CLOSEST POINTS

- Closest Pair
- Nearest Neighbor

Closest Pair

Given a set P of N points, find $p,q \in P$ such that the distance d(p,q) is minimum.

- Algorithms for determining the closest pair:
 - <u>brute force</u> $O(N^2)$
 - divide-and-conquer O(N log N)
 - plane-sweep O(N log N)

Brute Force Algorithm

Compute all the distances d(p,q) and select the minimum distance.

Plane-Sweep Algorithm

- Maybe we can avoid having to check the distance between every pair of points...
- Plane-sweep worked for segment intersection, maybe it can be useful here...
- Key observation: if the closest pair of points to the left of the sweep line is distance d apart, the next point encountered can't be a closest pair with any point more than d units to the left of the line

Stored Information

- Maintain the following information:
 - the closest pair (a,b) found so far, and the distance
 d between them
 - ordered dictionary S of the points lying in a strip of width d to the left of the sweep line, using the ycoordinates as keys

Updating

- When the sweep line encounters a point p:
 - update the dictionary so it only contains points that might be a closest pair with p
 - remove all points r such that x(p)-x(r) > d from S
 - find the closest point q to p in S
 - if d(p,q) < d then update the current closest pair and distance
 - insert p into S

Searching the Dictionary

- How to quickly find the closest point in the dictionary?
 - could be O(N) points in the dictionary...

have x, y spacing so that y = d/(n-1)

- Good news: not all of the points in the dictionary can improve d
 - only eligible points are in half circle of radius d centered at p

Searching the Dictionary II

- But how to search in a half-circle?
 - a rectangle is almost a half-circle...
 - do a range search in the interval [y(p)-d,y(p)+d]
 - this will get all the points in the half-circle (and maybe some others)

- Use brute-force to check the distance to each point returned by the range query
- But isn't that still a potentially large number of points?
 - actually, there are at most 6
 - key observation: all of the points in the dictionary are at least distance d from each other

Putting It All Together

- sort points by x-coordinate and store in ordered sequence X
- maintain references to two positions in sequence
 - firstInStrip: the leftmost point in S
 - lastInStrip: the new point to be added to S
- at each step..
 - // advance lastInStrip
 - lastInStrip ← X.after(lastInStrip)
 - // remove points that are no longer candidates from dictionary
 - while x(point(firstInStrip)) < x(point(lastInStrip))-d do</pre>
 - S.remove(point(firstInStrip))
 - // update closest point information
 - find point q closest to point(lastInStrip) in S
 - if d(p,q) < d then
 - update closest pair
 - $\mathsf{d} \gets \mathsf{d}(\mathsf{p},\mathsf{q})$
 - // insert new point into dictionary
 - S.insert(point(lastInStrip))

Running Time

- initial sort takes O(N log N) time
- each point is inserted and removed once from S
 - S has at most N elements, so each insertion/ removal takes O(log N) time
 - total insertion/removal time is O(N log N)
- dictionary is searched once each time a point is inserted into S
 - each range query takes O(log N + 6) = O(log N) time
 - total time for range queries is O(N log N)
- distance computations performed each time a point is inserted into S
 - at most 6 computations at each time
 - total time for distance computations is O(N)

Time Complexity: O(N log N)

(definitely beats the brute force method!)

Nearest Neighbor • Given a set S of sites, what is the closest site to point q? I.e. which post office is closest?

- Brute force is only O(N)!
 - but if you repeat the query for k different points (using the same set of sites) the total time is O(kN)
- Could do something based on plane-sweep, but that takes O(N log N) time for each query...O(kN log N) for k queries
- There's a better solution...

Voronoi Diagram

• $S = \{ s_1, s_2, ..., s_N \}$

- set of points in the plane, called sites

- Voronoi cell of s_i:
 - $C(s_i) = \{ p : d(p,s_i) \le d(p,s_j), \forall j \ne i \}$
 - that is, the region of the plane containing all of the points that are closer to s_i than any other site s_i
- Voronoi diagram of S
 - subdivison of the plane into Voronoi cells

Constructing a Voronoi Diagram

- Construct the perpendicular bisectors h_{ij} of each segment (s_i, s_j)
- Let H_{ij} be the half-plane delimited by h_{ij} and containing $\boldsymbol{s_i}$
 - all the points p in H_{ij} are closer to s_i than s_j
- Voronoi cell for s_i is the intersection of the halfplanes H_{ij} for all sites s_j (j ≠ i)
- Voronoi diagram can be constructed in O(N log N) time
 - can use divide-and-conquer or plane-sweep technique

Fun Voronoi Facts

- Each Voronoi cell is convex
- A Voronoi cell is unbounded if and only if the site is on the convex hull
- If s_j is the nearest neighbor of $s_i,$ the Voronoi cells $C(s_i)$ and $C(s_j)$ touch

Applications

- Given the Voronoi diagram, a nearest neighbor query can be performed in O(log N) time
 - k queries can be done in O((N+k) log N) time
- Other applications
 - all nearest neighbors: for every point $p \in P$, find its nearest neighbor q
 - closest pair
 - Delaunay triangulation
 - a triangulation is a division of the plane into a set of triangular regions
 - convex hull
 - not just limited to computational geometry...
 - model region of influence in archaeology, ecology, ...

Shameless Plug

- Want to know how to compute a Voronoi diagram in O(N log N) time?
- Want to know how to do a nearest-neighbor query in O(log N) time?
- Want to learn about other cool geometric algorithms?

Take CS252: Computational Geometry!