
1(2,4) Trees

(2,4) TREES

• Search Trees (but not binary)

• also known as 2-4, 2-3-4 trees

That’s a very nice hat.

That’s not a hat!
That’s my head!
I’m Tree Head!
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Multi-way Search Trees
• Each internal node of a multi-way search treeT:

- has at least two children
- stores a collection of items of the form (k, x),

wherek is a key andx is an element
- containsd - 1 items, whered is the number of

children
- “contains” 2 pseudo-items: ,

• Children of each internal node are “between” items
- all keys in the subtree rooted at the child fall

between keys of those items

• External nodes are just placeholders

k0 ∞–= kd ∞=
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Multi-way Searching
• Similar to binary searching

• If search key , search the leftmost child

• If , search the rightmost child

• That’s it in a binary tree; what about if ?

• Find two keys  and  between whichs falls,
and search the child .

• What would an in-order traversal look like?
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(2,4) Trees
• At most 4 children

• All external nodes have same depth

• Heighth of (2,4) tree is .

• How is this fact useful in searching?

O nlog( )
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Insertion into (2,4) Trees

• Insert thenew key at thelowest internal
node reached in the search

• What about a4-node?
• We can’t insert another key!

dg d g

• 3-node becomes4-node

• 2-node becomes3-node

d g d f gf
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• Now we can perform the
insertion using one of the
previous two cases

• Since we follow this
method from the root down
to the leaf, it is called
top down insertion

Top Down Insertion
• In our way down the tree, whenever we

reach a4-node, webreak it up into two2-
nodes, and move the middle element up
into the parent node
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An Example
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Whoa, cowboy
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Time Complexity of Insertion
in  (2,4) Trees

Time complexity:
• A search visits  O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operationsSearch andInsert each
take timeO(log N)

Notes:
• Instead of doing splits top-down, we can

perform them bottom-up starting at the in-
sertion node, and only when needed. This
is calledbottom-up insertion.

• A deletion can be performed byfusing
nodes (inverse of splitting), and takes
O(log N) time.Let’s take a look!
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(2,4) Deletion
• A little trickier

• First of all, find the key
- simple multi-way search

• If the item to delete has non-external children
- reduce to the case where deletable item is at the

bottom of the tree:
- Find item which precedes it in in-order traversal
- Swap them

• Remove the item

• Easy, right?

• ...but what about removing from 2-nodes?
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(2,4) Deletion (cont.)
• Not enough items in the node

- underflow

• Pull an item from the parent, replace it with an item
from a sibling
- calledtransfer

• Still not good enough! What happens if siblings are
2-nodes?

• Could we just pull one item from the parent?
- too many children

• But maybe...
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(2,4) Deletion (cont.)
• We know that the node’s sibling is just a 2-node

• So wefuse them into one
- after stealing an item from the parent, of course

• Last special case, I promise: what if the parent was a
2-node?
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(2,4) Deletion (cont.)
• Underflow can cascade up the tree, too.
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(2,4) Conclusion
• The height of a (2,4) tree is .

• Split, transfer, and fusion each take .

• Search, insertion and deletion each take .

• Why are we doing this?
- (2,4) trees are fun! Why else would we do it?

- Well, there’s another reason, too.

- They’re pretty fundamental to the idea of Red-Black trees as
well.

- And you’re covering Red-Black trees on Monday.

- Perhaps more importantly, your next project is a Red-Black tree.

• Have a nice weekend!

O nlog( )

O 1( )

O nlog( )
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