
1Data Compression

DATA COMPRESSION

• File Compression

• Huffman Tries

ABRACADABRA
01011011010000101001011011010

D BC

R

0 1

0

00 1

1

1

A

2Data Compression

File Compression
• text files are usually stored by representing each

character with an 8-bitASCII code (typeman ascii in
a Unix shell to see theASCII encoding)

• theASCII encoding is an example offixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java

- encoding:a = “0”, j = “11”, v = “10”

- encoded text:110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text:010000 (6 bits)
- is this java, jvv, jaaaa ...

3Data Compression

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies theprefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” doesnot satisfy the prefix

rule (the code ofa is a prefix of the codes ofj and
v)

• we use anencoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left child (edge) means 0
- a right child (edge) means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

4Data Compression

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

5Data Compression

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

6Data Compression

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

7Data Compression

Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

2 2 1 1

24

2 2 1 1

24

5 6

frequency

character

ABRACADABRA

A B R

C D

B R C D

A

A

B R C D

A

8Data Compression

Huffman Encoding Trie (contd.)

B R D

A

0

1

0 1

0

0

11

C

5

11

4 2

6

2 2 1 1

2 2 1 1

24

5 6
A

B R C D

9Data Compression

Final Huffman Encoding Trie

B R D

A

0

1

0 1

0

0

11

C

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 101 0

23 bits

5

11

4 2

6

2 2 1 1

10Data Compression

Another Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

frequency

character
ABRACADABRA

A B R

C D

A

A

1 1

2

C D

2
R

4
2
B

11Data Compression

Another Huffman Encoding Trie

5

A

1 1

2

C D

2
R

4
2
B

1 1

2

C D

2
R

42
B

65

A

12Data Compression

Another Huffman Encoding Trie

11

5

A

1 1

2

C D

2
R

42
B

65

A

1 1

2

C D

2
R

42
B

6

13Data Compression

Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65

A

0 1

1

1

1

0

0

0

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0

23 bits

14Data Compression

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input : StringX of lengthn
Output : Encoding trie forX
Compute thefrequencyf(c) of each characterc of X.
Initialize apriority queueQ.
for each characterc in X do

Create a single-node treeT storingc
Q.insertItem(f(c), T)

while Q.size() > 1do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new treeT with left subtreeT1 and right

subtreeT2.
Q.insertItem(f1 + f2, T)

return treeQ.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

• typically, k is O(1) (e.g., ASCII characters) and the
algorithm runs in O(n) time.

15Data Compression

Image Compression
• we can use Huffman encoding also for binary files

(bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps

000

0

0

1

11

1

010 101

111

0 1

001 100

0

0 1

011 110

0

0 1

	Data Compression
	• File Compression
	• Huffman Tries
	File Compression
	• text files are usually stored by representing each character with an 8-bit ASCII code (type man...
	• the ASCII encoding is an example of fixed-length encoding, where each character is represented ...
	• in order to reduce the space required to store a text file, we can exploit the fact that some c...
	• variable-length encoding uses binary codes of different lengths for different characters; thus,...
	• Example:
	- text: java
	- encoding: a = “0”, j = “11”, v = “10”
	- encoded text: 110100 (6 bits)

	• How to decode?
	- a = “0”, j = “01”, v = “00”
	- encoded text: 010000 (6 bits)
	- is this java, jvv, jaaaa ...

	Encoding Trie
	• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, tha...
	- a = “0”, j = “11”, v = “10” satisfies the prefix rule
	- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the c...

	• we use an encoding trie to define an encoding that satisfies the prefix rule
	- the characters stored at the external nodes
	- a left child (edge) means 0
	- a right child (edge) means 1

	Example of Decoding
	• trie:
	• encoded text: 01011011010000101001011011010
	• text:

	Trie this!
	Optimal Compression
	• An issue with encoding tries is to insure that the encoded text is as short as possible:

	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Construction Algorithm
	• with a Huffman encoding trie, the encoded text has minimal length
	Algorithm Huffman(X):
	Input: String X of length n
	Output: Encoding trie for X
	Compute the frequency f(c) of each character c of X.
	Initialize a priority queue Q. for each character c in X do
	Create a single-node tree T storing c
	Q.insertItem(f(c), T)
	while Q.size() > 1 do
	f1 ¨ Q.minKey()
	T1 ¨ Q.removeMinElement()
	f2 ¨ Q.minKey()
	T2 ¨ Q.removeMinElement()
	Create a new tree T with left subtree T1 and right subtree T2.
	Q.insertItem(f1 + f2, T)
	return tree Q.removeMinElement()

	• runing time for a text of length n with k distinct characters: O(n + k log k)
	• typically, k is O(1) (e.g., ASCII characters) and the algorithm runs in O(n) time.

	Image Compression
	• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
	• common groups of bits are stored at the leaves
	• Example of an encoding suitable for b/w bitmaps

