
1Maximum Flow

MAXIMUM FLOW

• How to do it...

• Why you want it...

• Where you find it...

• Ford-Fulkerson

• Edmonds-Karp

• Minimum Cut

The Tao of Flow:
“Let your body go with the flow.”

-Madonna,Vogue

“Go with the flow, Joe.”
-Paul Simon,50 ways to leave your lover

“Use the flow, Luke!”
-Obi-wan Kenobi,Star Wars

“Learn flow, or flunk the course”
-CS16 Despot, as played by Roberto Tamassia
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Flow Networks
• Flow Network:

- digraph
- weights, calledcapacities on edges
- two distinguishes vertices, namely

- Source, “s”:
Vertex with no incoming edges.

- Sink, “t”:
Vertex with no outgoing edges.
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Capacity and Flow
• Edge Capacities:

Nonnegative weights on network edges

• Flow:
- Function on network edges:

0 ≤ flow ≤ capacity
flow into vertex =flow out of vertex
value: combinedflow into the sink
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The Logic of Flow
• Flow:

flow(u,v) ∀ edge(u,v)
-Capacity rule: ∀ edge (u,v)

0 ≤ flow(u,v) ≤ capacity(u,v)

-Conservation rule: ∀ vertex v≠ s, t

Σ flow(u,v) = Σ flow(v,w)
u∈in(v)  w∈out(v)

-Value of flow:

|f| =Σ flow(s,w) =Σ flow(u,t)
w∈out(s) u∈in(t)

• Note:
- ∀ means “for all”
- in(v) is the set of vertices u such that there is and

edge from u to v
- out(v) is the set of vertices w such that there is an

edge from v to w
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Maximum Flow Problem
• “Given a network N, find a flow f of maximum

value.”

• Applications:
- Traffic movement
- Hydraulic systems
- Electrical circuits
- Layout

Example of Maximum Flow
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Augmenting Flow

• Voila!  We have increased the flow value to 4!
But wait!  What’s an augmenting path?!?
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Augmenting Path
• Forward Edges

flow(u,v) <capacity(u,v)
flow can be increased!

• Backward Edges
flow(u,v) > 0
flow can be decreased!
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Maximum Flow Theorem

A flow has maximum value
if and only if

it has no augmenting path.

Proof:

Flow is maximum ⇒  No augmenting path

(Theonly-if part is easy to prove.)

No augmenting path ⇒  Flow is maximum

(Proving theif  part is more difficult.)
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Ford & Fulkerson Algorithm

initialize network with null flow;
Method FindFlow

if augmenting paths exist then
find augmenting path;
increase flow;
recursive call to FindFlow;

• And now, for some algorithmic animation...
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Finding the Maximum Flow
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Finding the Maximum Flow
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Residual Network
• Residual Network Nf = (V, Ef, cf, s, t)

• In theresidual network Nf, all edges (w,z) with
capacity cf(w,z) = 0 are removed.
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The Ford-Fulkerson
Maximum Flow Algorithm

Algorithm : MaxFlow(N)
Input: network N
Output: network Nf with maximum flow

Part I: Setup
Start with null flow:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialize residual network:

Nf ← N;

Part II: Loop
repeat

search for directed path p in Nf from s to t
if (path p found)

Df ← min {cf(u,v), f(u,v)∈ p};
for (each (u,v)∈ p) do

if (forward (u,v))
f(u,v) ← f(u,v) + Df;

if (backward (u,v))
f(u,v) ← f(u,v) - Df;

update Nf;
until (no augmenting path);
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Maximum Flow: Time
Complexity

• And now, the moment you’ve all been waiting
for...the time complexity of Ford & Fulkerson’s
Maximum Flow algorithm.  Drum roll, please!
[Pause for dramatic drum roll music]

O( F (n + m) )

where F is the maximum flow value,    n is the
number of vertices, and m is the number of edges

• The problem with this algorithm, however, is that it
is strongly dependent on themaximum flow value F.
For example, if F=2n the algorithm may take
exponential time.

• Then, along came Edmonds & Karp...
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Edmonds-Karp
• Variation on Ford & Fulkerson’s algorithm

• Uses BFS to choose augmenting paths

• Find a Shortest Path froms to t. Push as much flow
along it as possible.

• Repeat.

• All done.
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Pseudocode

Algorithm : Edmonds-Karp MaxFlow(N)
Input: network N
Output: network Nf with maximum flow

Part I: Setup
Start with null flow:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialize residual network:

Nf ← N;

Part II: Loop
repeat

p ← BFS-Shortest-Path(s,t,Nf)
if (path p found)

ef ← (u0,v0) , cf(u0,v0) = min{cf(u,v), (u,v)∈ p}
Df ← cf(ef)

for (each (u,v)∈ p)
f(u,v) ← f(u,v) + Df
cf(u,v) ← cf(u,v) - Df

Nf.remove(ef)
until (no augmenting path)
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Maximum Flow: Improvement
• Theorem: [Edmonds & Karp, 1972]

By using BFS, Breadth First Search, a maximum
flow can be computed in time...

O((n + m) n m) = O(n5)

• n is the number of vertices,
andm is the number of edges

• Note:
- Edmonds & Karp algorithm runs in time O(n5)

regardless of the maximum flow value.
- The worst case usually does not happen in

practice.
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CUTS
• What is acut ?

a)a skin-piercing laceration

b)sharp lateral movement

c)opposite of paste

d)getting dropped from the team

e)frontsies on the lunch line

f)common CS16 attendance phenomenon

g)line of muscular definition

h)ComputerUndergraduateTorture (e.g., CS16,
Roberto Tamassia, dbx, etc.)

i)a partition of the vertices X=(Vs,Vt), with s∈ Vs
 and t∈ Vt

• The answer is:

j)all of the above...but for the educational purposes,
we’ll use choice i)
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What Is A Cut?

• Capacity of a cutX = (Vs,Vt):
- c(X) = Σ capacity(v,w) = (1+2+1+3) = 7

• Thecut partition (X in this case) must pass through
the entire network, and can not pass through a
vertex.
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Maximum Flow vs.
Minimum Cut

(value of maximum flow)

=

(capacity of minimum cut)

• Value of maximum flow: 7 flow units

• Capacity of minimum cut: 7 flow units
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Pseudocode

Algorithm : Edmonds-Karp based MinCut(N)
Input: network N
Output: Sequence s of edges in N’s MinCut

Part I: Setup from Edmonds-Karp (slide 17)

Part II: Loop
repeat

set all vertices in Nf to unmarked
p ← Marking-BFS(s,t,Nf)
// a modification of BFS that marks every
 // vertex as it is encountered
if (path p found)

push as much flow along it as possible
until (no augmenting path)

Part III: Calculating Min Cut-Sequence
s ← new Sequence()
foreachvertex u∈ Marked Vertices

foreachvertex v∈ Unmarked Vertices
if  (N has an edgee from u to v)

s.add(e)
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Why is that a Minimum Cut?
• Let f be a flow of value |f| andX a cut ofcapacity

|X|.  Then,  |f|<=|X|.

• Hence, if we find a flowf* of value |f* | and a cutX*
of capacity |X*|=|f* |, then f* must be the maximum
flow andX*  must be the minimum cut.

• We have seen that from the flow obtained by the
Ford and Fulkerson algorithm we can construct a cut
with capacity equal to the flow value. Therefore,
- we have given an alternative proof that the Ford

and Fulkerson algorithm yields a maximum flow
- we have shown how to construct a minimum cut
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