
9.1AVL Trees

AVL T REES

• AVL Trees

9.2AVL Trees

AVL Tree
• AVL trees are balanced.

• An AVL Tree is a binary search tree such that for
every internal nodev of T, the heights of the children
of v can differ by at most 1.

• An example of an AVL tree where the heights are
shown next to the nodes:

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

9.3AVL Trees

Height of an AVL Tree
• Proposition: The height of an AVL treeT storingn

keys isO(log n).

• Justification: The easiest way to approach this
problem is to try to find the minimum number of
internal nodes of an AVL tree of heighth: n(h).

• We see thatn(1) = 1 andn(2) = 2

• for n 3, an AVL tree of heighth with n(h) minimal
contains the root node, one AVL subtree of heightn-
1 and the other AVL subtree of heightn-2.

• i.e.n(h) = 1 +n(h-1) + n(h-2)

• Knowingn(h-1) > n(h-2), we getn(h) > 2n(h-2)
- n(h) > 2n(h-2)
- n(h) > 4n(h-4)

...
- n(h) > 2in(h-2i)

• Solving the base case we get:n(h) 2h/2-1

• Taking logarithms:h < 2logn(h) +2

• Thus the height of an AVL tree isO(log n)

9.4AVL Trees

Insertion
• A binary search treeT is calledbalancedif for every

nodev, the height ofv’s children differ by at most
one.

• Inserting a node into an AVL tree involves
performing anexpandExternal(w) onT, which
changes the heights of some of the nodes inT.

• If an insertion causesT to becomeunbalanced, we
travel up the tree from the newly created node until
we find the first nodex such that its grandparentz is
unbalanced node.

• Sincez became unbalanced by an insertion in the
subtree rooted at its childy,
height(y) = height(sibling(y)) + 2

• To rebalance the subtree rooted atz, we must
perform arestructuring
- we renamex, y, andz to a, b, andc based on the

order of the nodes in an in-order traversal.
- z is replaced byb, whose children are nowa andc

whose children, in turn, consist of the four other
subtrees formerly children ofx, y, andz.

9.5AVL Trees

Insertion (contd.)
• Example of insertion into an AVL tree.

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

Oh no, unbalanced!

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

Whew, balanced now.

1

2

3

4

5

6

7

9.6AVL Trees

Restructuring
• The four ways to rotate nodes in an AVL tree,

graphically represented:

- Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

9.7AVL Trees

Restructuring (contd.)

- double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

9.8AVL Trees

Restructure Algorithm

Algorithm restructure(x):
Input:A nodex of a binary search treeT that has both

a parenty and a grandparentz
Output: TreeT restructured by a rotation (either

single or double) involving nodesx, y, andz.

1: Let (a, b, c) be an inorder listing of the nodesx, y,
andz, and let (T0, T1, T2, T3) be an inorder listing
of the the four subtrees ofx, y, andznot rooted atx,
y, orz

2. Replace the subtree rooted atz with a new subtree
rooted atb

3. Leta be the left child ofb and let T0, T1 be the left
and right subtrees ofa, respectively.

4. Letc be the right child ofb and let T2, T3 be the left
and right subtrees ofc, respectively.

9.9AVL Trees

Cut/Link Restructure Algorithm
• Let’s go into a little more detail on this algorithm...

• Any tree that needs to be balanced can be grouped
into 7 parts: x, y, z, and the 4 trees anchored at the
children of those nodes (T0-3)

• Make a new tree which is balanced and put the 7
parts from the old tree into the new tree so that the
numbering is still correct when we do an in-order-
traversal of the new tree.

• This works regardless of how the tree is originally
unbalanced.

• Let’s see how it works!

88

44

17

7850

48

62

54T0

T1

T2

T3

z

y

x

9.10AVL Trees

Cut/Link Restructure Algorithm
• Number the 7 parts by doing an in-order-traversal.

(note that x,y, and z are now renamed based upon
their order within the traversal)

88

44

17

7850

48

62

54T0

T1

T2

T3

z (a)

y (b)

x (c)

1
2

3
4

5
6

7

9.11AVL Trees

Cut/Link Restructure Algorithm
• Now create an Array, numbered 1 to 7 (the 0th

element can be ignored with minimal waste of
space)

• Cut() the 4 T trees and place them in their inorder
rank in the array.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

T0 T1 T2 T3

9.12AVL Trees

Cut/Link Restructure Algorithm
• Now cut x,y, and z in that order

(child,parent,grandparent) and place them in their
inorder rank in the array.

• Now we can re-link these subtrees to the main tree.

• Link in rank 4 (b) where the subtree’s root formerly
was

1 2 3 4 5 6 7

T0 T1 T2 T378

c
62

ba
44

62

b4

9.13AVL Trees

Cut/Link Restructure Algorithm
Link in ranks 2 (a) and 6 (c) as 4’s children.

62

b4

44 78

a c2 6

9.14AVL Trees

Cut/Link Restructure Algorithm
• Finally, link in ranks 1,3,5, and 7 as the children of 2

and 6.

• Now you have a balanced tree!

62

y4

44 78

z x

17

T0

1

2 6

50

48 54

T1

3 5
88

T3

7
T2

9.15AVL Trees

Cut/Link Restructure algorithm
• This algorithm for restructuring has the exact same

effect as using the four rotation cases discussed
earlier.

• Advantages: no case analysis, more elegant

• Disadvantage: can be more code to write

• Same time complexity

9.16AVL Trees

Removal
• We can easily see that performing a

removeAboveExternal(w) can causeT to become
unbalanced.

• Let zbe the firstunbalancednode encountered while
travelling up the tree fromw. Also, let y be the child
of zwith the larger height, and letx be the child ofy
with the larger height.

• We can perform operationrestructure(x) to restore
balance at the subtree rooted atz.

• As this restructuring may upset the balance of
another node higher in the tree, we must continue
checking for balance until the root ofT is reached.

9.17AVL Trees

Removal (contd.)
• example of deletion from an AVL tree:

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1

T2

T3

z

y

x

0

Oh no, unbalanced!

8817

78

50

48

62

1

1

2

23

1

54
1

T0

T1

T2

T3

y

x
44

4

z

0

Whew, balanced now.

9.18AVL Trees

Removal (contd.)
• example of deletion from an AVL tree

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1 T2 T3

z

y

x

0

Oh no, unbalanced!

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T0 T1 T2

T3

y

x

0

44
2

z

Whew, balanced now.

9.19AVL Trees

Implementation
• A Java-based implementation of an AVL tree

requires the following node class:

public class AVLItem extends Item {

int height;

AVLItem(Object k, Object e, int h) {

super (k, e);

height = h;

 }

public int height() {

return height;

 }

public int setHeight(int h) {

int oldHeight = height;

height = h;

return oldHeight;

 }

}

9.20AVL Trees

Implementation (contd.)
public class SimpleAVLTree

extends SimpleBinarySearchTree
implements Dictionary {

public SimpleAVLTree(Comparator c) {

super (c);

T = new RestructurableNodeBinaryTree();

 }

private int height(Position p) {

if (T.isExternal(p))

return 0;

else

return ((AVLItem) p.element()).height();

 }

private void setHeight(Position p) { // called only
// if p is internal

 ((AVLItem) p.element()).setHeight

(1 + Math.max(height(T.leftChild(p)),
 height(T.rightChild(p))));

 }

9.21AVL Trees

Implementation (contd.)

private boolean isBalanced(Position p) {
// test whether node p has balance factor
// between -1 and 1

 int bf = height(T.leftChild(p)) - height(T.rightChild(p));

return ((-1 <= bf) && (bf <= 1));

}

private Position tallerChild(Position p) {
 // return a child of p with height no

 // smaller than that of the other child

if (height(T.leftChild(p)) >= height(T.rightChild(p)))

return T.leftChild(p);

else

return T.rightChild(p);

 }

9.22AVL Trees

Implementation (contd.)

private void rebalance(Position zPos) {
//traverse the path of T from zPos to the root;
//for each node encountered recompute its
//height and perform a rotation if it is
//unbalanced

while (!T.isRoot(zPos)) {

zPos = T.parent(zPos);

setHeight(zPos);

if (!isBalanced(zPos)) { // perform a rotation

 Position xPos = tallerChild(tallerChild(zPos));

zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

setHeight(T.leftChild(zPos));

setHeight(T.rightChild(zPos));

setHeight(zPos);

 }

}

}

9.23AVL Trees

Implementation (contd.)

public void insertItem(Object key, Object element)

throws InvalidKeyException {

super .insertItem(key, element);// may throw an
// InvalidKeyException

Position zPos = actionPos; // start at the
// insertion position

T.replace(zPos, new AVLItem(key, element, 1));

rebalance(zPos);

 }

public Object remove(Object key)

throws InvalidKeyException {

Object toReturn = super .remove(key); // may throw
// an InvalidKeyException

if (toReturn != NO_SUCH_KEY) {

Position zPos = actionPos; // start at the
 // removal position

rebalance(zPos);

 }

return toReturn;

 }

}

	AVL Trees
	• AVL Trees
	AVL Tree
	• AVL trees are balanced.
	• An AVL Tree is a binary search tree such that for every internal node v of T, the heights of th...
	• An example of an AVL tree where the heights are shown next to the nodes:

	Height of an AVL Tree
	• Proposition: The height of an AVL tree T storing n keys is O(log n).
	• Justification: The easiest way to approach this problem is to try to find the minimum number of...
	• We see that n(1) = 1 and n(2) = 2
	• for n ³ 3, an AVL tree of height h with n(h) minimal contains the root node, one AVL subtree of...
	• i.e. n(h) = 1 + n(h-1) + n(h-2)
	• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
	- n(h) > 2n(h-2)
	- n(h) > 4n(h-4) ...
	- n(h) > 2in(h-2i)

	• Solving the base case we get: n(h) ³ 2h/2-1
	• Taking logarithms: h < 2log n(h) +2
	• Thus the height of an AVL tree is O(log n)

	Insertion
	• A binary search tree T is called balanced if for every node v, the height of v’s children diffe...
	• Inserting a node into an AVL tree involves performing an expandExternal(w) on T, which changes ...
	• If an insertion causes T to become unbalanced, we travel up the tree from the newly created nod...
	• Since z became unbalanced by an insertion in the subtree rooted at its child y, height(y) = hei...
	• To rebalance the subtree rooted at z, we must perform a restructuring
	- we rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal.
	- z is replaced by b, whose children are now a and c whose children, in turn, consist of the four...

	Insertion (contd.)
	• Example of insertion into an AVL tree.

	Restructuring
	• The four ways to rotate nodes in an AVL tree, graphically represented:
	- Single Rotations:

	Restructuring (contd.)
	- double rotations:

	Restructure Algorithm
	Algorithm restructure(x):
	Input: A node x of a binary search tree T that has both a parent y and a grandparent z
	Output: Tree T restructured by a rotation (either single or double) involving nodes x, y, and z.
	1: Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T0, T1, T2, T3) be an i...
	2. Replace the subtree rooted at z with a new subtree rooted at b
	3. Let a be the left child of b and let T0, T1 be the left and right subtrees of a, respectively.
	4. Let c be the right child of b and let T2, T3 be the left and right subtrees of c, respectively.

	Cut/Link Restructure Algorithm
	• Let’s go into a little more detail on this algorithm...
	• Any tree that needs to be balanced can be grouped into 7 parts: x, y, z, and the 4 trees anchor...
	• Make a new tree which is balanced and put the 7 parts from the old tree into the new tree so th...
	• This works regardless of how the tree is originally unbalanced.
	• Let’s see how it works!

	Cut/Link Restructure Algorithm
	• Number the 7 parts by doing an in-order-traversal. (note that x,y, and z are now renamed based ...

	Cut/Link Restructure Algorithm
	• Now create an Array, numbered 1 to 7 (the 0th element can be ignored with minimal waste of space)
	• Cut() the 4 T trees and place them in their inorder rank in the array.

	Cut/Link Restructure Algorithm
	• Now cut x,y, and z in that order (child,parent,grandparent) and place them in their inorder ran...
	• Now we can re-link these subtrees to the main tree.
	• Link in rank 4 (b) where the subtree’s root formerly was

	Cut/Link Restructure Algorithm
	Link in ranks 2 (a) and 6 (c) as 4’s children.
	Cut/Link Restructure Algorithm
	• Finally, link in ranks 1,3,5, and 7 as the children of 2 and 6.
	• Now you have a balanced tree!

	Cut/Link Restructure algorithm
	• This algorithm for restructuring has the exact same effect as using the four rotation cases dis...
	• Advantages: no case analysis, more elegant
	• Disadvantage: can be more code to write
	• Same time complexity

	Removal
	• We can easily see that performing a removeAboveExternal(w) can cause T to become unbalanced.
	• Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y...
	• We can perform operation restructure(x) to restore balance at the subtree rooted at z.
	• As this restructuring may upset the balance of another node higher in the tree, we must continu...

	Removal (contd.)
	• example of deletion from an AVL tree:

	Removal (contd.)
	• example of deletion from an AVL tree

	Implementation
	• A Java-based implementation of an AVL tree requires the following node class:
	public class AVLItem extends Item {
	int height;
	AVLItem(Object k, Object e, int h) {
	super(k, e);
	height = h;
	}
	public int height() {
	return height;
	}
	public int setHeight(int h) {
	int oldHeight = height;
	height = h;
	return oldHeight;
	}
	}

	Implementation (contd.)
	public class SimpleAVLTree
	extends SimpleBinarySearchTree implements Dictionary {
	public SimpleAVLTree(Comparator c) {
	super(c);
	T = new RestructurableNodeBinaryTree();
	}
	private int height(Position p) {
	if (T.isExternal(p))
	return 0;
	else
	return ((AVLItem) p.element()).height();
	}
	private void setHeight(Position p) { // called only // if p is internal
	((AVLItem) p.element()).setHeight
	(1 + Math.max(height(T.leftChild(p)), height(T.rightChild(p))));
	}

	Implementation (contd.)
	private boolean isBalanced(Position p) {
	// test whether node p has balance factor // between -1 and 1
	int bf = height(T.leftChild(p)) - height(T.rightChild(p));
	return ((-1 <= bf) && (bf <= 1));
	}
	private Position tallerChild(Position p) {
	// return a child of p with height no // smaller than that of the other child
	if(height(T.leftChild(p)) >= height(T.rightChild(p)))
	return T.leftChild(p);
	else
	return T.rightChild(p);
	}

	Implementation (contd.)
	private void rebalance(Position zPos) {
	//traverse the path of T from zPos to the root; //for each node encountered recompute its //heigh...
	while (!T.isRoot(zPos)) {
	zPos = T.parent(zPos);
	setHeight(zPos);
	if (!isBalanced(zPos)) { // perform a rotation
	Position xPos = tallerChild(tallerChild(zPos));
	zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos);
	setHeight(T.leftChild(zPos));
	setHeight(T.rightChild(zPos));
	setHeight(zPos);
	}
	}
	}

	Implementation (contd.)
	public void insertItem(Object key, Object element)
	throws InvalidKeyException {
	super.insertItem(key, element);// may throw an // InvalidKeyException
	Position zPos = actionPos; // start at the // insertion position
	T.replace(zPos, new AVLItem(key, element, 1));
	rebalance(zPos);
	}
	public Object remove(Object key)
	throws InvalidKeyException {
	Object toReturn = super.remove(key); // may throw // an InvalidKeyException
	if (toReturn != NO_SUCH_KEY) {
	Position zPos = actionPos; // start at the // removal position
	rebalance(zPos);
	}
	return toReturn;
	}
	}

