
CS 16: Connectivity

cec 462

Connectivity and
Biconnectivity

• connected components

• cutvertices

• biconnected components



CS 16: Connectivity

cec 463

Connected Components

Connected Graph:  any two
vertices connected by a path

connected not connected

Connected Component:
maximal connected subgraph of
agraph



CS 16: Connectivity

cec 464

Equivalence Relations

A relation on a set S is a set R of ordered pairs
of elements of S defined by some property

Example:
• S = {1,2,3,4}

• R= {(i,j) ∈ S× S such that i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

An equivalence relation is a relation with the
following properties:

• (x,x) ∈ R, ∀ x ∈ S                   (reflexive)

• (x,y) ∈ R ⇒ (y,x) ∈ R (symmetric)

• (x,y), (y,z) ∈ R ⇒ (x,z)∈ R (transitive)

The relationC on the set of vertices of a graph:

• (u,v) ∈ C ⇔ u andv are in the same
                           connected component

is an equivalence relation.



CS 16: Connectivity

cec 465

DFS on a Disconnected Graph
• DFS(v) visits all the vertices and edges in the

connected component ofv

• To compute the connected components:

k = 0 // component counter
foreach  (vertex v)

if unvisited(v)
// add to component k
// the vertices reached by v
DFS(v, k++)

a
b

d g

3

65

c

fe

a
b

d g

3

f5

c

e



CS 16: Connectivity

cec 466

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Cutvertices

Cutvertex (separation vertex):
its removal disconnects the graph

If the Chicagoairport is closed, then there is no
way to get from Providence to cities on the west
coast.

Similarly for Denver.

• Cutvertices:ORD. DEN



CS 16: Connectivity

cec 467

Biconnectivity
Biconnected graph: has no cutvertices

New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN



CS 16: Connectivity

cec 468

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

MSN

DEN

Properties of Biconnected
Graphs

• There aretwo disjoint paths between any
two vertices.

• There is acycle through any two vertices.

By convention, two nodes connected by an edge
form a biconnected graph, but this does not verify
the above properties.

ORD



CS 16: Connectivity

cec 469

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

ORD

MSN

DEN

Biconnected Components
• Biconnected component (block):

maximal biconnected subgraph

• Biconnected components are edge-disjoint
but share cutvertices.



CS 16: Connectivity

cec 470

Characterization of the
Biconnected Components

• Equivalence relation R on theedges of G:
(e', e")∈ R if there is a cycle containing both
e' and e"

• Proof of thetransitive property

• We partition the edges of G intoequivalence
classes with respect to R.

• Each equivalence class corresponds to

• a biconnected components of G
• a connected components of a graph H

whose vertices are theedges of G and
whose edges are thepairs in relation R.

e1 e2 e3



CS 16: Connectivity

cec 471

DFS and Biconnected
Components

• Graph H has O(m2) edges in the worst case.

• Instead of computing the entire graph H, we
use a smallerproxy graph K.

• Start with an empty graph K whose vertices are
the edges of G.

• Given a DFS on G, consider the (m− n + 1) cy-
cles of G induced by the back edges.

• For each such cycle C= (e0, e1, ... , ep) add edg-
es (e0, e1)  ... (e0, ep) to K.

• The connected components of K are the same
as those of H!

c

b d

a
f

e
i

h

g

g

h

i
f

ea

b

c d



CS 16: Connectivity

cec 472

A Linear Time Algorithm
• The size of K is O(mn) in the worst case.

• We can further reduce the size of the proxy
graph to O(m)

• Process the back edges according to apreorder
visit of their destination vertex in the DFS tree

• Mark the discovery edges forming the cycles

• Stop adding edges to the proxy graph after the
first marked edge is encountered.

• The resulting proxy graph is a forest!

• This algorithm runs in O(n+m) time.



CS 16: Connectivity

cec 473

Example
• Back edges labeled according to the preorder

visit of their destination vertex in the DFS tree

• Processinge1

• Processinge2

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

a b g h

e1

c

e2



CS 16: Connectivity

cec 474

Example (contd.)
• DFS tree

• final proxy
graph (a tree
since the graph
is biconnected)

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

c

e2 e3

f

e4

d

e5

e6



CS 16: Connectivity

cec 475

Why Preorder?
• The order in which the back edges are pro-

cessed is essential for the correctness of the al-
gorithm

• Using a different order ...

• ... yields a graph that
provides incorrect
information

c

b

d

a

g

e1

e2

e3

g d b a

e2

e3

e1



CS 16: Connectivity

cec 476

Try the Algorithm on this
Graph!

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

MSN

DEN

LAXSAN

SJU STT

ORD


	Connectivity and Biconnectivity
	• connected components
	• cutvertices
	• biconnected components
	Connected Components
	Connected Graph: any two vertices connected by a path
	Connected Component:
	maximal connected subgraph of a graph

	Equivalence Relations
	A relation on a set S is a set R of ordered pairs of elements of S defined by some property
	Example:
	• S = {1,2,3,4}
	• R = {(i,j) Œ S ¥ S such that i < j} = {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}
	An equivalence relation is a relation with the following properties:
	• (x,x) Œ R, " x Œ S (reflexive)
	• (x,y) Œ R ﬁ (y,x) Œ R (symmetric)
	• (x,y), (y,z) Œ R ﬁ (x,z) Œ R (transitive)

	The relation C on the set of vertices of a graph:
	• (u,v) Œ C ¤ u and v are in the same connected component

	is an equivalence relation.


	DFS on a Disconnected Graph
	• DFS(v) visits all the vertices and edges in the connected component of v
	• To compute the connected components:
	k = 0 // component counter foreach (vertex v)
	if unvisited(v)
	// add to component k
	// the vertices reached by v
	DFS(v, k++)

	Cutvertices
	Cutvertex (separation vertex):
	its removal disconnects the graph
	If the Chicago airport is closed, then there is no way to get from Providence to cities on the we...
	Similarly for Denver.
	• Cutvertices: ORD. DEN


	Biconnectivity
	Biconnected graph: has no cutvertices
	New flights:
	LGA-ATL and DFW-LAX
	make the graph biconnected.

	Properties of Biconnected Graphs
	• There are two disjoint paths between any two vertices.
	• There is a cycle through any two vertices.
	By convention, two nodes connected by an edge form a biconnected graph, but this does not verify ...

	Biconnected Components
	• Biconnected component (block): maximal biconnected subgraph
	• Biconnected components are edge-disjoint but share cutvertices.

	Characterization of the Biconnected Components
	• Equivalence relation R on the edges of G: (e', e") Œ R if there is a cycle containing both e' a...
	• Proof of the transitive property
	• We partition the edges of G into equivalence classes with respect to R.
	• Each equivalence class corresponds to
	• a biconnected components of G
	• a connected components of a graph H whose vertices are the edges of G and whose edges are the p...


	DFS and Biconnected Components
	• Graph H has O(m2) edges in the worst case.
	• Instead of computing the entire graph H, we use a smaller proxy graph K.
	• Start with an empty graph K whose vertices are the edges of G.
	• Given a DFS on G, consider the (m - n + 1) cycles of G induced by the back edges.
	• For each such cycle C = (e0, e1, ... , ep) add edges (e0, e1) ... (e0, ep) to K.
	• The connected components of K are the same as those of H!

	A Linear Time Algorithm
	• The size of K is O(mn) in the worst case.
	• We can further reduce the size of the proxy graph to O(m)
	• Process the back edges according to a preorder visit of their destination vertex in the DFS tree
	• Mark the discovery edges forming the cycles
	• Stop adding edges to the proxy graph after the first marked edge is encountered.
	• The resulting proxy graph is a forest!
	• This algorithm runs in O(n+m) time.

	Example
	• Back edges labeled according to the preorder visit of their destination vertex in the DFS tree
	• Processing e1
	• Processing e2

	Example (contd.)
	• DFS tree
	• final proxy graph (a tree since the graph is biconnected)

	Why Preorder?
	• The order in which the back edges are processed is essential for the correctness of the algorithm
	• Using a different order ...
	• ... yields a graph that provides incorrect information

	Try the Algorithm on this Graph!


