CS 16: Connectivity

Connectivity and
Biconnectivity

e connected components

e cutvertices

e biconnected components
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CS 16: Connectivity

Connected Components

Connected Graph: any two
vertices conneth)ed % a path
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Connected Component:
maximal connected subgraph of
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CS 16: Connectivity

Equivalence Relations

A relation on a set S is a set R of ordered pairs

of elements of S defined by some property

Example:
e S={1,2,3,4}

« R={(i,)) 1 Sx Ssuchthati<|}
={(1,2),(1,3).(1,4),(2,3),(2,4),{3,4)}

An equivalence relations a relation with the
following properties:

e (X,X)UR,Ox0S leflexive
e (x,y)UR O (yX)UR (symmetrig
e (X,¥),(y,z) UR O (x,z)UR (transitive

The relationC on the set of vertices of a graph:

e (uyv) < U andv are in the same
connected component

IS an equivalence relation.
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CS 16: Connectivity

DFS on a Disconnected Graph

 DFS() visits all the vertices and edges in thi
connected component of
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* To compute the connected components:

k =0 // component counter
foreach (vertexv)
If unvisited(v)
// add to component k
// the vertices reached by v
DFS(v, k++)

—
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CS 16: Connectivity

Cutvertices

Cutvertex (separation vertex):
Its removal disconnects the graph

If the Chicagaairport is closed, then there is no
way to get from Providence to cities on the west
coast.

Similarly for Denver

e Cutvertices:ORD. DEN
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CS 16: Connectivity

Biconnectivity

Biconnected graph: has no cutvertices
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New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.
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CS 16: Connectivity

Properties of Biconnected
Graphs

* There ardwo disjoint pathsbetween any

two vertices.
* There is ayclethrough any two vertices.

By convention, two nodes connected by an edgs
form a biconnected graph, but this does not verify

the above properties.
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CS 16: Connectivity

Biconnected Components

e Biconnected component (block):
maximal biconnected subgraph

* Biconnected components are edge-disjoin
but sharecutvertices

[ g ol
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CS 16: Connectivity

Characterization of the
Biconnected Components

e Equivalence relationR on theedgesf G:
(e', e R if there is a cycle containing both
e'and e"

* Proof of thetransitive property

« \We partition the edges of G ineguivalence
classeswith respect to R.

« Each equivalence class corresponds to

» a biconnected components of G

e a connected components of a graph H
whose vertices are tleelgesof G and
whose edges are tipairs in relation R.

cec
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CS 16: Connectivity

DFS and Biconnected
Components

 Graph H has @(12) edges in the worst case.

 Instead of computing the entire graph H, we
use a smalleproxy graph K.

« Startwith an empty graph K whose vertices are
the edges of G.

 Givena DFSon G, considerthmEn+1) cy-
cles of G induced by the back edges.

* Foreach suchcycle €(gy, ey, ..., §) add edg-
es €y &) .- €p &) to K.
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 The connected components of K are the sgme
as those of H!
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CS 16: Connectivity

A Linear Time Algorithm

e The size of K is Qfin) in the worst case.

:IW

« We can further reduce the size of the proxy,
graph to Oin)

* Process the back edges accordingposrder
visit of their destination vertex in the DFS tr

 Mark the discovery edges forming the cycle
« Stop adding edges to the proxy graph aftert

first marked edge is encountered.
* The resulting proxy graph is a forest!
e This algorithm runs in m) time.
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CS 16: Connectivity

Example

» Back edges labeled according to the preorder
visit of their destination vertex in the DFS tree

e Processing, e
'a/b g [h
* Processing, e
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CS 16: Connectivity

Example (contd.)

e DFS tree
e final proxy
graph (a tree &,
since the graph
IS biconnected) b %
\
€ €2 |83 (6
S5

474 s




CS 16: Connectivity

Why Preorder?

* The order in which the back edges are pro-
cessed is essential for the correctness of th
gorithm

« Using a different order ...

* ...yleldsagraphthat g &,
provides incorrect \ 7\
iInformation @ d bl [a
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CS 16: Connectivity

Graph!
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