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Exploring a Labyrinth Without
Getting Lost

* A depth-first search (DFS)in an undirected graph
G is like wandering in a labyrinth with a string and a
can of red paint without getting lost.

« \We start at vertex, tying the end of our string to the
point and painting “visited”. Next we label as our
current vertex called.

 Now we travel along an arbitrary edgev).

e If edge(u,v) leads us to an already visited vertex
we return tau.

o If vertexv is unvisited, we unroll our string and
move tov, paintv “visited”, setv as our current
vertex, and repeat the previous steps.

« Eventually, we will get to a point where all incident
edges om lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertexv. Thenv becomes our current vertex
and we repeat the previous steps.
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Exploring a Labyrinth Without
Getting Lost (cont.)

* Then, if we all incident edges arlead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

 When we backtrack to verteand there are no

more unexplored edges incident®nve have
finished ouDFS search.
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Depth-First Search

Algorithm DFS (Vv);
Input : A vertexv in a graph

Output: A labeling of the edges as “discovery” edge

and “backedges”
for each edge incident onv do
If edgee is unexploredhen
let w be the other endpoint ef
If vertexw is unexploredhen
labele as a discovery edge
recursively calDFS(w)
else

labele as a backedge

o unvisited vertex
visited vertex ——s

traversed edge

\

current Vertex
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Determining Incident Edges

 DFS depends on how you obtain the incident edge

 If we start at A and we examine the edge to F, thel
to B, then E, C, and finally G

Y R Cag O Ong

The resulting graphis:  [AlNEs=-_
— discoveryEdge AMN\Cs T As -
---» backEdge RN G
--- return from Re

dead end

If we instead examine the tree starting at A and
looking at F, the C, then E, B, and finally F,

[A] -+~ O>&>&=O~0

the resulting set of backEdges, discoveryEdges ar
recursion points is different.

 Now an example of a DFS.
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And we’'re done!
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DFS Properties

* Proposition 9.12 : LeG be an undirected graph on
which aDFStraversal starting at a vertehas been
preformed. Then:

1) The traversal visits all vertices in the
connected component sf

2) The discovery edges form a spanning tree |
the connected componentof

e Justification of 1):

- Let’s use a contradiction argument: suppose the
IS at least on vertexnot visited and letv be the
first unvisited vertex on some path fr@to v.

- Becauseav was the first unvisited vertex on the
path, there is a neighbarthat has been visited.

- But when we visitedl we must have looked at
edgdu, w). Thereforen must have been visited.

- and justification

o Justification of 2):

- We only mark edges from when we go to unvisite
vertices. So we never form a cycle of discovery
edges, I.e. discovery edges form a tree.

- This Is a spanning tree becaues visits each
vertex in the connected componensof

Df

¢
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Running Time Analysis

« Remember:
- DFSis called on each vertex exactly once.

- Every edge is examined exactly twice, once from
each of its vertices

» Forng vertices andng edges in the connected
component of the vertexx aDFSstarting asruns in
O(ng +mg) time If:

- The graph is represented in a data structure, like
the adjacency list, where vertex and edge methad
take constant time

- Marking a vertex as explored and testing to see if
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematicall
consider the edges incident on the current vertgx
so we do not examine the same edge more than
once.
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Marking Vertices

 Let’'s look at ways to mark vertices in a way that
satisfies the above condition.

e Extend vertex positions to store a variable for
marking

Before After
Position Position

Y

CEIemenwt isMarke}

e Use a hash table mechanism which satisfies the
above condition is the probabilistic sense, because |
supports the mark and test operations in O(1)
expected time
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The Template Method Pattern

» thetemplate method pattern provides generic
computation mechanisnthat can be specialized by
redefining certain steps

 to apply this pattern, we design a class that
- Implements thakeletonof an algorithm

- Invokes auxiliary methods that can be redefined by
Its subclasses to perform useful computations

e Benefits

- makes the correctness of the specialized
computations rely on that of the skeleton
algorithm

- demonstrates the power of class inheritance
- provides code reuse
- encourages the development of generic code

 Examples

- generic traversal of a binary treéwhich includes
preorder, inorder, and postorder) and its
applications

- generic depth-first search of an undirected graph
and its applications
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Generic Depth First Search

public abstract class DFS {
protected Object dfsVisit(Vertex v) {
protected InspectableGraph graph;
protected Object visitResult;
initResult();
startVisit(v);
mark(v);
for (Enumeration inEdges = graph.incidentEdges(v);
InEdges.hasMoreElements();) {
Edge nextEdge = (Edge) inEdges.nextElement();
if (lisMarked(nextEdge)) { // found an unexplored edge
mark(nextEdge);
Vertex w = graph.opposite(v, nextEdge);
if (lisMarked(w)) { // discovery edge
mark(nextEdge);
traverseDiscovery(nextEdge, v);
if (lisDone())
visitResult = dfsVisit(w); }
else // back edge
traverseBack(nextEdge, Vv);

}
}
finishVisit(v);
return result();

}

Graph Traversals
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Auxiliary Methods of the
Generic DFS

public Object execute(InspectableGraph g, Vertex start,
Obiject info) {

graph = g;
return null:

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

protected void traverseDiscovery(Edge e, Vertex from) {}
protected void traverseBack(Edge e, Vertex from) {}
protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }
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Now let’s look at 4 way to
specialize the generic DFS!

e classFindPath specialize®Fs to return a path from
vertexstart to vertexarget.
public class-indPathDF®&xtendFS{

protected Sequence path;
protected boolean done;
protected Vertex target;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);
path = new NodeSequence();
done = false;
target = (Vertex) info;
dfsVisit(start);
return path.elements();
}
protected void startVisit(Vertex v) {
path.insertFirst(v);
if (v == target) { done = true; }
}
protected void finishVisit(Vertex v) {
if ('done) path.remove(path.first());
}

protected boolean isDone() { return done; }
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Other Specializations of the
Generic DFS

* FindAllVertices specialize®Fs to return an
enumeration of the vertices in the connecteed
component containing theart vertex.

public class FindAllVerticesDFS extends DFS {
protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Obiject info) {

super.execute(g, start, info);
vertices = new NodeSequence();
dfsVisit(start);

return vertices.elements();

public void startVisit(Vertex v) {
vertices.insertLast(v);

}
}
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More Specializations of the
Generic DFS

o ConnectivityTest uses a specializenFs to test if a
graph is connected.

public class ConnectivityTest {

protected static DFS tester = new
FindAllVerticesDFS();

public static boolean isConnected(InspectableGraph g)

{

If (g.numVertices() == 0) return true; //empty is
//connected

Vertex start = (Vertex)g.vertices().nextElement();

Enumeration compVerts =
(Enumeration)tester.execute(g, start, null);

/[ count how many elements are in the enumeration

Int count = 0;

while (compVerts.hasMoreElements()) {
compVerts.nextElement();
count++;

}

if (count == g.numVertices()) return true;

return false;

Graph Traversals 24




Another Specialization of the
Generic DFS

e FindCycle specialize®Fs to determine if the
connected component of thgartvertex contains a
cycle and if so return it.

public class FindCycleDFS extends DFS {
protected Sequence path;
protected boolean done;
protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Obiject info) {

super.execute(g, start, info);
path = new NodeSequence();
done = false;

dfsVisit(start);

//copy the vertices up to cycleStart from the path to
//the cycle sequence.

Sequence theCycle = new NodeSequence();
Enumeration pathVerts = path.elements();
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while (pathVerts.hasMoreElements()) {
Vertex v = (Vertex)pathVerts.nextElement();
theCycle.insertFirst(v);
If (v ==cycleStart) {
break;
}
}
return theCycle.elements();
}
protected void startVisit(\Vertex v) {path.insertFirst(v);}
protected void finishVisit(Vertex v) {
if (done) {path.remove(path.first());}
}
//When a back edge is found, the graph has a cycle
protected void traverseBack(Edge e, Vertex from) {
Enumeration pathVerts = path.elements();
cycleStart = graph.opposite(from, e);
done = true;

}

protected boolean isDone() {return done;}

Graph Traversals
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Breadth-First Search

e Like DFS, aBreadth-First Searc{iBFS) traverses a
connected component of a graph, and in doing sc
defines a spanning tree with several useful propertie

A4

- The starting vertex has level 0, and, as FS,
defines that point as an “anchor.”

- In the first round, the string is unrolled the length
of one edge, and all of the edges that are only on
edge away from the anchor are visited.

- These edges are placed into level 1

- In the second round, all the new edges that can|b
reached by unrolling the string 2 edges are visite
and placed in level 2.

- This continues until every vertex has been
assigned a level.

- The label of any vertex corresponds to the length
of the shortest path frosito v.
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BFS - A Graphical
Representation

b)

0 1
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More BFS

f)
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BFS Pseudo-Code

Algorithm BFY(s):
Input : A vertexsin a graph

Output: A labeling of the edges as “discovery” edge

and “cross edges”
Initialize container g to contain vertes
| « O
while L; is not emptydo
create container;l4 to initially be empty
for each vertex in L; do
If edgee incident onv do
let w be the other endpoint ef
If vertexw is unexploredhen
labele as a discovery edge
Insertw into L,
else
labele as a cross edge
| 1 +1
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Properties of BFS

e PropositionLet G be an undirected graph on whicl
a aBFStraversal starting at vertehas been
performed. Then

- The traversal visits all vertices in the connected
component os.

- The discovery-edges form a spanning ffee
which we call théBFStree, of the connected
component of

- For each vertex at leveli, the path of thé&FStree
T betweers andv hasi edges, and any other path
of G betweers andv has at leastedges.

- If (u, v) Is an edge that is not in tBé-Stree, then
the level numbers af andv differ by at most one.

* Proposition Let G be a graph witim vertices anan
edges. ABFStraversal ofs takes time Qf + m).
Also, there exist O{ + m) time algorithms based on
BFS for the following problems:

- Testing whethe6 is connected.
- Computing a spanning tree Gf
- Computing the connected component§of

- Computing, for every vertexof G, the minimum
number of edges of any path betwasemdv.
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	label e as a discovery edge
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	else
	label e as a backedge
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	- Let’s use a contradiction argument: suppose there is at least on vertex v not visited and let w...
	- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
	- But when we visited u we must have looked at edge(u, w). Therefore w must have been visited.
	- and justification

	• Justification of 2):
	- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery...
	- This is a spanning tree because DFS visits each vertex in the connected component of s


	Running Time Analysis
	• Remember:
	- DFS is called on each vertex exactly once.
	- Every edge is examined exactly twice, once from each of its vertices

	• For ns vertices and ms edges in the connected component of the vertex s, a DFS starting at s ru...
	- The graph is represented in a data structure, like the adjacency list, where vertex and edge me...
	- Marking a vertex as explored and testing to see if a vertex has been explored takes O(degree)
	- By marking visited nodes, we can systematically consider the edges incident on the current vert...


	Marking Vertices
	• Let’s look at ways to mark vertices in a way that satisfies the above condition.
	• Extend vertex positions to store a variable for marking
	• Use a hash table mechanism which satisfies the above condition is the probabilistic sense, beca...

	The Template Method Pattern
	• the template method pattern provides a generic computation mechanism that can be specialized by...
	• to apply this pattern, we design a class that
	- implements the skeleton of an algorithm
	- invokes auxiliary methods that can be redefined by its subclasses to perform useful computations

	• Benefits
	- makes the correctness of the specialized computations rely on that of the skeleton algorithm
	- demonstrates the power of class inheritance
	- provides code reuse
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	• Examples
	- generic traversal of a binary tree (which includes preorder, inorder, and postorder) and its ap...
	- generic depth-first search of an undirected graph and its applications


	Generic Depth First Search
	public abstract class DFS {
	protected Object dfsVisit(Vertex v) {
	protected InspectableGraph graph;
	protected Object visitResult;
	initResult();
	startVisit(v);
	mark(v);
	for (Enumeration inEdges = graph.incidentEdges(v);
	inEdges.hasMoreElements();) {
	Edge nextEdge = (Edge) inEdges.nextElement();
	if (!isMarked(nextEdge)) { // found an unexplored edge
	mark(nextEdge);
	Vertex w = graph.opposite(v, nextEdge);
	if (!isMarked(w)) { // discovery edge
	mark(nextEdge);
	traverseDiscovery(nextEdge, v);
	if (!isDone())
	visitResult = dfsVisit(w); }
	else // back edge
	traverseBack(nextEdge, v);
	}
	}
	finishVisit(v);
	return result();
	}

	Auxiliary Methods of the Generic DFS
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	graph = g;
	return null;
	}
	protected void initResult() {}
	protected void startVisit(Vertex v) {}
	protected void traverseDiscovery(Edge e, Vertex from) {}
	protected void traverseBack(Edge e, Vertex from) {}
	protected boolean isDone() { return false; }
	protected void finishVisit(Vertex v) {}
	protected Object result() { return new Object(); }

	Now let’s look at 4 way to specialize the generic DFS!
	• class FindPath specializes DFS to return a path from vertex start to vertex target. public clas...
	protected Sequence path;
	protected boolean done;
	protected Vertex target;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	path = new NodeSequence();
	done = false;
	target = (Vertex) info;
	dfsVisit(start);
	return path.elements();
	}
	protected void startVisit(Vertex v) {
	path.insertFirst(v);
	if (v == target) { done = true; }
	}
	protected void finishVisit(Vertex v) {
	if (!done) path.remove(path.first());
	}
	protected boolean isDone() { return done; }
	}


	Other Specializations of the Generic DFS
	• FindAllVertices specializes DFS to return an enumeration of the vertices in the connecteed comp...
	public class FindAllVerticesDFS extends DFS {
	protected Sequence vertices;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	vertices = new NodeSequence();
	dfsVisit(start);
	return vertices.elements();
	}
	public void startVisit(Vertex v) {
	vertices.insertLast(v);
	}
	}


	More Specializations of the Generic DFS
	• ConnectivityTest uses a specialized DFS to test if a graph is connected.
	public class ConnectivityTest {
	protected static DFS tester = new FindAllVerticesDFS();
	public static boolean isConnected(InspectableGraph g)
	{
	if (g.numVertices() == 0) return true; //empty is //connected
	Vertex start = (Vertex)g.vertices().nextElement();
	Enumeration compVerts = (Enumeration)tester.execute(g, start, null);
	// count how many elements are in the enumeration
	int count = 0;
	while (compVerts.hasMoreElements()) {
	compVerts.nextElement();
	count++;
	}
	if (count == g.numVertices()) return true;
	return false;
	}
	}


	Another Specialization of the Generic DFS
	• FindCycle specializes DFS to determine if the connected component of the start vertex contains ...
	public class FindCycleDFS extends DFS {
	protected Sequence path;
	protected boolean done;
	protected Vertex cycleStart;
	public Object execute(InspectableGraph g, Vertex start, Object info) {
	super.execute(g, start, info);
	path = new NodeSequence();
	done = false;
	dfsVisit(start);
	//copy the vertices up to cycleStart from the path to //the cycle sequence.
	Sequence theCycle = new NodeSequence();
	Enumeration pathVerts = path.elements();
	while (pathVerts.hasMoreElements()) {
	Vertex v = (Vertex)pathVerts.nextElement();
	theCycle.insertFirst(v);
	if ( v == cycleStart) {
	break;
	}
	}
	return theCycle.elements();
	}
	protected void startVisit(Vertex v) {path.insertFirst(v);}
	protected void finishVisit(Vertex v) {
	if (done) {path.remove(path.first());}
	}
	//When a back edge is found, the graph has a cycle
	protected void traverseBack(Edge e, Vertex from) {
	Enumeration pathVerts = path.elements();
	cycleStart = graph.opposite(from, e);
	done = true;
	}
	protected boolean isDone() {return done;}
	}


	Breadth-First Search
	• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing...
	- The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.”
	- In the first round, the string is unrolled the length of one edge, and all of the edges that ar...
	- These edges are placed into level 1
	- In the second round, all the new edges that can be reached by unrolling the string 2 edges are ...
	- This continues until every vertex has been assigned a level.
	- The label of any vertex v corresponds to the length of the shortest path from s to v.


	BFS - A Graphical Representation
	a) b)
	c) d)

	More BFS
	e) f)

	BFS Pseudo-Code
	Algorithm BFS(s):
	Input: A vertex s in a graph
	Output: A labeling of the edges as “discovery” edges and “cross edges”
	initialize container L0 to contain vertex s
	i ¨ 0
	while Li is not empty do
	create container Li+1 to initially be empty
	for each vertex v in Li do
	if edge e incident on v do
	let w be the other endpoint of e
	if vertex w is unexplored then
	label e as a discovery edge
	insert w into Li+1
	else
	label e as a cross edge
	i ¨ i + 1

	Properties of BFS
	• Proposition: Let G be an undirected graph on which a a BFS traversal starting at vertex s has b...
	- The traversal visits all vertices in the connected component of s.
	- The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected compon...
	- For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any o...
	- If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by a...

	• Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time O(n ...
	- Testing whether G is connected.
	- Computing a spanning tree of G
	- Computing the connected components of G
	- Computing, for every vertex v of G, the minimum number of edges of any path between s and v.




