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Connectivity and
Biconnectivity

• connected components

• cutvertices

• biconnected components
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Connected Components

Connected Graph:  any two
vertices connected by a path

connected not connected

Connected Component:
maximal connected subgraph of
agraph
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Equivalence Relations

A relation on a set S is a set R of ordered pairs
of elements of S defined by some property

Example:
• S = {1,2,3,4}

• R= {(i,j) ∈ S× S such that i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

An equivalence relation is a relation with the
following properties:

• (x,x) ∈ R, ∀ x ∈ S                   (reflexive)

• (x,y) ∈ R ⇒ (y,x) ∈ R (symmetric)

• (x,y), (y,z) ∈ R ⇒ (x,z)∈ R (transitive)

The relationC on the set of vertices of a graph:

• (u,v) ∈ C ⇔ u andv are in the same
                           connected component

is an equivalence relation.
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DFS on a Disconnected Graph
• DFS(v) visits all the vertices and edges in the

connected component ofv

• To compute the connected components:

k = 0 // component counter
foreach  (vertex v)

if unvisited(v)
// add to component k
// the vertices reached by v
DFS(v, k++)
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MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Cutvertices

Cutvertex (separation vertex):
its removal disconnects the graph

If the Chicagoairport is closed, then there is no
way to get from Providence to cities on the west
coast.

Similarly for Denver.

• Cutvertices:ORD. DEN
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Biconnectivity
Biconnected graph: has no cutvertices

New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.
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Properties of Biconnected
Graphs

• There aretwo disjoint paths between any
two vertices.

• There is acycle through any two vertices.

By convention, two nodes connected by an edge
form a biconnected graph, but this does not verify
the above properties.

ORD
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Biconnected Components
• Biconnected component (block):

maximal biconnected subgraph

• Biconnected components are edge-disjoint
but share cutvertices.
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Characterization of the
Biconnected Components

• Equivalence relation R on theedges of G:
(e', e")∈ R if there is a cycle containing both
e' and e"

• Proof of thetransitive property

• We partition the edges of G intoequivalence
classes with respect to R.

• Each equivalence class corresponds to

• a biconnected components of G
• a connected components of a graph H

whose vertices are theedges of G and
whose edges are thepairs in relation R.

e1 e2 e3
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DFS and Biconnected
Components

• Graph H has O(m2) edges in the worst case.

• Instead of computing the entire graph H, we
use a smallerproxy graph K.

• Start with an empty graph K whose vertices are
the edges of G.

• Given a DFS on G, consider the (m− n + 1) cy-
cles of G induced by the back edges.

• For each such cycle C= (e0, e1, ... , ep) add edg-
es (e0, e1)  ... (e0, ep) to K.

• The connected components of K are the same
as those of H!
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A Linear Time Algorithm
• The size of K is O(mn) in the worst case.

• We can further reduce the size of the proxy
graph to O(m)

• Process the back edges according to apreorder
visit of their destination vertex in the DFS tree

• Mark the discovery edges forming the cycles

• Stop adding edges to the proxy graph after the
first marked edge is encountered.

• The resulting proxy graph is a forest!

• This algorithm runs in O(n+m) time.
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Example
• Back edges labeled according to the preorder

visit of their destination vertex in the DFS tree

• Processinge1

• Processinge2
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Example (contd.)
• DFS tree

• final proxy
graph (a tree
since the graph
is biconnected)
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Why Preorder?
• The order in which the back edges are pro-

cessed is essential for the correctness of the al-
gorithm

• Using a different order ...

• ... yields a graph that
provides incorrect
information
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Try the Algorithm on this
Graph!
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