Ø

5 Ø UA
877

Ø Ø Ø Ø Ø

6 Ø Ø Ø Ø Ø Ø Ø
26Graphs

Performance of the Adjacency
Matrix Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

O(n)

areAdjacent O(1)

insertEdge, insertDirectedEdge, remov-
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)
27Graphs

	Graphs
	• Definitions
	• The Graph ADT
	• Data structures for graphs
	What is a Graph?
	• A graph G = (V,E) is composed of:
	V: set of vertices
	E: set of edges connecting the vertices in V
	• An edge e = (u,v) is a pair of vertices
	• Example:

	Applications
	• electronic circuits
	find the path of least resistance to CS16
	• networks (roads, flights, communications)

	mo’ better examples A Spike Lee Joint Production
	• scheduling (project planning)

	Graph Terminology
	• adjacent vertices: connected by an edge
	• degree (of a vertex): # of adjacent vertices path: sequence of vertices v1,v2,. . .vk such that...

	More Graph Terminology
	• simple path: no repeated vertices
	• cycle: simple path, except that the last vertex is the same as the first vertex

	Even More Terminology
	• connected graph: any two vertices �are connected by some path
	• subgraph: subset of vertices and edges forming a graph
	• connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

	¡Caramba! Another Terminology Slide!
	• (free) tree - connected graph without cycles
	• forest - collection of trees

	Connectivity
	Let n = #vertices m = #edges
	- complete graph - all pairs of vertices are � �adjacent

	m= (1/2)Sdeg(v) = (1/2)S(n - 1) = n(n-1)/2 vŒV vŒV
	• Each of the n vertices is incident to n - 1 edges, however, we would have counted each edge twi...
	• Therefore, if a graph is not complete, � m < n(n-1)/2

	More Connectivity
	n = #vertices m = #edges
	• For a tree m = n - 1
	• If m < n - 1, G is not connected

	Spanning Tree
	• A spanning tree of G is a subgraph which
	- is a tree
	- contains all vertices of G

	• Failure on any edge disconnects system (least fault tolerant)

	AT&T vs. RT&T
	(Roberto Tamassia & Telephone)
	• Roberto wants to call the TA’s to suggest an extension for the next program...
	• One fault will disconnect part of graph!!
	• A cycle would be more fault tolerant and only requires n edges

	Euler and the Bridges of Koenigsberg
	Can one walk across each bridge �exactly once and return at the �starting point?
	• Consider if you were a UPS driver, and you didn’t want to retrace your steps.
	• In 1736, Euler proved that this is not possible

	Graph Model (with parallel edges)
	• Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
	• Euler’s Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree
	• Do you find such ideas interesting?
	• Would you enjoy spending a whole semester doing such proofs?
	Well, look into CS22! if you dare...

	The Graph ADT
	• The Graph ADT is a positional container whose positions are the vertices and the edges of the g...
	- size() Return the number of vertices plus the number of edges of G.
	- isEmpty()
	- elements()
	- positions()
	- swap()
	- replaceElement()

	Notation: Graph G; Vertices v, w; Edge e; Object o
	- numVertices() Return the number of vertices of G.
	- numEdges() Return the number of edges of G.
	- vertices() Return an enumeration of the vertices of G.
	- edges() Return an enumeration of the edges of G.

	The Graph ADT (contd.)
	- directedEdges() Return an enumeration of all directed edges in G.
	- undirectedEdges() Return an enumeration of all undirected edges in G.
	- incidentEdges(v) Return an enumeration of all edges incident on v.
	- inIncidentEdges(v) Return an enumeration of all the incoming edges to v.
	- outIncidentEdges(v) Return an enumeration of all the outgoing edges from v.
	- opposite(v, e) Return an endpoint of e distinct from v
	- degree(v) Return the degree of v.
	- inDegree(v) Return the in-degree of v.
	- outDegree(v) Return the out-degree of v.

	More Methods ...
	- adjacentVertices(v) Return an enumeration of the vertices adjacent to v.
	- inAdjacentVertices(v) Return an enumeration of the vertices adjacent to v along incoming edges.
	- outAdjacentVertices(v) Return an enumeration of the vertices adjacent to v along outgoing edges.
	- areAdjacent(v,w) Return whether vertices v and w are adjacent.
	- endVertices(e) Return an array of size 2 storing the end vertices of e.
	- origin(e) Return the end vertex from which e leaves.
	- destination(e) Return the end vertex at which e arrives.
	- isDirected(e) Return true iff e is directed.

	Update Methods
	- makeUndirected(e) Set e to be an undirected edge.
	- reverseDirection(e) Switch the origin and destination vertices of e.
	- setDirectionFrom(e, v) Sets the direction of e away from v, one of its end vertices.
	- setDirectionTo(e, v) Sets the direction of e toward v, one of its end vertices.
	- insertEdge(v, w, o) Insert and return an undirected edge between v and w, storing o at this pos...
	- insertDirectedEdge(v, w, o) Insert and return a directed edge between v and w, storing o at thi...
	- insertVertex(o) Insert and return a new (isolated) vertex storing o at this position.
	- removeEdge(e) Remove edge e.

	Data Structures for Graphs
	• A Graph! How can we represent it?
	• To start with, we store the vertices and the edges into two containers, and each edge object ha...
	• Additional structures can be used to perform efficiently the methods of the Graph ADT

	Edge List
	• The edge list structure simply stores the vertices and the edges into unsorted sequences.
	• Easy to implement.
	• Finding the edges incident on a given vertex is inefficient since it requires examining the ent...

	Performance of the Edge List Structure
	Adjacency List (modern)
	• The adjacency list structure extends the edge list structure by adding incidence containers to ...
	• The space requirement is O(n + m).

	Performance of the Adjacency List Structure
	Adjacency Matrix (modern)
	• The adjacency matrix structures augments the edge list structure with a matrix where each row a...
	BOS DFW JFK LAX MIA ORD SFO
	0 1 2 3 4 5 6
	• The space requirement is O(n2 + m)

	Performance of the Adjacency Matrix Structure
	• Since adjacent �vertices each count the adjoining edge, it will be counted twice

	Adjacency List (traditional)
	• adjacency list of a vertex v: sequence of vertices adjacent to v
	• represent the graph by the adjacency lists of all the vertices
	• Space = Q(N + Sdeg(v)) = Q(N + M)

	Adjacency Matrix (traditional)
	• matrix M with entries for all pairs of vertices
	• M[i,j] = true means that there is an edge (i,j) in the graph.
	• M[i,j] = false means that there is no edge (i,j) in the graph.
	• There is an entry for every possible edge, therefore: Space = Q(N2)

