(2,4) TREES

e Search Trees (but not binary)

e also known as 2-4, 2-3-4 trees

~ That's a very nice hat.

‘That’s not a hat!
That's my head!
_I'm TreeHead!

-
a4

(2,4) Trees




Multi-way Search Trees

e Each internal node of a multi-way search ffee
- has at least two children

- stores a collection of items of the forky X),
wherek is a key and is an element

- containd - 1 items, wherd is the number of
children

- “contains” 2 pseudo-item&, = —o ky = o

e Children of each internal node are “between” items

- all keys in the subtree rooted at the child fall
between keys of those items

e External nodes are just placeholders

(2,4) Trees 2



Multi-way Searching

e Similar to binary searching

If search keys< k;, , search the leftmost child

If s> k,_,, search the rightmost child

That's it in a binary tree; what aboutdf>2 ?

Find two keysk. _; and;. between whisfalls,
and search the chilg

fors=8
/Searchin
3 fors=12

@@@

N

8

@ 17 18 19 20 2
“Bh d oooo

Not found!

 \WWhat would an in-order traversal look like?

(2,4) Trees




(2,4) Trees

e At most 4 children
» All external nodes have same depth
e Heighth of (2,4) tree iO(logn) .

e How is this fact useful in searching?

(2,4) Trees




Insertion into (2,4) Trees

 Insert thenew keyat thelowest internal
node reacheth the search

e 2-nodebecomes-node
g :K [: dg
C

e 3-nodebecomesgl-node

fro—~(dd

1

 What about &-node?
* \We can’t insert another key!

(2,4) Trees




Top Down Insertion

 In our way down the tree, whenever we
reach al-node webreak it upinto two 2-
nodes and move the middle element up

ineto the parent node

 Now we can perform the O

insertion using one of the fn
previous two cases

e Since we follow this

method from the root down(d e) (9 A

to the leaf, it is called
top down insertion

(2,4) Trees




An Example

(2,4) Trees




Whoa, cowboy

(2,4) Trees




Time Complexity of Insertion
In (2,4) Trees

Time complexity:
o A search visits O(log N) nodes

* An insertion requires O(log N) node splits
« Each node split takes constant time

* Hence, operationSearchandinsert each
take timeO(log N)

Notes:

 Instead of doing splits top-down, we can
perform them bottom-up starting at the in-
sertion node, and only when needed. This
IS calledbottom-upinsertion

» A deletion can be performed Iliysing
nodes (inverse of splitting), and takes
O(log N)time.Let’s take a look!

(2,4) Trees 9




A little trickier

(2,4) Deletion

First of all, find the key

- simple multi-way search

If the item to delete has non-external children
- reduce to the case where deletable item Is at th

bottom of the tree:

- Find item which precedes it in in-order traversal

- Swap them

-~ Delete 13

e Easy, right?

e ...but what about removing from 2-nodes?

Remove the item

e

(2,4) Trees

10



(2,4) Deletion (cont.)

* Not enough items in the node
- underflow

« Pull an item from the parent, replace it with an item

from a sibling
- calledtransfer

__ Delete 4 5> 10

 Still not good enough! What happens if siblings a
2-nodes?

e Could we just pull one item from the parent?
- too many children

e But maybe...

(2,4) Trees 11



(2,4) Deletion (cont.)

* \We know that the node’s sibling Is just a 2-node

e So wefusethem into one
- after stealing an item from the parent, of course
\Delete 12

e Last special case, | promise: what if the parent was
2-node?

(2,4) Trees 12



(2,4) Deletion (cont.)

« Underflow can cascade up the tree, too.
__Delete 14

(2,4) Trees

13




(2,4) Conclusion

e The height of a (2,4) tree 3(logn)
« Split, transfer, and fusion each takél)

e Search, insertion and deletion each t@éogn)

 Why are we doing this?
(2,4) trees are fun! Why else would we do it?
Well, there’s another reason, too.

They're pretty fundamental to the idea of Red-Black trees

well.

And you're covering Red-Black trees on Monday.
Perhaps more importantly, your next project is a Red-Black tr

e Have a nice weekend!

as

€

(2,4) Trees

14



	(2,4) Trees
	• Search Trees (but not binary)
	• also known as 2-4, 2-3-4 trees
	Multi-way Search Trees
	• Each internal node of a multi-way search tree T:
	- has at least two children
	- stores a collection of items of the form (k, x), where k is a key and x is an element
	- contains d - 1 items, where d is the number of children
	- “contains” 2 pseudo-items: ,

	• Children of each internal node are “between” items
	- all keys in the subtree rooted at the child fall between keys of those items

	• External nodes are just placeholders

	Multi-way Searching
	• Similar to binary searching
	• If search key , search the leftmost child
	• If , search the rightmost child
	• That’s it in a binary tree; what about if ?
	• Find two keys and between which s falls, and search the child .
	• What would an in-order traversal look like?

	(2,4) Trees
	• At most 4 children
	• All external nodes have same depth
	• Height h of (2,4) tree is .
	• How is this fact useful in searching?

	Insertion into (2,4) Trees
	An Example
	Time Complexity of Insertion in (2,4) Trees
	(2,4) Deletion
	• A little trickier
	• First of all, find the key
	- simple multi-way search

	• If the item to delete has non-external children
	- reduce to the case where deletable item is at the bottom of the tree:
	- Find item which precedes it in in-order traversal
	- Swap them

	• Remove the item
	• Easy, right?
	• ...but what about removing from 2-nodes?

	(2,4) Deletion (cont.)
	• Not enough items in the node
	- underflow

	• Pull an item from the parent, replace it with an item from a sibling
	- called transfer

	• Still not good enough! What happens if siblings are 2-nodes?
	• Could we just pull one item from the parent?
	- too many children

	• But maybe...

	(2,4) Deletion (cont.)
	• We know that the node’s sibling is just a 2-node
	• So we fuse them into one
	- after stealing an item from the parent, of course

	• Last special case, I promise: what if the parent was a 2-node?

	(2,4) Deletion (cont.)
	• Underflow can cascade up the tree, too.

	(2,4) Conclusion
	• The height of a (2,4) tree is .
	• Split, transfer, and fusion each take .
	• Search, insertion and deletion each take .
	• Why are we doing this?
	- (2,4) trees are fun! Why else would we do it?
	- Well, there’s another reason, too.
	- They’re pretty fundamental to the idea of Red-Black trees as well.
	- And you’re covering Red-Black trees on Monday.
	- Perhaps more importantly, your next project is a Red-Black tree.

	• Have a nice weekend!



