
1Graph Traversals

GRAPH TRAVERSALS

• Depth-First Search

• Breadth-First Search

• Template Method Pattern

M N O P

I J K L

E F G H

A B C D

2Graph Traversals

Exploring a Labyrinth Without
Getting Lost

• A depth-first search (DFS) in an undirected graph
G is like wandering in a labyrinth with a string and a
can of red paint without getting lost.

• We start at vertexs, tying the end of our string to the
point and paintings “visited”. Next we labelsas our
current vertex calledu.

• Now we travel along an arbitrary edge(u,v).

• If edge(u,v) leads us to an already visited vertexv
we return tou.

• If vertexv is unvisited, we unroll our string and
move tov, paintv “visited”, setv as our current
vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident
edges onu lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertexv. Thenv becomes our current vertex
and we repeat the previous steps.

3Graph Traversals

Exploring a Labyrinth Without
Getting Lost (cont.)

• Then, if we all incident edges onv lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

• When we backtrack to vertexs and there are no
more unexplored edges incident ons, we have
finished ourDFS search.

4Graph Traversals

Depth-First Search

Algorithm DFS(v);
Input : A vertexv in a graph
Output : A labeling of the edges as “discovery” edges

and “backedges”
for each edgee incident onv do

if edgee is unexploredthen
let w be the other endpoint ofe
if vertexw is unexploredthen

labele as a discovery edge
recursively callDFS(w)

else

labele as a backedge

B C

D E

F

G

unvisited vertex

A

traversed edge

F

current Vertex

adjacent Vertex

visited vertex

5Graph Traversals

Determining Incident Edges
• DFS depends on how you obtain the incident edges.

• If we start at A and we examine the edge to F, then
to B, then E, C, and finally G

The resulting graph is:
discoveryEdge
backEdge
return from
dead end

If we instead examine the tree starting at A and
looking at F, the C, then E, B, and finally F,

the resulting set of backEdges, discoveryEdges and
recursion points is different.

• Now an example of a DFS.

A F B E C G

A G C E B F

A

F

ED

B
C

G

6Graph Traversals

B C

D E

G

A

F

A

C

B

D

F

G

Step 1:

B C

D E

G

A

F

A

Step 2:

F B E C G

A

A

F E

E D A

A E

F B E C G

B A

C A

D F E

F E D A

G A E

E G D FA

E G D FA

7Graph Traversals

B C

D

G

A

F

A

Step 3:

F B E C G

B A

C A

D F E

E G D F

F E D A

G A E

E

B C

D

A

F

A

Step 4:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

A

E G D FA

Back Edge

8Graph Traversals

B C

D

A

F

A

Step 5:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

D

A

F

A

Step 6:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

9Graph Traversals

B C

D

A

F

A

Step 7:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

A

F

A

Step 8:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

10Graph Traversals

B C

A

F

A

Step 10:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Step 9:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

11Graph Traversals

B C

A

F

A

Step 11:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Step 12:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

12Graph Traversals

B
C

A

F

A

Step 13:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

C

A

F

A

Step 14:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

13Graph Traversals

C

A

F

A

Step 15:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

C

A

F

A

Step 16:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

14Graph Traversals

A

F

A

Step 17:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

A

F

A

Step 18:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

15Graph Traversals

A

F

A

Step 19:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

And we’re done!

16Graph Traversals

DFS Properties
• Proposition 9.12 : LetG be an undirected graph on

which aDFStraversal starting at a vertexshas been
preformed. Then:

1) The traversal visits all vertices in the
 connected component ofs

2) The discovery edges form a spanning tree of
 the connected component ofs

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertexv not visited and letw be the
first unvisited vertex on some path froms to v.

- Becausew was the first unvisited vertex on the
path, there is a neighboru that has been visited.

- But when we visitedu we must have looked at
edge(u, w). Thereforew must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree becauseDFS visits each
vertex in the connected component ofs

17Graph Traversals

Running Time Analysis
• Remember:

- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from

each of its vertices

• For ns vertices andms edges in the connected
component of the vertexs, aDFSstarting atsruns in
O(ns +ms) time if:
- The graph is represented in a data structure, like

the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.

18Graph Traversals

Marking Vertices
• Let’s look at ways to mark vertices in a way that

satisfies the above condition.

• Extend vertex positions to store a variable for
marking

• Use a hash table mechanism which satisfies the
above condition is the probabilistic sense, because is
supports the mark and test operations in O(1)
expected time

Before
Position

Element

After
Position

Element isMarked

19Graph Traversals

The Template Method Pattern
• the template method pattern provides ageneric

computation mechanism that can be specialized by
redefining certain steps

• to apply this pattern, we design a class that
- implements theskeleton of an algorithm
- invokes auxiliary methods that can be redefined by

its subclasses to perform useful computations

• Benefits
- makes the correctness of the specialized

computations rely on that of the skeleton
algorithm

- demonstrates the power of class inheritance
- provides code reuse
- encourages the development of generic code

• Examples
- generic traversal of a binary tree(which includes

preorder, inorder, and postorder) and its
applications

- generic depth-first search of an undirected graph
and its applications

20Graph Traversals

Generic Depth First Search
public abstract class DFS {
protected Object dfsVisit(Vertex v) {

protected InspectableGraph graph;
protected Object visitResult;
initResult();
startVisit(v);

 mark(v);
for (Enumeration inEdges = graph.incidentEdges(v);
 inEdges.hasMoreElements();) {

 Edge nextEdge = (Edge) inEdges.nextElement();
if (!isMarked(nextEdge)) { // found an unexplored edge

 mark(nextEdge);
 Vertex w = graph.opposite(v, nextEdge);

if (!isMarked(w)) { // discovery edge
 mark(nextEdge);

traverseDiscovery(nextEdge, v);
if (!isDone())

visitResult = dfsVisit(w); }
else // back edge
traverseBack(nextEdge, v);

 }
 }

finishVisit(v);
return result();

 }

21Graph Traversals

Auxiliary Methods of the
Generic DFS

public Object execute(InspectableGraph g, Vertex start,
 Object info) {

 graph = g;

return null;

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

protected void traverseDiscovery(Edge e, Vertex from) {}

protected void traverseBack(Edge e, Vertex from) {}

protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }

22Graph Traversals

Now let’s look at 4 way to
specialize the generic DFS!

• classFindPath specializesDFS to return a path from
vertexstart to vertextarget.
public classFindPathDFSextendsDFS {

protected Sequence path;
protected boolean done;
protected Vertex target;
public Object execute(InspectableGraph g, Vertex start,

 Object info) {
 super.execute(g, start, info);

path = new NodeSequence();
 done = false;

target = (Vertex) info;
dfsVisit(start);
return path.elements();

 }
protected void startVisit(Vertex v) {

path.insertFirst(v);
if (v == target) { done = true; }

 }
protected void finishVisit(Vertex v) {

 if (!done) path.remove(path.first());
 }

protected boolean isDone() { return done; }

23Graph Traversals

Other Specializations of the
Generic DFS

• FindAllVertices specializes DFS to return an
enumeration of the vertices in the connecteed
component containing thestart vertex.

public class FindAllVerticesDFS extends DFS {

protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

vertices = new NodeSequence();

dfsVisit(start);

return vertices.elements();

}

public void startVisit(Vertex v) {

vertices.insertLast(v);

}

}

24Graph Traversals

More Specializations of the
Generic DFS

• ConnectivityTest uses a specializedDFS to test if a
graph is connected.

public class ConnectivityTest {
protected static DFS tester = new

FindAllVerticesDFS();
public static boolean isConnected(InspectableGraph g)
{

if (g.numVertices() == 0) return true; //empty is
//connected

Vertex start = (Vertex)g.vertices().nextElement();
Enumeration compVerts =

(Enumeration)tester.execute(g, start, null);
// count how many elements are in the enumeration
int count = 0;
while (compVerts.hasMoreElements()) {

compVerts.nextElement();
count++;

}
if (count == g.numVertices()) return true;
return false;

}

25Graph Traversals

Another Specialization of the
Generic DFS

• FindCycle specializesDFS to determine if the
connected component of thestart vertex contains a
cycle, and if so return it.

public class FindCycleDFS extends DFS {

protected Sequence path;

protected boolean done;

protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

path = new NodeSequence();

done = false;

dfsVisit(start);

//copy the vertices up to cycleStart from the path to
//the cycle sequence.

Sequence theCycle = new NodeSequence();

Enumeration pathVerts = path.elements();

26Graph Traversals

while (pathVerts.hasMoreElements()) {

Vertex v = (Vertex)pathVerts.nextElement();

theCycle.insertFirst(v);

if (v == cycleStart) {

break;

}

}

return theCycle.elements();

}

protected void startVisit(Vertex v) {path.insertFirst(v);}

protected void finishVisit(Vertex v) {

if (done) {path.remove(path.first());}

}

//When a back edge is found, the graph has a cycle

protected void traverseBack(Edge e, Vertex from) {

Enumeration pathVerts = path.elements();

cycleStart = graph.opposite(from, e);

done = true;

}

protected boolean isDone() {return done;}

}

27Graph Traversals

Breadth-First Search
• Like DFS, aBreadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
defines a spanning tree with several useful properties

- The starting vertexs has level 0, and, as inDFS,
defines that point as an “anchor.”

- In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

- These edges are placed into level 1
- In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

- This continues until every vertex has been
assigned a level.

- The label of any vertexv corresponds to the length
of the shortest path froms to v.

28Graph Traversals

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

29Graph Traversals

More BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

30Graph Traversals

BFS Pseudo-Code

Algorithm BFS(s):
Input : A vertexs in a graph
Output : A labeling of the edges as “discovery” edges

and “cross edges”
initialize container L0 to contain vertexs
i ← 0
while Li is not emptydo

create container Li+1 to initially be empty
for each vertexv in Li do

if edgee incident onv do
let w be the other endpoint ofe
if vertexw is unexploredthen

label eas a discovery edge
insertw into Li+1

else
labele as a cross edge

i ← i + 1

31Graph Traversals

Properties of BFS
• Proposition: Let G be an undirected graph on which

a aBFS traversal starting at vertexs has been
performed. Then
- The traversal visits all vertices in the connected

component ofs.
- The discovery-edges form a spanning treeT,

which we call theBFS tree, of the connected
component ofs

- For each vertexv at leveli, the path of theBFStree
T betweens andv hasi edges, and any other path
of G betweens andv has at leasti edges.

- If (u, v) is an edge that is not in theBFS tree, then
the level numbers ofu andv differ by at most one.

• Proposition: Let G be a graph withn vertices andm
edges. ABFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
- Testing whetherG is connected.
- Computing a spanning tree ofG
- Computing the connected components ofG
- Computing, for every vertexv of G, the minimum

number of edges of any path betweens andv.

	Graph Traversals
	• Depth-First Search
	• Breadth-First Search
	• Template Method Pattern
	Exploring a Labyrinth Without Getting Lost
	• A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a str...
	• We start at vertex s, tying the end of our string to the point and painting s “visited”. Next w...
	• Now we travel along an arbitrary edge (u,v).
	• If edge (u,v) leads us to an already visited vertex v we return to u.
	• If vertex v is unvisited, we unroll our string and move to v, paint v “visited”, set v as our c...
	• Eventually, we will get to a point where all incident edges on u lead to visited vertices. We t...

	Exploring a Labyrinth Without Getting Lost (cont.)
	• Then, if we all incident edges on v lead to visited vertices, we backtrack as we did before. We...
	• When we backtrack to vertex s and there are no more unexplored edges incident on s, we have fin...

	Depth-First Search
	Algorithm DFS(v);
	Input: A vertex v in a graph
	Output: A labeling of the edges as “discovery” edges and “backedges”
	for each edge e incident on v do
	if edge e is unexplored then
	let w be the other endpoint of e
	if vertex w is unexplored then
	label e as a discovery edge
	recursively call DFS(w)
	else
	label e as a backedge

	Determining Incident Edges
	• DFS depends on how you obtain the incident edges.
	• If we start at A and we examine the edge to F, then to B, then E, C, and finally G The resultin...
	• Now an example of a DFS.

	DFS Properties
	• Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s...
	• Justification of 1):
	- Let’s use a contradiction argument: suppose there is at least on vertex v not visited and let w...
	- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
	- But when we visited u we must have looked at edge(u, w). Therefore w must have been visited.
	- and justification

	• Justification of 2):
	- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery...
	- This is a spanning tree because DFS visits each vertex in the connected component of s

	Running Time Analysis
	• Remember:
	- DFS is called on each vertex exactly once.
	- Every edge is examined exactly twice, once from each of its vertices

	• For ns vertices and ms edges in the connected component of the vertex s, a DFS starting at s ru...
	- The graph is represented in a data structure, like the adjacency list, where vertex and edge me...
	- Marking a vertex as explored and testing to see if a vertex has been explored takes O(degree)
	- By marking visited nodes, we can systematically consider the edges incident on the current vert...

	Marking Vertices
	• Let’s look at ways to mark vertices in a way that satisfies the above condition.
	• Extend vertex positions to store a variable for marking
	• Use a hash table mechanism which satisfies the above condition is the probabilistic sense, beca...

	The Template Method Pattern
	• the template method pattern provides a generic computation mechanism that can be specialized by...
	• to apply this pattern, we design a class that
	- implements the skeleton of an algorithm
	- invokes auxiliary methods that can be redefined by its subclasses to perform useful computations

	• Benefits
	- makes the correctness of the specialized computations rely on that of the skeleton algorithm
	- demonstrates the power of class inheritance
	- provides code reuse
	- encourages the development of generic code

	• Examples
	- generic traversal of a binary tree (which includes preorder, inorder, and postorder) and its ap...
	- generic depth-first search of an undirected graph and its applications

	Generic Depth First Search
	public abstract class DFS {
	protected Object dfsVisit(Vertex v) {
	protected InspectableGraph graph;
	protected Object visitResult;
	initResult();
	startVisit(v);
	mark(v);
	for (Enumeration inEdges = graph.incidentEdges(v);
	inEdges.hasMoreElements();) {
	Edge nextEdge = (Edge) inEdges.nextElement();
	if (!isMarked(nextEdge)) { // found an unexplored edge
	mark(nextEdge);
	Vertex w = graph.opposite(v, nextEdge);
	if (!isMarked(w)) { // discovery edge
	mark(nextEdge);
	traverseDiscovery(nextEdge, v);
	if (!isDone())
	visitResult = dfsVisit(w); }
	else // back edge
	traverseBack(nextEdge, v);
	}
	}
	finishVisit(v);
	return result();
	}

	Auxiliary Methods of the Generic DFS
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	graph = g;
	return null;
	}
	protected void initResult() {}
	protected void startVisit(Vertex v) {}
	protected void traverseDiscovery(Edge e, Vertex from) {}
	protected void traverseBack(Edge e, Vertex from) {}
	protected boolean isDone() { return false; }
	protected void finishVisit(Vertex v) {}
	protected Object result() { return new Object(); }

	Now let’s look at 4 way to specialize the generic DFS!
	• class FindPath specializes DFS to return a path from vertex start to vertex target. public clas...
	protected Sequence path;
	protected boolean done;
	protected Vertex target;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	path = new NodeSequence();
	done = false;
	target = (Vertex) info;
	dfsVisit(start);
	return path.elements();
	}
	protected void startVisit(Vertex v) {
	path.insertFirst(v);
	if (v == target) { done = true; }
	}
	protected void finishVisit(Vertex v) {
	if (!done) path.remove(path.first());
	}
	protected boolean isDone() { return done; }
	}

	Other Specializations of the Generic DFS
	• FindAllVertices specializes DFS to return an enumeration of the vertices in the connecteed comp...
	public class FindAllVerticesDFS extends DFS {
	protected Sequence vertices;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	vertices = new NodeSequence();
	dfsVisit(start);
	return vertices.elements();
	}
	public void startVisit(Vertex v) {
	vertices.insertLast(v);
	}
	}

	More Specializations of the Generic DFS
	• ConnectivityTest uses a specialized DFS to test if a graph is connected.
	public class ConnectivityTest {
	protected static DFS tester = new FindAllVerticesDFS();
	public static boolean isConnected(InspectableGraph g)
	{
	if (g.numVertices() == 0) return true; //empty is //connected
	Vertex start = (Vertex)g.vertices().nextElement();
	Enumeration compVerts = (Enumeration)tester.execute(g, start, null);
	// count how many elements are in the enumeration
	int count = 0;
	while (compVerts.hasMoreElements()) {
	compVerts.nextElement();
	count++;
	}
	if (count == g.numVertices()) return true;
	return false;
	}
	}

	Another Specialization of the Generic DFS
	• FindCycle specializes DFS to determine if the connected component of the start vertex contains ...
	public class FindCycleDFS extends DFS {
	protected Sequence path;
	protected boolean done;
	protected Vertex cycleStart;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	path = new NodeSequence();
	done = false;
	dfsVisit(start);
	//copy the vertices up to cycleStart from the path to //the cycle sequence.
	Sequence theCycle = new NodeSequence();
	Enumeration pathVerts = path.elements();
	while (pathVerts.hasMoreElements()) {
	Vertex v = (Vertex)pathVerts.nextElement();
	theCycle.insertFirst(v);
	if (v == cycleStart) {
	break;
	}
	}
	return theCycle.elements();
	}
	protected void startVisit(Vertex v) {path.insertFirst(v);}
	protected void finishVisit(Vertex v) {
	if (done) {path.remove(path.first());}
	}
	//When a back edge is found, the graph has a cycle
	protected void traverseBack(Edge e, Vertex from) {
	Enumeration pathVerts = path.elements();
	cycleStart = graph.opposite(from, e);
	done = true;
	}
	protected boolean isDone() {return done;}
	}

	Breadth-First Search
	• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing...
	- The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.”
	- In the first round, the string is unrolled the length of one edge, and all of the edges that ar...
	- These edges are placed into level 1
	- In the second round, all the new edges that can be reached by unrolling the string 2 edges are ...
	- This continues until every vertex has been assigned a level.
	- The label of any vertex v corresponds to the length of the shortest path from s to v.

	BFS - A Graphical Representation
	a) b)
	c) d)

	More BFS
	e) f)

	BFS Pseudo-Code
	Algorithm BFS(s):
	Input: A vertex s in a graph
	Output: A labeling of the edges as “discovery” edges and “cross edges”
	initialize container L0 to contain vertex s
	i ¨ 0
	while Li is not empty do
	create container Li+1 to initially be empty
	for each vertex v in Li do
	if edge e incident on v do
	let w be the other endpoint of e
	if vertex w is unexplored then
	label e as a discovery edge
	insert w into Li+1
	else
	label e as a cross edge
	i ¨ i + 1

	Properties of BFS
	• Proposition: Let G be an undirected graph on which a a BFS traversal starting at vertex s has b...
	- The traversal visits all vertices in the connected component of s.
	- The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected compon...
	- For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any o...
	- If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by a...

	• Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time O(n ...
	- Testing whether G is connected.
	- Computing a spanning tree of G
	- Computing the connected components of G
	- Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

