AVL T REES

e AVL Trees

.....
0000 0500¢°
0.0 0 ® 0.0 ..
LRI R
1 00 000 o 90 0
%00 090 000® O0pq000,
07008 00000 0 00009%® ()
(J ° 00000000000000000 °
S0iE0e000 0 030 oenteriisaser e ee geatee g ate gee S350E0
Dot I 0000 00 0000 ¢¥¢ 0l 00 00 00 000000 00 00 000 Ceeaeer
[0 J 07000 0 398.0,0
%0000 %0 0% 000, 009,000
ALY %0, 0 (e80et, Regenedy o033,
Sodo 0000, 00,00 ¢% 0088008400 0 0."000%'«00 0000 909390
o008se 02098000 000 008000:0033 S Jg 0 0008§§> 00000 00000000q0000¢ 0030 0100
06200088, 2000 50000070000 ¢ 0 990007007° € 9 ~ 00050059900 00 (8060009 0000 000 %
o,'08 s0eee 0.'&@&; 00 00 84038000090 00 LSy 0.‘202%0.00 0000 0%'000°0 0000 ¢ 40 ¢ 004000590
.'.'% (&0': .2.0.0..:‘ LEses eesed ..20.0(59..0.% Do 0000% s’y 0000000 #4018 0800% 000000.0.0000. o
000 0508 8000000700 0,40 00000 08804 o0
090
AVL Trees 9.1

AVL Tree

e AVL trees are balanced.

« An AVL Tree is a binary search tree such that for
every internal node of T, the heights of the children
of v can differ by at most 1.

« An example of an AVL tree where the heights are
shown next to the nodes:

AVL Trees 9.2

Height of an AVL Tree

e Proposition: The height of an AVL tre& storingn
keys i1sO(log n).

 Justification: The easiest way to approach this
problem is to try to find the minimum number of
Internal nodes of an AVL tree of heigmtn(h).

e We see tham(1l) = 1 andh(2) = 2

e forn 3, an XL tree of heighh with n(h) minimal
contains the root node, one AVL subtree of height
1 and the other AVL subtree of heigh®.

e i.e.n(h) =1 +n(h-1) + n(h-2)
 Knowingn(h-1) >n(h-2), we gein(h) > 2nh-2)
- n(h) > 2nh-2)
- n(h) > 4n(h-4)
- n(h) > 2n(h-2i)
- Solving the base case we ga) 221
e Taking logarithmsh < 2logn(h) +2
e Thus the height of an AVL tree ©(log n)

AVL Trees 9.3

Insertion

* A binary search treé is calledbalancedf for every
nodev, the height o¥/'s children differ by at most
one.

 Inserting a node into an AVL tree involves
performing arexpandExternal(w) on T, which
changes the heights of some of the nodds in

e |If an insertion causeBto becomeinbalancegdwe
travel up the tree from the newly created node until
we find the first nodg such that its grandparents
unbalanced node.

e Sincez became unbalanced by an insertion in the
subtree rooted at its chiigl
heightf/)) = height(siblingy)) + 2

 To rebalance the subtree rooted,atre must
perform arestructuring

- We rename, y, andz to a, b, andc based on the
order of the nodes in an in-order traversal.

- zis replaced by, whose children are noavandc
whose children, in turn, consist of the four other
subtrees formerly children af y, andz.

AVL Trees 94

Insertion (contd.)

« Example of insertion into an AVL tree.

5 Oh no, unbalanced!

AVL Trees

9.5

Restructuring

e The four ways to rotate nodes in an AVL tree,
graphically represented:

- Single Rotations:

AVL Trees

9.6

Restructuring (contd.)

- double rotations:

double rotation

AVL Trees

9.7

Restructure Algorithm

Algorithm restructuréx):
Input: A nodex of a binary search treethat has both

a parenty and a grandpareant
Output: TreeT restructured by a rotation (either
single or double) involving nodesy, andz

1: Let (@, b, c) be an inorder listing of the nodesy,
andz, and let (|, T4, Tp, Tg) be an inorder listing
of the the four subtrees a&fy, andz not rooted akx,
Y, Or Z

2. Replace the subtree rooted atith a new subtree
rooted ab

3. Letabe the left child ob and let Ty, T, be the left
and right subtrees @ respectively.

4. Letcbe theright child oband let T, T be the left
and right subtrees af respectively.

AVL Trees 9.8

Cut/Link Restructure Algorithm

e Let’s go into a little more detail on this algorithm..

o Any tree that needs to be balanced can be groupec
Into 7 parts: X, y, z, and the 4 trees anchored at the
children of those nodes {F)

 Make a new tree which is balanced and put the 7
parts from the old tree into the new tree so that the
numbering is still correct when we do an in-order-
traversal of the new tree.

* This works regardless of how the tree is originally
unbalanced.

e Let's see how it works!

AVL Trees 9.9

Cut/Link Restructure Algorithm

 Number the 7 parts by doing an in-order-traversal.
(note that x,y, and z are now renamed based upon
their order within the traversal)

AVL Trees 9.10

Cut/Link Restructure Algorithm

 Now create an Array, numbered 1 to 7 (the Oth
element can be ignored with minimal waste of

space)

o Cut() the 4 T trees and place them in their inorder
rank in the array.

To T T o T3

1 2 3 4 5 6 7

AVL Trees 9.11

Cut/Link Restructure Algorithm

 Now cut Xx,y, and z in that order
(child,parent,grandparent) and place them in their
Inorder rank in the array.

SRS

1 2 3 4 5 6 7

e Now we can re-link these subtrees to the main tree

 Link in rank 4 (b) where the subtree’s root formerly
was

40b
(62

AVL Trees 9.12

Cut/Link Restructure Algorithm

Link in ranks 2 (a) and 6 (c) as 4’s children.

AVL Trees 9.13

Cut/Link Restructure Algorithm

e Finally, link inranks 1,3,5, and 7 as the children of 2
and 6.

 Now you have a balanced tree!

AVL Trees 9.14

Cut/Link Restructure algorithm

e This algorithm for restructuring has the exact same
effect as using the four rotation cases discussed
earlier.

e Advantages: no case analysis, more elegant
* Disadvantage: can be more code to write

e Same time complexity

AVL Trees 9.15

Removal

« WWe can easily see that performing a
removeAboveExternal(w) can causé to become
unbalanced.

o Letzbe the firsuinbalancemode encountered while
travelling up the tree fronw. Also, let y be the child
of zwith the larger height, and letbe the child ofy
with the larger height.

e We can perform operationastructure(X) to restore
balance at the subtree rootec.at

 As this restructuring may upset the balance of

another node higher in the tree, we must continue

checking for balance until the root bis reached.

| >4

AVL Trees 9.16

Removal (contd.)

e example of deletion from an AVL tree:
z Oh no, unbalanced!

AVL Trees

9.17

Removal (contd.)

e example of deletion from an AVL tree
Z Oh no, unbalanced!

AVL Trees 9.18

Implementation

e A Java-based implementation of an AVL tree
requires the following node class:

public class AVLItem extends Item {
Int height,

AVLItem(Object k, Object g, int h) {
super (k, e);
height = h;

}

public int height() {
return height,

}

public int setHeight(int h) {
Int oldHeight = height,
height = h;
return oldHeight,
}
}

AVL Trees 9.19

Implementation (contd.)

public class SimpleAVLTree

extends SimpleBinarySearchTree
Implements Dictionary {

public SimpleAVLTree(Comparator ¢) {
super (¢);
T = new RestructurableNodeBinaryTree();

}

private int height(Position p) {

If (T.isExternal(p))
return O;

else
return ((AVLItem) p.element()).height();

}

private void setHeight(Position p) {// called only
/l'if p is internal

((AVLItem) p.element()).setHeight

(1 + Math.max(height(T-leftChild(p)),
height(T-rightChild(p))));

AVL Trees 9.20

Implementation (contd.)

private boolean isBalanced(Position p) {

// test whether node p has balance factor
I/l between -1 and 1

int bf = height(T.leftChild(p)) - height(T.rightChild(p));
return ((-1 <= bf) && (bf<=1));

}

private Position tallerChild(Position p) {

// return a child of p with height no
/I smaller than that of the other child

If (height(T.leftChild(p)) >= height(T.rightChild(p)))
return TleftChild(p);

else
return TrightChild(p);

AVL Trees 9.21

Implementation (contd.)

private void rebalance(Position zPos) {

/ltraverse the path of T from ZzPos to the root;
/[for each node encountered recompute its

//height and perform a rotation if it is

/lunbalanced

while (!TisRoot(zPos)) {
zPos = T.parent(zPos),
setHeight(zPos);
If (lisBalanced(zPos)) { // perform a rotation
Position xPos = tallerChild(tallerChild(zPos));

zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

setHeight(T.leftChild(zPos));
setHeight(T.rightChild(zPos));
setHeight(zPos);

}

AVL Trees 9.22

Implementation (contd.)

public void insertltem(Object key, Object element)
throws InvalidKeyException {

super .insertlitem(key, element);/ may throw an
/I InvalidKeyException

Position zPos = actionPos; // start at the
// insertion position

T.replace(zPos, new AVLItem(key, element, 1));
rebalance(zPos);

}

public Object remove(Object key)
throws InvalidKeyException {

Object toReturn = super .remove(key); // may throw
/[an InvalidKeyException

If (toReturn'= NO_SUCH_KEY) {

Position zPos = actionPos: // start at the
// removal position

rebalance(zPos);
}
return toReturn;
}
}

AVL Trees 9.23

	AVL Trees
	• AVL Trees
	AVL Tree
	• AVL trees are balanced.
	• An AVL Tree is a binary search tree such that for every internal node v of T, the heights of th...
	• An example of an AVL tree where the heights are shown next to the nodes:

	Height of an AVL Tree
	• Proposition: The height of an AVL tree T storing n keys is O(log n).
	• Justification: The easiest way to approach this problem is to try to find the minimum number of...
	• We see that n(1) = 1 and n(2) = 2
	• for n ³ 3, an AVL tree of height h with n(h) minimal contains the root node, one AVL subtree of...
	• i.e. n(h) = 1 + n(h-1) + n(h-2)
	• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
	- n(h) > 2n(h-2)
	- n(h) > 4n(h-4) ...
	- n(h) > 2in(h-2i)

	• Solving the base case we get: n(h) ³ 2h/2-1
	• Taking logarithms: h < 2log n(h) +2
	• Thus the height of an AVL tree is O(log n)

	Insertion
	• A binary search tree T is called balanced if for every node v, the height of v’s children diffe...
	• Inserting a node into an AVL tree involves performing an expandExternal(w) on T, which changes ...
	• If an insertion causes T to become unbalanced, we travel up the tree from the newly created nod...
	• Since z became unbalanced by an insertion in the subtree rooted at its child y, height(y) = hei...
	• To rebalance the subtree rooted at z, we must perform a restructuring
	- we rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal.
	- z is replaced by b, whose children are now a and c whose children, in turn, consist of the four...

	Insertion (contd.)
	• Example of insertion into an AVL tree.

	Restructuring
	• The four ways to rotate nodes in an AVL tree, graphically represented:
	- Single Rotations:

	Restructuring (contd.)
	- double rotations:

	Restructure Algorithm
	Algorithm restructure(x):
	Input: A node x of a binary search tree T that has both a parent y and a grandparent z
	Output: Tree T restructured by a rotation (either single or double) involving nodes x, y, and z.
	1: Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T0, T1, T2, T3) be an i...
	2. Replace the subtree rooted at z with a new subtree rooted at b
	3. Let a be the left child of b and let T0, T1 be the left and right subtrees of a, respectively.
	4. Let c be the right child of b and let T2, T3 be the left and right subtrees of c, respectively.

	Cut/Link Restructure Algorithm
	• Let’s go into a little more detail on this algorithm...
	• Any tree that needs to be balanced can be grouped into 7 parts: x, y, z, and the 4 trees anchor...
	• Make a new tree which is balanced and put the 7 parts from the old tree into the new tree so th...
	• This works regardless of how the tree is originally unbalanced.
	• Let’s see how it works!

	Cut/Link Restructure Algorithm
	• Number the 7 parts by doing an in-order-traversal. (note that x,y, and z are now renamed based ...

	Cut/Link Restructure Algorithm
	• Now create an Array, numbered 1 to 7 (the 0th element can be ignored with minimal waste of space)
	• Cut() the 4 T trees and place them in their inorder rank in the array.

	Cut/Link Restructure Algorithm
	• Now cut x,y, and z in that order (child,parent,grandparent) and place them in their inorder ran...
	• Now we can re-link these subtrees to the main tree.
	• Link in rank 4 (b) where the subtree’s root formerly was

	Cut/Link Restructure Algorithm
	Link in ranks 2 (a) and 6 (c) as 4’s children.
	Cut/Link Restructure Algorithm
	• Finally, link in ranks 1,3,5, and 7 as the children of 2 and 6.
	• Now you have a balanced tree!

	Cut/Link Restructure algorithm
	• This algorithm for restructuring has the exact same effect as using the four rotation cases dis...
	• Advantages: no case analysis, more elegant
	• Disadvantage: can be more code to write
	• Same time complexity

	Removal
	• We can easily see that performing a removeAboveExternal(w) can cause T to become unbalanced.
	• Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y...
	• We can perform operation restructure(x) to restore balance at the subtree rooted at z.
	• As this restructuring may upset the balance of another node higher in the tree, we must continu...

	Removal (contd.)
	• example of deletion from an AVL tree:

	Removal (contd.)
	• example of deletion from an AVL tree

	Implementation
	• A Java-based implementation of an AVL tree requires the following node class:
	public class AVLItem extends Item {
	int height;
	AVLItem(Object k, Object e, int h) {
	super(k, e);
	height = h;
	}
	public int height() {
	return height;
	}
	public int setHeight(int h) {
	int oldHeight = height;
	height = h;
	return oldHeight;
	}
	}

	Implementation (contd.)
	public class SimpleAVLTree
	extends SimpleBinarySearchTree implements Dictionary {
	public SimpleAVLTree(Comparator c) {
	super(c);
	T = new RestructurableNodeBinaryTree();
	}
	private int height(Position p) {
	if (T.isExternal(p))
	return 0;
	else
	return ((AVLItem) p.element()).height();
	}
	private void setHeight(Position p) { // called only // if p is internal
	((AVLItem) p.element()).setHeight
	(1 + Math.max(height(T.leftChild(p)), height(T.rightChild(p))));
	}

	Implementation (contd.)
	private boolean isBalanced(Position p) {
	// test whether node p has balance factor // between -1 and 1
	int bf = height(T.leftChild(p)) - height(T.rightChild(p));
	return ((-1 <= bf) && (bf <= 1));
	}
	private Position tallerChild(Position p) {
	// return a child of p with height no // smaller than that of the other child
	if(height(T.leftChild(p)) >= height(T.rightChild(p)))
	return T.leftChild(p);
	else
	return T.rightChild(p);
	}

	Implementation (contd.)
	private void rebalance(Position zPos) {
	//traverse the path of T from zPos to the root; //for each node encountered recompute its //heigh...
	while (!T.isRoot(zPos)) {
	zPos = T.parent(zPos);
	setHeight(zPos);
	if (!isBalanced(zPos)) { // perform a rotation
	Position xPos = tallerChild(tallerChild(zPos));
	zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos);
	setHeight(T.leftChild(zPos));
	setHeight(T.rightChild(zPos));
	setHeight(zPos);
	}
	}
	}

	Implementation (contd.)
	public void insertItem(Object key, Object element)
	throws InvalidKeyException {
	super.insertItem(key, element);// may throw an // InvalidKeyException
	Position zPos = actionPos; // start at the // insertion position
	T.replace(zPos, new AVLItem(key, element, 1));
	rebalance(zPos);
	}
	public Object remove(Object key)
	throws InvalidKeyException {
	Object toReturn = super.remove(key); // may throw // an InvalidKeyException
	if (toReturn != NO_SUCH_KEY) {
	Position zPos = actionPos; // start at the // removal position
	rebalance(zPos);
	}
	return toReturn;
	}
	}

