CS 16: Connectivity

Connectivity and
Biconnectivity

e connected components

e cutvertices

e biconnected components

462

CS 16: Connectivity

Connected Components

Connected Graph: any two
vertices conneth)ed % a path

O @
24 Pl

connected not connected

Connected Component:
maximal connected subgraph of

agraph

463 .

CS 16: Connectivity

Equivalence Relations

A relation on a set S is a set R of ordered pairs

of elements of S defined by some property

Example:
e S={1,2,3,4}

« R={(i,)) 1 Sx Ssuchthati<|}
={(1,2),(1,3).(1,4),(2,3),(2,4),{3,4)}

An equivalence relations a relation with the
following properties:

e (X,X)UR,Ox0S leflexive
e (x,y)UR O (yX)UR (symmetrig
e (X,¥),(y,z) UR O (x,z)UR (transitive

The relationC on the set of vertices of a graph:

e (uyv) < U andv are in the same
connected component

IS an equivalence relation.

cec 464 s

CS 16: Connectivity

DFS on a Disconnected Graph

 DFS() visits all the vertices and edges in thi
connected component of

O—

@ Q O
@

D—G ©

* To compute the connected components:

k =0 // component counter
foreach (vertexv)
If unvisited(v)
// add to component k
// the vertices reached by v
DFS(v, k++)

—

cec 465 i

CS 16: Connectivity

Cutvertices

Cutvertex (separation vertex):
Its removal disconnects the graph

If the Chicagaairport is closed, then there is no
way to get from Providence to cities on the west
coast.

Similarly for Denver

e Cutvertices:ORD. DEN

466 .

CS 16: Connectivity

Biconnectivity

Biconnected graph: has no cutvertices

S S s =

o T
AR
@\ TG

oy

~(DF W~
OFY

New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.

D

467 .

CS 16: Connectivity

Properties of Biconnected
Graphs

* There ardwo disjoint pathsbetween any

two vertices.
* There is ayclethrough any two vertices.

By convention, two nodes connected by an edgs
form a biconnected graph, but this does not verify

the above properties.

O—O

Ty

468 .

cec

CS 16: Connectivity

Biconnected Components

e Biconnected component (block):
maximal biconnected subgraph

* Biconnected components are edge-disjoin
but sharecutvertices

[g ol

cec 469 i

CS 16: Connectivity

Characterization of the
Biconnected Components

e Equivalence relationR on theedgesf G:
(e', e R if there is a cycle containing both
e'and e"

* Proof of thetransitive property

« \We partition the edges of G ineguivalence
classeswith respect to R.

« Each equivalence class corresponds to

» a biconnected components of G

e a connected components of a graph H
whose vertices are tleelgesof G and
whose edges are tipairs in relation R.

cec

470 .

CS 16: Connectivity

DFS and Biconnected
Components

 Graph H has @(12) edges in the worst case.

 Instead of computing the entire graph H, we
use a smalleproxy graph K.

« Startwith an empty graph K whose vertices are
the edges of G.

 Givena DFSon G, considerthmEn+1) cy-
cles of G induced by the back edges.

* Foreach suchcycle €(gy, ey, ..., §) add edg-
es €y &) .- €p &) to K.

C N
()
(U
e a S

 The connected components of K are the sgme
as those of H!

cec

471 s

CS 16: Connectivity

A Linear Time Algorithm

e The size of K is Qfin) in the worst case.

:IW

« We can further reduce the size of the proxy,
graph to Oin)

* Process the back edges accordingposrder
visit of their destination vertex in the DFS tr

 Mark the discovery edges forming the cycle
« Stop adding edges to the proxy graph aftert

first marked edge is encountered.
* The resulting proxy graph is a forest!
e This algorithm runs in m) time.

ce

cec

472 s

S
he

CS 16: Connectivity

Example

» Back edges labeled according to the preorder
visit of their destination vertex in the DFS tree

e Processing, e
'a/b g [h
* Processing, e

cec 473 s

CS 16: Connectivity

Example (contd.)

e DFS tree
e final proxy
graph (a tree &,
since the graph
IS biconnected) b %
\
€ €2 |83 (6
S5

474 s

CS 16: Connectivity

Why Preorder?

* The order in which the back edges are pro-
cessed is essential for the correctness of th
gorithm

« Using a different order ...

* ...yleldsagraphthat g &,
provides incorrect \ 7\
iInformation @ d bl [a

€3

o al-

cec 475 s

CS 16: Connectivity

Graph!
\C®N S
= &
NAVaN:
@ DF MIA

476 .

	Connectivity and Biconnectivity
	• connected components
	• cutvertices
	• biconnected components
	Connected Components
	Connected Graph: any two vertices connected by a path
	Connected Component:
	maximal connected subgraph of a graph

	Equivalence Relations
	A relation on a set S is a set R of ordered pairs of elements of S defined by some property
	Example:
	• S = {1,2,3,4}
	• R = {(i,j) Œ S ¥ S such that i < j} = {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}
	An equivalence relation is a relation with the following properties:
	• (x,x) Œ R, " x Œ S (reflexive)
	• (x,y) Œ R ﬁ (y,x) Œ R (symmetric)
	• (x,y), (y,z) Œ R ﬁ (x,z) Œ R (transitive)

	The relation C on the set of vertices of a graph:
	• (u,v) Œ C ¤ u and v are in the same connected component

	is an equivalence relation.

	DFS on a Disconnected Graph
	• DFS(v) visits all the vertices and edges in the connected component of v
	• To compute the connected components:
	k = 0 // component counter foreach (vertex v)
	if unvisited(v)
	// add to component k
	// the vertices reached by v
	DFS(v, k++)

	Cutvertices
	Cutvertex (separation vertex):
	its removal disconnects the graph
	If the Chicago airport is closed, then there is no way to get from Providence to cities on the we...
	Similarly for Denver.
	• Cutvertices: ORD. DEN

	Biconnectivity
	Biconnected graph: has no cutvertices
	New flights:
	LGA-ATL and DFW-LAX
	make the graph biconnected.

	Properties of Biconnected Graphs
	• There are two disjoint paths between any two vertices.
	• There is a cycle through any two vertices.
	By convention, two nodes connected by an edge form a biconnected graph, but this does not verify ...

	Biconnected Components
	• Biconnected component (block): maximal biconnected subgraph
	• Biconnected components are edge-disjoint but share cutvertices.

	Characterization of the Biconnected Components
	• Equivalence relation R on the edges of G: (e', e") Œ R if there is a cycle containing both e' a...
	• Proof of the transitive property
	• We partition the edges of G into equivalence classes with respect to R.
	• Each equivalence class corresponds to
	• a biconnected components of G
	• a connected components of a graph H whose vertices are the edges of G and whose edges are the p...

	DFS and Biconnected Components
	• Graph H has O(m2) edges in the worst case.
	• Instead of computing the entire graph H, we use a smaller proxy graph K.
	• Start with an empty graph K whose vertices are the edges of G.
	• Given a DFS on G, consider the (m - n + 1) cycles of G induced by the back edges.
	• For each such cycle C = (e0, e1, ... , ep) add edges (e0, e1) ... (e0, ep) to K.
	• The connected components of K are the same as those of H!

	A Linear Time Algorithm
	• The size of K is O(mn) in the worst case.
	• We can further reduce the size of the proxy graph to O(m)
	• Process the back edges according to a preorder visit of their destination vertex in the DFS tree
	• Mark the discovery edges forming the cycles
	• Stop adding edges to the proxy graph after the first marked edge is encountered.
	• The resulting proxy graph is a forest!
	• This algorithm runs in O(n+m) time.

	Example
	• Back edges labeled according to the preorder visit of their destination vertex in the DFS tree
	• Processing e1
	• Processing e2

	Example (contd.)
	• DFS tree
	• final proxy graph (a tree since the graph is biconnected)

	Why Preorder?
	• The order in which the back edges are processed is essential for the correctness of the algorithm
	• Using a different order ...
	• ... yields a graph that provides incorrect information

	Try the Algorithm on this Graph!

