
CLOSEST POINTS

• Closest Pair

• Nearest Neighbor
1Closest Points

Closest Pair

• Algorithms for determining the closest pair:
- brute force O(N2)
- divide-and-conquer O(N log N)
- plane-sweep O(N log N)

Given a set P of N points, find
p,q ∈ P such that the distance
d(p,q) is minimum.

p

q

2Closest Points

Brute Force Algorithm

Compute all the distances
d(p,q) and select the minimum
distance.

(x1, y1)

(x2, y2)

p2

p1

d(p1, p2) = (x2 - x1)2 + (y2 - y1)2

Time Complexity: O(N2)
3Closest Points

e

Plane-Sweep Algorithm
• Maybe we can avoid having to check the distanc

between every pair of points...

• Plane-sweep worked for segment intersection,
maybe it can be useful here...

• Key observation: if the closest pair of points to the
left of the sweep line is distanced apart, the next
point encountered can’t be a closest pair with any
point more thand units to the left of the line

d

closest point to the left of p can only be in the red-
shaded region

p

d

4Closest Points

e

y-
Stored Information
• Maintain the following information:

- the closest pair(a,b) found so far, and the distanc
d between them

- ordered dictionary S of the points lying in a strip
of width d to the left of the sweep line, using the
coordinates as keys

d

p

d

a

b

dictionary S
5Closest Points

at

r

Updating
• When the sweep line encounters a point p:

- update the dictionary so it only contains points th
might be a closest pair with p
- remove all points r such that x(p)-x(r) > d from S

- find the closest point q to p in S
- if d(p,q) < d then update the current closest pai

and distance
- insert p into S

d

p

q

6Closest Points

Searching the Dictionary

• How to quickly find the closest point in
the dictionary?
- could be O(N) points in the

dictionary...

• Good news: not all of the points in the
dictionary can improve d
- only eligible points are in half circle

of radius d centered at p

d

have x, y spacing so that y = d/(n-1)

d

p

7Closest Points

int
Searching the Dictionary II
• But how to search in a half-circle?

- a rectangle is almost a half-circle...
- do a range search in the interval

[y(p)-d,y(p)+d]
- this will get all the points in the

half-circle (and maybe some
others)

• Use brute-force to check the distance to each po
returned by the range query

• But isn’t that still a potentially large
number of points?
- actually, there are at most 6
- key observation: all of the points

in the dictionary are at least
distance d from each other

2d p

2d

d

p

8Closest Points

Putting It All Together
• sort points by x-coordinate and store in ordered

sequence X

• maintain references to two positions in sequence
- firstInStrip: the leftmost point in S
- lastInStrip: the new point to be added to S

• at each step..
// advance lastInStrip

lastInStrip ← X.after(lastInStrip)

// remove points that are no longer candidates from
dictionary

while x(point(firstInStrip)) < x(point(lastInStrip))-d do

S.remove(point(firstInStrip))

firstInStrip ← X.after(firstInStrip)

// update closest point information

find point q closest to point(lastInStrip) in S

if d(p,q) < d then

update closest pair

d ← d(p,q)

// insert new point into dictionary

S.insert(point(lastInStrip))
9Closest Points

An Example

initial closest pair and
dictionary

one point in rectangle but
not half-circle; closest
pair not updated

d

d

10Closest Points

An Example Continued

one point in rectangle but
not half-circle; closest
pair not updated

one point in rectangle but
not half-circle; closest
pair not updated
11Closest Points

Still Going...

two points in rectangle, one
on border of half-circle;
closest pair not updated

two points in rectangle
and half-circle; closest
pair updated to nearer of
the two
12Closest Points

Example Completed

the final result, with closest
pair shown

nothing within
rectangle; closest
pair not updated

d

d

13Closest Points

)

int
Running Time

• initial sort takes O(N log N) time

• each point is inserted and removed once from S
- S has at most N elements, so each insertion/

removal takes O(log N) time
- total insertion/removal time is O(N log N)

• dictionary is searched once each time a point is
inserted into S
- each range query takes O(log N + 6) = O(log N

time
- total time for range queries is O(N log N)

• distance computations performed each time a po
is inserted into S
- at most 6 computations at each time
- total time for distance computations is O(N)

Time Complexity: O(N log N)
(definitely beats the brute force method!)
14Closest Points

int

N)

that
)

Nearest Neighbor
• Given a set S of sites, what is the closest site to po

q?

• Brute force is only O(N)!
- but if you repeat the query for k different points

(using the same set of sites) the total time is O(k

• Could do something based on plane-sweep, but
takes O(N log N) time for each query...O(kN log N
for k queries

• There’s a better solution...

q

I.e. which post office is closest?
15Closest Points

e

Voronoi Diagram
• S = { s1, s2, ..., sN }

- set of points in the plane, called sites

• Voronoi cell of si:
- C(si) = { p : d(p,si) ≤ d(p,sj), ∀ j ≠ i }
- that is, the region of the plane containing all of th

points that are closer to si than any other site sj

• Voronoi diagram of S
- subdivison of the plane into Voronoi cells
16Closest Points

)

Constructing a Voronoi Diagram

• Construct the perpendicular bisectorshij of each
segment (si,sj)

• Let Hij be the half-plane delimited byhij and
containingsi
- all the points p inHij are closer tosi thansj

• Voronoi cell for si is the intersection of the half-
planes Hij for all sites sj (j ≠ i)

• Voronoi diagram can be constructed in O(N log N
time
- can use divide-and-conquer or plane-sweep

technique

sj

si

hij

Hij
17Closest Points

s

Fun Voronoi Facts

• Each Voronoi cell is convex

• A Voronoi cell is unbounded if and only if the site i
on the convex hull

• If sj is the nearest neighbor of si, the Voronoi cells
C(si) and C(sj) touch
18Closest Points

lar
Applications

• Given the Voronoi diagram, a nearest neighbor
query can be performed in O(log N) time
- k queries can be done in O((N+k) log N) time

• Other applications

- all nearest neighbors: for every pointp ∈ P, find its
nearest neighbor q

- closest pair

- Delaunay triangulation
- a triangulation is a division of the plane into a set of triangu

regions

- convex hull

- not just limited to computational geometry...
- model region of influence in archaeology, ecology, ...
19Closest Points

in

in
Shameless Plug

• Want to know how to compute a Voronoi diagram
O(N log N) time?

• Want to know how to do a nearest-neighbor query
O(log N) time?

• Want to learn about other cool geometric
algorithms?

Take CS252:
Computational Geometry!
20Closest Points

	Closest Points
	• Closest Pair
	• Nearest Neighbor
	Closest Pair
	Given a set P of N points, find p,q Œ P such that the distance d(p,q) is minimum.
	• Algorithms for determining the closest pair:
	- brute force O(N2)
	- divide-and-conquer O(N log N)
	- plane-sweep O(N log N)

	Brute Force Algorithm
	Plane-Sweep Algorithm
	• Maybe we can avoid having to check the distance between every pair of points...
	• Plane-sweep worked for segment intersection, maybe it can be useful here...
	• Key observation: if the closest pair of points to the left of the sweep line is distance d apar...
	closest point to the left of p can only be in the red- shaded region

	Stored Information
	• Maintain the following information:
	- the closest pair (a,b) found so far, and the distance d between them
	- ordered dictionary S of the points lying in a strip of width d to the left of the sweep line, u...

	Updating
	• When the sweep line encounters a point p:
	- update the dictionary so it only contains points that might be a closest pair with p
	- remove all points r such that x(p)-x(r) > d from S

	- find the closest point q to p in S
	- if d(p,q) < d then update the current closest pair and distance
	- insert p into S

	Searching the Dictionary
	• How to quickly find the closest point in the dictionary?
	- could be O(N) points in the dictionary...
	have x, y spacing so that y = d/(n-1)

	• Good news: not all of the points in the dictionary can improve d
	- only eligible points are in half circle of radius d centered at p

	Searching the Dictionary II
	• But how to search in a half-circle?
	- a rectangle is almost a half-circle...
	- do a range search in the interval [y(p)-d,y(p)+d]
	- this will get all the points in the half-circle (and maybe some others)

	• Use brute-force to check the distance to each point returned by the range query
	• But isn’t that still a potentially large number of points?
	- actually, there are at most 6
	- key observation: all of the points in the dictionary are at least distance d from each other

	Putting It All Together
	• sort points by x-coordinate and store in ordered sequence X
	• maintain references to two positions in sequence
	- firstInStrip: the leftmost point in S
	- lastInStrip: the new point to be added to S

	• at each step..
	// advance lastInStrip
	lastInStrip ¨ X.after(lastInStrip)
	// remove points that are no longer candidates from dictionary
	while x(point(firstInStrip)) < x(point(lastInStrip))-d do
	S.remove(point(firstInStrip))
	firstInStrip ¨ X.after(firstInStrip)
	// update closest point information
	find point q closest to point(lastInStrip) in S
	if d(p,q) < d then
	update closest pair
	d ¨ d(p,q)
	// insert new point into dictionary
	S.insert(point(lastInStrip))

	An Example
	initial closest pair and dictionary

	An Example Continued
	one point in rectangle but not half-circle; closest pair not updated

	Still Going...
	two points in rectangle, one on border of half-circle; closest pair not updated

	Example Completed
	the final result, with closest pair shown

	Running Time
	• initial sort takes O(N log N) time
	• each point is inserted and removed once from S
	- S has at most N elements, so each insertion/ removal takes O(log N) time
	- total insertion/removal time is O(N log N)

	• dictionary is searched once each time a point is inserted into S
	- each range query takes O(log N + 6) = O(log N) time
	- total time for range queries is O(N log N)

	• distance computations performed each time a point is inserted into S
	- at most 6 computations at each time
	- total time for distance computations is O(N)

	Time Complexity: O(N log N)
	(definitely beats the brute force method!)

	Nearest Neighbor
	• Given a set S of sites, what is the closest site to point q?
	I.e. which post office is closest?

	• Brute force is only O(N)!
	- but if you repeat the query for k different points (using the same set of sites) the total time...

	• Could do something based on plane-sweep, but that takes O(N log N) time for each query...O(kN l...
	• There’s a better solution...

	Voronoi Diagram
	• S = { s1, s2, ..., sN }
	- set of points in the plane, called sites

	• Voronoi cell of si:
	- C(si) = { p : d(p,si) £ d(p,sj), " j ¹ i }
	- that is, the region of the plane containing all of the points that are closer to si than any ot...

	• Voronoi diagram of S
	- subdivison of the plane into Voronoi cells

	Constructing a Voronoi Diagram
	• Construct the perpendicular bisectors hij of each segment (si,sj)
	• Let Hij be the half-plane delimited by hij and containing si
	- all the points p in Hij are closer to si than sj

	• Voronoi cell for si is the intersection of the half- planes Hij for all sites sj (j ¹ i)
	• Voronoi diagram can be constructed in O(N log N) time
	- can use divide-and-conquer or plane-sweep technique

	Fun Voronoi Facts
	• Each Voronoi cell is convex
	• A Voronoi cell is unbounded if and only if the site is on the convex hull
	• If sj is the nearest neighbor of si, the Voronoi cells C(si) and C(sj) touch

	Applications
	• Given the Voronoi diagram, a nearest neighbor query can be performed in O(log N) time
	- k queries can be done in O((N+k) log N) time

	• Other applications
	- all nearest neighbors: for every point p Œ P, find its nearest neighbor q
	- closest pair
	- Delaunay triangulation
	- a triangulation is a division of the plane into a set of triangular regions

	- convex hull
	- not just limited to computational geometry...
	- model region of influence in archaeology, ecology, ...

	Shameless Plug
	• Want to know how to compute a Voronoi diagram in O(N log N) time?
	• Want to know how to do a nearest-neighbor query in O(log N) time?
	• Want to learn about other cool geometric algorithms?
	Take CS252:
	Computational Geometry!
	Compute all the distances d(p,q) and select the minimum �distance.
	d(p1, p2) = (x2 - x1)2 + (y2 - y1)2

	Time Complexity: O(N2)

