
1(2,4) Trees

(2,4) TREES

• Search Trees (but not binary)

• also known as 2-4, 2-3-4 trees

That’s a very nice hat.

That’s not a hat!
That’s my head!
I’m Tree Head!

2(2,4) Trees

Multi-way Search Trees
• Each internal node of a multi-way search treeT:

- has at least two children
- stores a collection of items of the form (k, x),

wherek is a key andx is an element
- containsd - 1 items, whered is the number of

children
- “contains” 2 pseudo-items: ,

• Children of each internal node are “between” items
- all keys in the subtree rooted at the child fall

between keys of those items

• External nodes are just placeholders

k0 ∞–= kd ∞=

3(2,4) Trees

Multi-way Searching
• Similar to binary searching

• If search key , search the leftmost child

• If , search the rightmost child

• That’s it in a binary tree; what about if ?

• Find two keys and between whichs falls,
and search the child .

• What would an in-order traversal look like?

s k1<

s kd 1–>

d 2>

ki 1– ki
vi

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

4(2,4) Trees

(2,4) Trees
• At most 4 children

• All external nodes have same depth

• Heighth of (2,4) tree is .

• How is this fact useful in searching?

O nlog()

3 4 116 8 13 14 17

12

5 10 15

5(2,4) Trees

Insertion into (2,4) Trees

• Insert thenew key at thelowest internal
node reached in the search

• What about a4-node?
• We can’t insert another key!

dg d g

• 3-node becomes4-node

• 2-node becomes3-node

d g d f gf

6(2,4) Trees

• Now we can perform the
insertion using one of the
previous two cases

• Since we follow this
method from the root down
to the leaf, it is called
top down insertion

Top Down Insertion
• In our way down the tree, whenever we

reach a4-node, webreak it up into two2-
nodes, and move the middle element up
into the parent node

n

g

e

f n

d

g

d f g

f n
e

d e

7(2,4) Trees

An Example

a xf i l p r

a xf i l p r

c t

n

n

c t

g

g

Whoa, cowboy

8(2,4) Trees

a xp r

t

n

f l

a xp r

c i t

n

l

a xp r

c t

n

g

f i l

c ig

f g

Whoa, cowboy

9(2,4) Trees

Time Complexity of Insertion
in (2,4) Trees

Time complexity:
• A search visits O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operationsSearch andInsert each
take timeO(log N)

Notes:
• Instead of doing splits top-down, we can

perform them bottom-up starting at the in-
sertion node, and only when needed. This
is calledbottom-up insertion.

• A deletion can be performed byfusing
nodes (inverse of splitting), and takes
O(log N) time.Let’s take a look!

10(2,4) Trees

(2,4) Deletion
• A little trickier

• First of all, find the key
- simple multi-way search

• If the item to delete has non-external children
- reduce to the case where deletable item is at the

bottom of the tree:
- Find item which precedes it in in-order traversal
- Swap them

• Remove the item

• Easy, right?

• ...but what about removing from 2-nodes?

14 17

15

5

11

6

8 10

13

Delete 13

11(2,4) Trees

(2,4) Deletion (cont.)
• Not enough items in the node

- underflow

• Pull an item from the parent, replace it with an item
from a sibling
- calledtransfer

• Still not good enough! What happens if siblings are
2-nodes?

• Could we just pull one item from the parent?
- too many children

• But maybe...

Delete 4

116 8

5 10

4

11

10

8

5
6

u

v w

12(2,4) Trees

(2,4) Deletion (cont.)
• We know that the node’s sibling is just a 2-node

• So wefuse them into one
- after stealing an item from the parent, of course

• Last special case, I promise: what if the parent was a
2-node?

12

10

5

6

8

5

6

8

10

u

v

5

6

8 10

u

Delete 12

13(2,4) Trees

(2,4) Deletion (cont.)
• Underflow can cascade up the tree, too.

17

15

5

11

6

8 10

14

175

11

6

8 10

15

u

v

5 8 10

11

15 17

6

u

5

6 11

15 178 10

Delete 14

14(2,4) Trees

(2,4) Conclusion
• The height of a (2,4) tree is .

• Split, transfer, and fusion each take .

• Search, insertion and deletion each take .

• Why are we doing this?
- (2,4) trees are fun! Why else would we do it?

- Well, there’s another reason, too.

- They’re pretty fundamental to the idea of Red-Black trees as
well.

- And you’re covering Red-Black trees on Monday.

- Perhaps more importantly, your next project is a Red-Black tree.

• Have a nice weekend!

O nlog()

O 1()

O nlog()

	(2,4) Trees
	• Search Trees (but not binary)
	• also known as 2-4, 2-3-4 trees
	Multi-way Search Trees
	• Each internal node of a multi-way search tree T:
	- has at least two children
	- stores a collection of items of the form (k, x), where k is a key and x is an element
	- contains d - 1 items, where d is the number of children
	- “contains” 2 pseudo-items: ,

	• Children of each internal node are “between” items
	- all keys in the subtree rooted at the child fall between keys of those items

	• External nodes are just placeholders

	Multi-way Searching
	• Similar to binary searching
	• If search key , search the leftmost child
	• If , search the rightmost child
	• That’s it in a binary tree; what about if ?
	• Find two keys and between which s falls, and search the child .
	• What would an in-order traversal look like?

	(2,4) Trees
	• At most 4 children
	• All external nodes have same depth
	• Height h of (2,4) tree is .
	• How is this fact useful in searching?

	Insertion into (2,4) Trees
	An Example
	Time Complexity of Insertion in (2,4) Trees
	(2,4) Deletion
	• A little trickier
	• First of all, find the key
	- simple multi-way search

	• If the item to delete has non-external children
	- reduce to the case where deletable item is at the bottom of the tree:
	- Find item which precedes it in in-order traversal
	- Swap them

	• Remove the item
	• Easy, right?
	• ...but what about removing from 2-nodes?

	(2,4) Deletion (cont.)
	• Not enough items in the node
	- underflow

	• Pull an item from the parent, replace it with an item from a sibling
	- called transfer

	• Still not good enough! What happens if siblings are 2-nodes?
	• Could we just pull one item from the parent?
	- too many children

	• But maybe...

	(2,4) Deletion (cont.)
	• We know that the node’s sibling is just a 2-node
	• So we fuse them into one
	- after stealing an item from the parent, of course

	• Last special case, I promise: what if the parent was a 2-node?

	(2,4) Deletion (cont.)
	• Underflow can cascade up the tree, too.

	(2,4) Conclusion
	• The height of a (2,4) tree is .
	• Split, transfer, and fusion each take .
	• Search, insertion and deletion each take .
	• Why are we doing this?
	- (2,4) trees are fun! Why else would we do it?
	- Well, there’s another reason, too.
	- They’re pretty fundamental to the idea of Red-Black trees as well.
	- And you’re covering Red-Black trees on Monday.
	- Perhaps more importantly, your next project is a Red-Black tree.

	• Have a nice weekend!

