AVL TREES

- AVL Trees

AVL Tree

- AVL trees are balanced.
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1 .
- An example of an AVL tree where the heights are shown next to the nodes:

Height of an AVL Tree

- Proposition: The height of an AVL tree T storing n keys is $\boldsymbol{O}(\log n)$.
- Justification: The easiest way to approach this problem is to try to find the minimum number of internal nodes of an AVL tree of height $h: n(h)$.
- We see that $n(1)=1$ and $n(2)=2$
- for $n \quad 3$, an $\mathbb{A V}$ L tree of height h with $n(h)$ minimal contains the root node, one AVL subtree of height n 1 and the other AVL subtree of height $n-2$.
- i.e. $n(h)=1+n(h-1)+n(h-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 \mathrm{n}(h-2)$
- $n(h)>2 \mathrm{n}(h-2)$
- $n(h)>4 n(h-4)$
...
- $n(h)>2^{i} n(h-2 i)$
- Solving the base case we get: $n(h) \quad 2^{2 / 2-1}$
- Taking logarithms: $h<2 \log n(h)+2$
- Thus the height of an AVL tree is $\boldsymbol{O}(\log n)$

Insertion

- A binary search tree T is called balanced if for every node v, the height of v 's children differ by at most one.
- Inserting a node into an AVL tree involves performing an expandExternal (w) on T, which changes the heights of some of the nodes in T.
- If an insertion causes T to become unbalanced, we travel up the tree from the newly created node until we find the first node x such that its grandparent z is unbalanced node.
- Since z became unbalanced by an insertion in the subtree rooted at its child y, $\operatorname{height}(y)=\operatorname{height}(\operatorname{sibling}(y))+2$
- To rebalance the subtree rooted at z, we must perform a restructuring
- we rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal.
- z is replaced by b, whose children are now a and c whose children, in turn, consist of the four other subtrees formerly children of x, y, and z.

Insertion (contd.)

- Example of insertion into an AVL tree.

Restructuring

- The four ways to rotate nodes in an AVL tree, graphically represented:
- Single Rotations:

Restructuring (contd.)

- double rotations:

Restructure Algorithm

Algorithm restructure (x) :
Input: A node x of a binary search tree T that has both
a parent y and a grandparent z
Output: Tree T restructured by a rotation (either single or double) involving nodes x, y, and z.

1: Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let $\left(\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right)$ be an inorder listing of the the four subtrees of x, y, and z not rooted at x, y, or z
2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let $\mathrm{T}_{0}, \mathrm{~T}_{1}$ be the left and right subtrees of a, respectively.
4. Let c be the right child of b and let $\mathrm{T}_{2}, \mathrm{~T}_{3}$ be the left and right subtrees of c, respectively.

Cut/Link Restructure Algorithm

- Let's go into a little more detail on this algorithm...
- Any tree that needs to be balanced can be grouped into 7 parts: $\mathrm{x}, \mathrm{y}, \mathrm{z}$, and the 4 trees anchored at the children of those nodes $\left(\mathrm{T}_{0-3}\right)$

- Make a new tree which is balanced and put the 7 parts from the old tree into the new tree so that the numbering is still correct when we do an in-ordertraversal of the new tree.
- This works regardless of how the tree is originally unbalanced.
- Let's see how it works!

Cut/Link Restructure Algorithm

- Number the 7 parts by doing an in-order-traversal. (note that x, y, and z are now renamed based upon their order within the traversal)

Cut/Link Restructure Algorithm

- Now create an Array, numbered 1 to 7 (the 0th element can be ignored with minimal waste of space)

- $\operatorname{Cut}()$ the 4 T trees and place them in their inorder rank in the array.

Cut/Link Restructure Algorithm

- Now cut x, y, and z in that order (child,parent,grandparent) and place them in their inorder rank in the array.

- Now we can re-link these subtrees to the main tree.
- Link in rank 4 (b) where the subtree's root formerly was

Cut/Link Restructure Algorithm

 Link in ranks 2 (a) and 6 (c) as 4's children.

Cut/Link Restructure Algorithm

- Finally, link in ranks $1,3,5$, and 7 as the children of 2 and 6.

- Now you have a balanced tree!

Cut/Link Restructure algorithm

- This algorithm for restructuring has the exact same effect as using the four rotation cases discussed earlier.
- Advantages: no case analysis, more elegant
- Disadvantage: can be more code to write
- Same time complexity

Removal

- We can easily see that performing a removeAboveExternal(w) can cause T to become unbalanced.
- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We can perform operation restructure (x) to restore balance at the subtree rooted at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

Removal (contd.)

- example of deletion from an AVL tree:

Whew, balanced now.

Removal (contd.)

- example of deletion from an AVL tree $z \quad$ Oh no, unbalanced!

Whew, balanced now.

Implementation

- A Java-based implementation of an AVL tree requires the following node class:
public class AVLItem extends Item \{ int height;

AVLItem(Object k, Object e, int h) \{
super(k, e);
height $=h$;
\}
public int height() \{
return height;
\}
public int setHeight(int h) \{
int oldHeight = height;
height = h;
return oldHeight,
\}
\}

Implementation (contd.)

public class SimpleAVLTree
extends SimpleBinarySearchTree implements Dictionary
public SimpleAVLTree(Comparator c) \{
super(c);
$T=$ new RestructurableNodeBinaryTree();
\}
private int height(Position p) \{
if (T.isExternal(p))
return 0;
else
return ((AVLItem) p.element()).height();
\}
private void setHeight(Position p) \{ // called only // if p is internal
((AVLItem) p.element()).setHeight
(1 + Math.max(height(T.leftChild(p)),
height(T.rightChild(p))));
\}

Implementation (contd.)

private boolean isBalanced(Position p) \{
// test whether node p has balance factor // between -1 and 1 int $b f=$ height $(T . \operatorname{leftChild}(p))-\operatorname{height}(T . r i g h t C h i l d(p))$; return $((-1<=b f) \& \&(b f<=1))$; \}
private Position tallerChild(Position p) \{
// return a child of p with height no
// smaller than that of the other child
if(height $(T . \operatorname{leftChild}(p))>=$ height $(T$.rightChild $(p)))$
return T.leftChild (p);
else
return T.rightChild (p);
\}

Implementation (contd.)

private void rebalance(Position zPos) \{
//traverse the path of T from $z P o s$ to the root;
//for each node encountered recompute its
//height and perform a rotation if it is
/ /unbalanced
while (!T.isRoot(zPos)) \{
zPos = T.parent(zPos);
setHeight(zPos); if (!isBalanced(zPos)) \{ // perform a rotation
Position x Pos = tallerChild(tallerChild(zPos));
zPos = ((RestructurableNodeBinaryTree) 7).restructure (x Pos);
setHeight(T.leftChild(zPos));
setHeight(T.rightChild(zPos));
setHeight(zPos);
\}
\}
\}

Implementation (contd.)

public void insertltem(Object key, Object element) throws InvalidKeyException \{
super.insertltem(key, element);// may throw an
// InvalidKeyException
Position zPos = actionPos; // start at the
// insertion position
T.replace(zPos, new AVLItem(key, element, 1)); rebalance(zPos);
\}
public Object remove(Object key)
throws InvalidKeyException \{
Object toReturn = super.remove(key); // may throw
// an InvalidKeyException
if (toReturn != NO_SUCH_KEY) \{
Position zPos = actionPos; // start at the // removal position
rebalance(zPos);
\}
return toReturn;

