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DATA COMPRESSION

• File Compression

• Huffman Tries
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File Compression
• text files are usually stored by representing each

character with an 8-bitASCII code (typeman ascii in
a Unix shell to see theASCII encoding)

• theASCII encoding is an example offixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java

- encoding:a = “0”, j = “11”, v = “10”

- encoded text:110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text:010000 (6 bits)
- is this java, jvv, jaaaa ...
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Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies theprefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” doesnot satisfy the prefix

rule (the code ofa is a prefix of the codes ofj and
v)

• we use anencoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left child (edge) means 0
- a right child (edge) means 1
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Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:
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See?  Decodes like magic...
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Trie this!
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Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:
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Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

2 2 1 1

24

2 2 1 1

24

5 6

frequency

character

ABRACADABRA

A B R

C D

B R C D

A

A

B R C D

A



8Data Compression

Huffman Encoding Trie (contd.)
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Final Huffman Encoding Trie
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Another Huffman Encoding Trie
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Another Huffman Encoding Trie
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Another Huffman Encoding Trie
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Another Huffman Encoding Trie
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Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input : StringX of lengthn
Output : Encoding trie forX
Compute thefrequencyf(c) of each characterc of X.
Initialize apriority queueQ.
for  each characterc in X do

Create a single-node treeT storingc
Q.insertItem(f(c), T)

while Q.size() > 1do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new treeT with left subtreeT1 and right

subtreeT2.
Q.insertItem(f1 + f2, T)

return treeQ.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

• typically, k is O(1) (e.g., ASCII characters) and the
algorithm runs in O(n) time.
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Image Compression
• we can use Huffman encoding also for binary files

(bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps
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