ANALYSIS OF Algorithms

- Quick Mathematical Review
- Running Time
- Pseudo-Code
- Analysis of Algorithms
- Asymptotic Notation
- Asymptotic Analysis

Average Case vs. Worst Case Running Time of an Algorithm

- An algorithm may run faster on certain data sets than on others,
- Finding the average case can be very difficult, so typically algorithms are measured by the worst-case time complexity.
- Also, in certain application domains (e.g., air traffic control, surgery, IP lookup) knowing the worst-case time complexity is of crucial importance.

Measuring the Running Time

- How should we measure the running time of an algorithm?
- Experimental Study
- Write a program that implements the algorithm
- Run the program with data sets of varying size and composition.
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time.
- The resulting data set should look something like:

Beyond Experimental Studies

- Experimental studies have several limitations:
- It is necessary to implement and test the algorithm in order to determine its running time.
- Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments should be used.
- We will now develop a general methodology for analyzing the running time of algorithms that
- Uses a high-level description of the algorithm instead of testing one of its implementations.
- Takes into account all possible inputs.
- Allows one to evaluate the efficiency of any algorithm in a way that is independent from the hardware and software environment.

Pseudo-Code

- Pseudo-code is a description of an algorithm that is more structured than usual prose but less formal than a programming language.
- Example: finding the maximum element of an array.

Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.
currentMax $\leftarrow \mathrm{A}[0]$
for $i \leftarrow 1$ to $n-1$ do
if currentMax < $\mathrm{A}[i]$ then currentMax $\leftarrow \mathrm{A}[i]$
return currentMax

- Pseudo-code is our preferred notation for describing algorithms.
- However, pseudo-code hides program design issues.

What is Pseudo-Code?

- A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.
- Expressions: use standard mathematical symbols to describe numeric and boolean expressions
- use \leftarrow for assignment ("=" in Java)
- use = for the equality relationship ("==" in Java)
- Method Declarations:
- Algorithm name(param1, param2)
- Programming Constructs:
- decision structures: if ... then ... [else ...]
- while-loops: while ... do
- repeat-loops
repeat ... until ...
- for-loop:
for ... do
- array indexing:

A $[$ i]

- Methods:
- calls:
- returns:
object method(args)
return value

Analysis of Algorithms

- Primitive Operations: Low-level computations that are largely independent from the programming language and can be identified in pseudocode, e.g:
- calling a method and returning from a method
- performing an arithmetic operation (e.g. addition)
- comparing two numbers, etc.
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.
- Example:

Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.
currentMax $\leftarrow \mathrm{A}[0]$
for $i \leftarrow 1$ to $n-1$ do
if currentMax < $\mathrm{A}[i]$ then currentMax $\leftarrow \mathrm{A}[i]$
return currentMax

Asymptotic Notation

- Goal: to simplify analysis by getting rid of unneeded information
- like "rounding" $1,000,001 \neq, 000,000$
- we want to say in a formal way $3 n^{2} \approx n^{2}$
- The "Big-Oh" Notation given functions $\boldsymbol{f}(n)$ and $\boldsymbol{g}(n)$, we say that $\boldsymbol{f}(n)$ is $\boldsymbol{O}(\boldsymbol{g}(n))$ if and only if there are positive constants c and n_{0} such that $\boldsymbol{f}(n) \leq \boldsymbol{c} \boldsymbol{g}(n)$ for $n \boldsymbol{n}_{\mathbf{0}}$

Another Example

- n^{2} is not $\mathrm{O}(n)$
- we cannot find c and n_{0} such that $n^{2} \leq c n$ for $n n_{0}$

Asymptotic Notation (cont.)

- Note: Even though it is correct to say
" $7 n-3$ is $\boldsymbol{O}\left(n^{3}\right)$ ", a better statement is
" $7 n-3$ is $\boldsymbol{O}(n)$ ", that is, one should make the approximation as tight as possible
- Simple Rule: Drop lower order terms and constant factors.
- $7 n-3$ is $\boldsymbol{O}(n)$
$-8 n^{2} \log n+5 n^{2}+n$ is $\boldsymbol{O}\left(n^{2} \log n\right)$
- Special classes of algorithms:
- logarithmic:
$\boldsymbol{O}(\log n)$
- linear
$\boldsymbol{O}(n)$
- quadratic
$\boldsymbol{O}\left(n^{2}\right)$
- polynomial
$\boldsymbol{O}\left(n^{k}\right), k \quad 1$
- exponential
$\boldsymbol{O}\left(a^{n}\right), n>1$
- "Relatives" of the Big-Oh
$-\Omega(\mathrm{f}(n))$: Big Omega
$-\Theta(\mathrm{f}(n))$: Big Theta

Asymptotic Analysis of The Running Time

- Use the Big-Oh notation to express the number of primitive operations executed as a function of the input size.
- For example, we say that the arrayMax algorithm runs in $\boldsymbol{O}(\mathrm{n})$ time.
- Comparing the asymptotic running time
- an algorithm that runs in $\boldsymbol{O}(\mathrm{n})$ time is better than one that runs in $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$ time
- similarly, $\boldsymbol{O}(\log \mathrm{n})$ is better than $\boldsymbol{O}(\mathrm{n})$
- hierarchy of functions:
$-\log \mathrm{n} \ll \mathrm{n} \ll \mathrm{n}^{2} \ll \mathrm{n}^{3} \ll 2^{\mathrm{n}}$
- Caution!
- Beware of very large constant factors. An algorithm running in time $1,000,000 n$ is still $\boldsymbol{O}(n)$ but might be less efficient on your data set than one running in time $2 \mathrm{n}^{2}$, which is $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$

Example of Asymptotic Analysis

- An algorithm for computing prefix averages

Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that $\mathrm{A}[i]$ is the average of elements $X[0], \ldots, X[i]$.
Let A be an array of n numbers.
for $i \leftarrow 0$ to $n-1$ do
$a \leftarrow 0$
for $j \leftarrow 0$ to i do $a \leftarrow a+X[j]$
$\mathrm{A}[\mathrm{i}] \leftarrow a /(i+1)$
return array A

- Analysis ...

A Quick Math Review

- Arithmetic progressions:
- An example

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Another Example

- A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that $\mathrm{A}[i]$ is the average of elements $X[0], \ldots, X[i]$.
Let A be an array of n numbers.
$s \leftarrow 0$
for $i \leftarrow 0$ to $n-1$ do
$s \leftarrow s+X[i]$
$\mathrm{A}[\mathrm{i}] \leftarrow s /(i+1)$
return array A

- Analysis ...

Math You Need to Review

- Logarithms and Exponents
- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x=\alpha \log _{b} x \\
& \log _{b} a=\frac{\log _{x} a}{\log _{x} b}
\end{aligned}
$$

- properties of exponentials:
$a^{(b+c)}=a^{b} a^{c}$
$\mathrm{a}^{\mathrm{bc}}=\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}}$
$\mathrm{a}^{\mathrm{b}} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}$
$\mathrm{b}=\mathrm{a}^{\log _{\mathrm{a}} \mathrm{b}}$
$b^{c}=a^{c^{*} \log _{\mathrm{a}} \mathrm{b}}$

More Math to Review

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil\mathrm{x}\rceil=\text { the smallest integer } \mathrm{x}
$$

- Summations
- general definition:

$$
\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)
$$

- where f is a function, s is the start index, and t is the end index
- Geometric progression: $f(i)=a^{i}$
- given an integer $n \quad 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

- geometric progressions exhibit exponential growth

Advanced Topics: Simple Justification Techniques

- By Example
- Find an example
- Find a counter example
- The "Contra" Attack
- Find a contradiction in the negative statement
- Contrapositive
- Induction and Loop-Invariants
- Induction
- 1) Prove the base case
- 2) Prove that any case n implies the next case $(n+1)$ is also true
- Loop invariants
- Prove initial claim S_{0}
- Show that S_{i-1} implies S_{i} will be true after iteration i

Advanced Topics: Other Justification Techniques

- Proof by Excessive Waving of Hands
- Proof by Incomprehensible Diagram
- Proof by Very Large Bribes
- see instructor or TAs after class
- Proof by Violent Metaphor
- Don't argue with anyone who always assumes a sequence consists of hand grenades
- The Emperor's New Clothes Method
- "This proof is so obvious only an idiot wouldn't be able to understand it."

