Closest Points

- Closest Pair
- Nearest Neighbor

Closest Pair

Given a set P of N points, find $\mathrm{p}, \mathrm{q} \in \mathrm{P}$ such that the distance $d(p, q)$ is minimum.

-

- Algorithms for determining the closest pair:
- brute force $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- divide-and-conquer $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- plane-sweep $O(N \log N)$

Brute Force Algorithm

Compute all the distances $\mathrm{d}(\mathrm{p}, \mathrm{q})$ and select the minimum distance.

$$
\begin{aligned}
& \mathrm{p}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \\
& \mathrm{d}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& \text { Time Complexity: } \mathbf{O}\left(\mathbf{N}^{2}, \mathrm{y}_{2}\right)
\end{aligned}
$$

Plane-Sweep Algorithm

- Maybe we can avoid having to check the distance between every pair of points...
- Plane-sweep worked for segment intersection, maybe it can be useful here...
- Key observation: if the closest pair of points to the left of the sweep line is distance d apart, the next point encountered can't be a closest pair with any point more than d units to the left of the line

Stored Information

- Maintain the following information:
- the closest pair (a, b) found so far, and the distance d between them
- ordered dictionary S of the points lying in a strip of width d to the left of the sweep line, using the y coordinates as keys

Updating

- When the sweep line encounters a point p:
- update the dictionary so it only contains points that might be a closest pair with p
- remove all points r such that $x(p)-x(r)>d$ from S
- find the closest point q to p in S
- if $d(p, q)<d$ then update the current closest pair and distance
- insert p into S

Searching the Dictionary

- How to quickly find the closest point in the dictionary?
- could be $\mathrm{O}(\mathrm{N})$ points in the dictionary...
have x, y spacing so that $\mathrm{y}=\mathrm{d} /(\mathrm{n}-1)$
- Good news: not all of the points in the dictionary can improve d
- only eligible points are in half circle of radius d centered at p

Searching the Dictionary II

- But how to search in a half-circle?
- a rectangle is almost a half-circle...
- do a range search in the interval [y(p)-d,y(p)+d]
- this will get all the points in the half-circle (and maybe some others)

- Use brute-force to check the distance to each point returned by the range query
- But isn't that still a potentially large number of points?
- actually, there are at most 6
- key observation: all of the points in the dictionary are at least distance d from each other

Putting It All Together

- sort points by x-coordinate and store in ordered sequence X
- maintain references to two positions in sequence
- firstInStrip: the leftmost point in S
- lastInStrip: the new point to be added to S
- at each step..
// advance lastInStrip
lastlnStrip \leftarrow X.after(lastlnStrip)
// remove points that are no longer candidates from dictionary
while $\times($ point(firstlnStrip)) $<x$ (point(lastlnStrip))-d do
S.remove(point(firstlnStrip))
firstInStrip \leftarrow X.after(firstInStrip)
// update closest point information
find point q closest to point(lastlnStrip) in S
if $d(p, q)<d$ then
update closest pair
$\mathrm{d} \leftarrow \mathrm{d}(\mathrm{p}, \mathrm{q})$
// insert new point into dictionary
S.insert(point(lastInStrip))

An Example

one point in rectangle but not half-circle; closest pair not updated

An Example Continued

one point in rectangle but not half-circle; closest pair not updated
\bullet

one point in rectangle but not half-circle; closest pair not updated

Still Going...

two points in rectangle, one on border of half-circle; closest pair not updated

two points in rectangle and half-circle; closest pair updated to nearer of the two

Example Completed

\bullet

$$
\begin{aligned}
& \text { • } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { ene final result, with closest } \\
& \text { pair shown }
\end{aligned}
$$

Running Time

- initial sort takes $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time
- each point is inserted and removed once from S
- S has at most N elements, so each insertion/ removal takes $\mathrm{O}(\log \mathrm{N})$ time
- total insertion/removal time is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- dictionary is searched once each time a point is inserted into S
- each range query takes $\mathrm{O}(\log \mathrm{N}+6)=\mathrm{O}(\log \mathrm{N})$ time
- total time for range queries is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- distance computations performed each time a point is inserted into S
- at most 6 computations at each time
- total time for distance computations is $\mathrm{O}(\mathrm{N})$

Time Complexity: $\mathbf{O}(\mathbf{N} \log N)$ (definitely beats the brute force method!)

Nearest Neighbor

- Given a set S of sites, what is the closest site to point q?

- Brute force is only $\mathrm{O}(\mathrm{N})$!
- but if you repeat the query for k different points (using the same set of sites) the total time is $\mathrm{O}(\mathrm{kN})$
- Could do something based on plane-sweep, but that takes $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time for each query...O $(\mathrm{kN} \log \mathrm{N})$ for k queries
- There's a better solution...

Voronoi Diagram

- $S=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$
- set of points in the plane, called sites
- Voronoi cell of s_{i} :
$-\mathrm{C}\left(\mathrm{s}_{\mathrm{i}}\right)=\left\{\mathrm{p}: \mathrm{d}\left(\mathrm{p}, \mathrm{s}_{\mathrm{i}}\right) \leq \mathrm{d}\left(\mathrm{p}, \mathrm{s}_{\mathrm{j}}\right), \forall \mathrm{j} \neq \mathrm{i}\right\}$
- that is, the region of the plane containing all of the points that are closer to s_{i} than any other site s_{j}
- Voronoi diagram of S
- subdivison of the plane into Voronoi cells

Constructing a Voronoi Diagram

- Construct the perpendicular bisectors h_{ij} of each segment $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$
- Let H_{ij} be the half-plane delimited by h_{ij} and containing s_{i}
- all the points p in H_{ij} are closer to s_{i} than s_{j}
- Voronoi cell for s_{i} is the intersection of the halfplanes H_{ij} for all sites $\mathrm{s}_{\mathrm{j}}(\mathrm{j} \neq \mathrm{i})$
- Voronoi diagram can be constructed in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time
- can use divide-and-conquer or plane-sweep technique

Fun Voronoi Facts

- Each Voronoi cell is convex
- A Voronoi cell is unbounded if and only if the site is on the convex hull
- If s_{j} is the nearest neighbor of s_{i}, the Voronoi cells $\mathrm{C}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mathrm{C}\left(\mathrm{s}_{\mathrm{j}}\right)$ touch

Applications

- Given the Voronoi diagram, a nearest neighbor query can be performed in $\mathrm{O}(\log \mathrm{N})$ time
- k queries can be done in $\mathrm{O}((\mathrm{N}+\mathrm{k}) \log \mathrm{N})$ time
- Other applications
- all nearest neighbors: for every point $p \in P$, find its nearest neighbor q
- closest pair
- Delaunay triangulation
- a triangulation is a division of the plane into a set of triangular regions
- convex hull
- not just limited to computational geometry...
- model region of influence in archaeology, ecology, ...

Shameless Plug

- Want to know how to compute a Voronoi diagram in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time?
- Want to know how to do a nearest-neighbor query in $\mathrm{O}(\log \mathrm{N})$ time?
- Want to learn about other cool geometric algorithms?

Take CS252:
 Computational Geometry!

