(2,4) TREES

e Search Trees (but not binary)

e also known as 2-4, 2-3-4 trees

~ That's a very nice hat.

‘That’s not a hat!
That's my head!
_I'm TreeHead!

-
a4
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Multi-way Search Trees

e Each internal node of a multi-way search ffee
- has at least two children

- stores a collection of items of the forky X),
wherek is a key and is an element

- containd - 1 items, wherd is the number of
children

- “contains” 2 pseudo-item&, = —o ky = o

e Children of each internal node are “between” items

- all keys in the subtree rooted at the child fall
between keys of those items

e External nodes are just placeholders
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Multi-way Searching

e Similar to binary searching

If search keys< k;, , search the leftmost child

If s> k,_,, search the rightmost child

That's it in a binary tree; what aboutdf>2 ?

Find two keysk. _; and;. between whisfalls,
and search the chilg

fors=8
/Searchin
3 fors=12
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“Bh d oooo

Not found!

 \WWhat would an in-order traversal look like?
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(2,4) Trees

e At most 4 children
» All external nodes have same depth
e Heighth of (2,4) tree iO(logn) .

e How is this fact useful in searching?
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Insertion into (2,4) Trees

 Insert thenew keyat thelowest internal
node reacheth the search

e 2-nodebecomes-node
g :K [: dg
C

e 3-nodebecomesgl-node

fro—~(dd

1

 What about &-node?
* \We can’t insert another key!
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Top Down Insertion

 In our way down the tree, whenever we
reach al-node webreak it upinto two 2-
nodes and move the middle element up

ineto the parent node

 Now we can perform the O

insertion using one of the fn
previous two cases

e Since we follow this

method from the root down(d e) (9 A

to the leaf, it is called
top down insertion
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An Example
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Whoa, cowboy
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Time Complexity of Insertion
In (2,4) Trees

Time complexity:
o A search visits O(log N) nodes

* An insertion requires O(log N) node splits
« Each node split takes constant time

* Hence, operationSearchandinsert each
take timeO(log N)

Notes:

 Instead of doing splits top-down, we can
perform them bottom-up starting at the in-
sertion node, and only when needed. This
IS calledbottom-upinsertion

» A deletion can be performed Iliysing
nodes (inverse of splitting), and takes
O(log N)time.Let’s take a look!
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A little trickier

(2,4) Deletion

First of all, find the key

- simple multi-way search

If the item to delete has non-external children
- reduce to the case where deletable item Is at th

bottom of the tree:

- Find item which precedes it in in-order traversal

- Swap them

-~ Delete 13

e Easy, right?

e ...but what about removing from 2-nodes?

Remove the item

e
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(2,4) Deletion (cont.)

* Not enough items in the node
- underflow

« Pull an item from the parent, replace it with an item

from a sibling
- calledtransfer

__ Delete 4 5> 10

 Still not good enough! What happens if siblings a
2-nodes?

e Could we just pull one item from the parent?
- too many children

e But maybe...
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(2,4) Deletion (cont.)

* \We know that the node’s sibling Is just a 2-node

e So wefusethem into one
- after stealing an item from the parent, of course
\Delete 12

e Last special case, | promise: what if the parent was
2-node?
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(2,4) Deletion (cont.)

« Underflow can cascade up the tree, too.
__Delete 14
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(2,4) Conclusion

e The height of a (2,4) tree 3(logn)
« Split, transfer, and fusion each takél)

e Search, insertion and deletion each t@éogn)

 Why are we doing this?
(2,4) trees are fun! Why else would we do it?
Well, there’s another reason, too.

They're pretty fundamental to the idea of Red-Black trees

well.

And you're covering Red-Black trees on Monday.
Perhaps more importantly, your next project is a Red-Black tr

e Have a nice weekend!

as
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