
7.1advanced sorting

ADVANCED SORTING

• Review of Sorting

• Merge Sort

• Sets

• Quick Sort

• How Fast Can We Sort?

7.2advanced sorting

Sorting Algorithms
• Selection Sort uses a priority queue P implemented

with an unsorted sequence:
- Phase 1: theinsertionof anitem into P takesO(1)

time; overall O(n)
- Phase 2: removing anitemtakestimeproportional

to the number of elements in PO(n): overall O(n2)
- Time Complexity: O(n2)

7.3advanced sorting

Sorting Algorithms (cont.)
• Insertion Sort is performed on a priority queue P

which is a sorted sequence:
- Phase 1: the firstinsertItem takesO(1), the second

O(2), until the lastinsertItem takesO(n): overall
O(n2)

- Phase 2: removing an item takesO(1) time;
overall O(n).

- Time Complexity: O(n2)

• Heap Sort uses a priority queue K which is a heap.
- insertItem andremoveMin each take

O(log k), k being the number of elements in the
heap at a given time.

- Phase 1: n elements inserted:O(nlog n) time
- Phase 2: n elements removed:O(n log n) time.
- Time Complexity: O(nlog n)

7.4advanced sorting

Divide-and-Conquer
• Divide and Conquer is more than just a military

strategy, it is also a method of algorithm design that
has created such efficient algorithms asMerge Sort.

• In termsor algorithms,thismethodhasthreedistinct
steps:

- Divide: If theinputsizeis too largeto dealwith in
a straightforward manner, divide the data into two
or more disjoint subsets.

- Recur: Use divide and conquer to solve the
subproblems associated with the data subsets.

- Conquer: Take the solutions to the subproblems
and“merge” thesesolutionsinto asolutionfor the
original problem.

7.5advanced sorting

Merge-Sort
• Algorithm:

- Divide: If S has at leas two elements (nothing
needs to be done ifS has zero or one elements),
remove all the elements fromS and put them into
two sequences,S1 andS2, each containing about
half of the elements of S. (i.e.S1 contains the first
n/2 elements andS2 contains the remaining
n/2 elements.

- Recur: Recursive sort sequencesS1 andS2.
- Conquer: Putbacktheelementsinto S by merging

thesortedsequencesS1 andS2 into auniquesorted
sequence.

• Merge Sort Tree:

- Take a binary treeT
- Each node ofT represents a recursive call of the

merge sort algorithm.
- We assocoate with each nodev of T a the set of

input passed to the invocationv represents.
- The external nodes are associated with individual

elements ofS, upon which no recursion is called.

7.6advanced sorting

Merge-Sort
85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

7.7advanced sorting

Merge-Sort(cont.)

85 24 63 45

17 31 96 50

85 24

63 45

17 31 96 50

7.8advanced sorting

Merge-Sort (cont.)

85

24

63 45

17 31 96 50

85

24

63 45

17 31 96 50

7.9advanced sorting

Merge-Sort (cont.)

85 24 63 45

17 31 96 50

24 85 63 45

17 31 96 50

7.10advanced sorting

Merge-Sort (cont.)

24 85

63 45

17 31 96 50

24 85

63 45

17 31 96 50

7.11advanced sorting

Merge-Sort (cont.)

24 85

63 45

17 31 96 50

24 85

63

45

17 31 96 50

7.12advanced sorting

Merge-Sort (cont.)

24 85

63

45

17 31 96 50

24 85

63 45

17 31 96 50

7.13advanced sorting

Merge-Sort(cont.)

24 85 17 31 96 50

45 63

24 85 17 31 96 5045 63

7.14advanced sorting

Merge-Sort (cont.)

24 45 17 31 96 5063 85

24 45

17 31 96 50

63 85

7.15advanced sorting

Merge-Sort (cont.)
24 45

17 31 96 50

63 85

24 45

17 31 50 96

63 85

7.16advanced sorting

Merge-Sort (cont.)
24 45 17 31 50 9663 85

17 24 31 45 50 63 85 96

7.17advanced sorting

Merging Two Sequences
• Pseudo-code for merging two sorted sequences into

a unique sorted sequence
Algorithm merge (S1, S2, S):

Input: SequenceS1 andS2 (on whose elements a
total order relation is defined) sorted in nondecreas
ing order, and an empty sequenceS.
Ouput: SequenceS containing the union of the ele
ments fromS1 andS2 sorted in nondecreasing order;
sequenceS1 andS2 become empty at the end of the
execution
while S1 is not emptyand S2 is not emptydo

if S1.first().element()≤ S2.first().element()then
{move the first element ofS1 at the end ofS}
S.insertLast(S1.remove(S1.first()))

else
{ move the first element ofS2 at the end ofS}
S.insertLast(S2.remove(S2.first()))

while S1 is not emptydo
S.insertLast(S1.remove(S1.first()))
{move the remaining elements ofS2 to S}

while S2 is not emptydo
S.insertLast(S2.remove(S2.first()))

7.18advanced sorting

Merging Two Sequences (cont.)
• Some pictures:

a)

b)

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S

7.19advanced sorting

Merging Two Sequences (cont.)
c)

d)

24

45 63 85S1

17

31 50 96S2

S

24

45 63 85S1

17

50 96S2

S 31

7.20advanced sorting

Merging Two Sequences (cont.)
e)

f)

24

63 85S1

17

50 96S2

S 31 45

24

63 85S1

17

96S2

S 31 45 50

7.21advanced sorting

Merging Two Sequences (cont.)
g)

h)

24

85S1

17

96S2

S 31 45 50 63

24

S1

17

96S2

S 31 45 50 63 85

7.22advanced sorting

Merging Two Sequences (cont.)
i)

24

S1

17

S2

S 31 45 50 63 85 96

7.23advanced sorting

Java Implementation of
Merge-Sort

• Interface SortObject

public interface SortObject {

//sort sequence S in nondecreasing order
using compartor c

public void sort (Sequence S, Comparator c);

}

7.24advanced sorting

Java Implementation
of Merge-Sort(cont.)

public class ListMergeSort implements SortObject {

public void sort(Sequence S, Comparator c) {

int n = S.size();

if (n < 2) return; // a sequence with 0 or
1 element is already sorted.

// divide

Sequence S1 = (Sequence)S.newContainer();

// put the first half of S into S1

for (int i=1; i <= (n+1)/2; i++) {

S1.insertLast(S.remove(S.first()));

}

Sequence S2 = (Sequence)S.newContainer();

// put the second half of S into S2

for (int i=1; i <= n/2; i++) {

S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

sort(S2,c);

merge(S1,S2,c,S); // conquer

 }

7.25advanced sorting

Java Implementation
of Merge-Sort(cont.)

public void merge(Sequence S1, Sequence S2,
Comparator c, Sequence S) {

while(!S1.isEmpty() && !S2.isEmpty()) {

if(c.isLessThanOrEqualTo(S1.first().element(),
S2.first().element())) {
// S1’s 1st elt <= S2’s 1st elt
S.insertLast(S1.remove(S1.first()));

}

else { // S2’s 1st elt is the smaller one
S.insertLast(S2.remove(S2.first()));

}
}

if(S1.isEmpty()) {
while(!S2.isEmpty()) {

S.insertLast(S2.remove(S2.first()));
}

}
if(S2.isEmpty()) {

while(!S1.isEmpty()) {
S.insertLast(S1.remove(S1.first()));

}
}

}

7.26advanced sorting

Running Time of Merge-Sort
• Proposition 1: The merge-sort tree associated with

the execution of a merge-sort on a sequence ofn
elements has a height oflogn

• Proposition 2: A merge sort algorithm sorts a
sequence of sizen in O(nlog n) time

• We assume only that the input sequenceS and each
of the sub-sequences created by each recursive call
of the algorithm can access, insert to, and delete
from the first and last nodes inO(1) time.

• Wecall thetimespentatnodev of merge-sorttreeT
therunningtimeof therecusivecall associatedwith
v, excluding the recursive calls sent tov’s children.

7.27advanced sorting

Running Time of Merge-Sort
(cont.)

• If we let i representthedepthof nodev in themerge-
sorttree,thetimespentatnodev is O(n/2i) sincethe
size of the sequence associated withv is n/2i.

• Observe thatT has exactly 2i nodes at depth i. The
total time spent at depthi in the tree is then
O(2in/2i), which isO(n). We know the tree has
heightlogn

Therefore, the time complexity is O(nlog n)

7.28advanced sorting

Set ADT
• A Set is a data structure modeled after the

mathematicalnotationof aset.Thefundamaentalset
operations areunion, intersection, andsubtraction.

• A brief aside on mathemeatical set notation:
- A ∪ B = { x: x ∈ A or x ∈ B }
- A ∩ B = { x: x ∈ A andx ∈ B }
- A − B = { x: x ∈ A andx ∉ B }

• The specific methods for a Set A include the
following:

- union(B):
Set A equal to A∪ B.

- intersect(B):
Set A equal to A∩ B.

- subtract(B):
Set A equal to A− B.

7.29advanced sorting

Generic Merging
Algorithm genericMerge(A, B):

Input: Sorted sequencesA andB
Output: Sorted sequenceC
let A’ be a copy of A { We won’t destroy A andB}
let B’ be a copy of B
while A’ andB’ are not emptydo

a←A’ .first()
b←B’.first()
if a<b then

aIsLess(a, C)
A’.removeFirst()

else if a=b then
bothAreEqual(a, b, C)
A’ .removeFirst()
B’.removeFirst()

else
bIsLess(b, C)
B’.removeFirst()

while A’ is not emptydo
a←A’.first()
aIsLess(a, C)
A’.removeFirst()

while B’ is not emptydo
b←B’.first()
bIsLess(b, C)
B’.removeFirst()

7.30advanced sorting

Set Operations
• We can specialize the generic merge algorithm to

perform set operations like union, intersection, and
subtraction.

• Thegenericmergealgorithmexaminesandcompare
the current elements ofA andB.

• Based upon the outcome of the comparision, it
determines if it should copy one or none of the
elementsa andb into C.

• This decision is based upon the particular operation
we are performing, i.e. union, intersection or
subtraction.

• For example, if our operation is union, we copy the
smaller ofa andb to C and ifa=b then it copies
either one (saya).

• We define our copy actions inaIsLess,
bothAreEqual, andbIsLess.

• Let’s see how this is done ...

7.31advanced sorting

Set Operations (cont.)
• For union

public class UnionMerger extends Merger {
protected void aIsLess(Object a, Object b, Sequence C) {

C.insertLast(a);
}
protected void bothAreEqual(Object a, Object b,

Sequence C) {
C.insertLast(a);

}
protected void bIsLess(Object b, Sequence C) {

C.insertLast(b);
}

• For intersect
public class IntersectMerger extends Merger {

protected void aIsLess(Object a, Object b, SequenceC) {
}
protected void bothAreEqual(Object a, Object b,

 Sequence C) {
C.insertLast(a);

}
protected void bIsLess(Object b, Sequence C) { }

}

7.32advanced sorting

Set Operations (cont.)
• For subtraction

public class SubtractMerger extends Merger {

protected void aIsLess(Object a, Object b,
 Sequence C) {

C.insertLast(a);
}

protected void bothAreEqual(Object a, Object b,
Sequence C) {

}

protected void bIsLess(Object b, Sequence C) {
}

}

7.33advanced sorting

Thank goodness! It’s
Quicksort Man! Help me!

I’m on my way,
Bubble Sort Man.

Quicksort

7.34advanced sorting

Quick-Sort
• To understand quick-sort, let’s look at a high-level

description of the algorithm

• 1) Divide : If thesequenceS has2 or moreelements,
select an elementx from S to be yourpivot. Any
arbitrary element, like the last, will do. Remove all
the elements ofS and divide them into 3 sequences:
- L, holdsS’s elements less thanx
- E, holdsS’s elements equal tox
- G, holdsS’s elements greater thanx

• 2) Recurse: Recursively sortL andG

• 3) Conquer: Finally, to put elements back intoS in
order, first insertstheelementsof L, thenthoseof E,
and those ofG.

• Here are some pretty diagrams....

7.35advanced sorting

Idea of Quick Sort

1. Select
pick an element

2.Devide
rearrange elements
so that
• x goes to itsfinal

 position E

3. Recurse and Conquer
recursively sort

x

x

x

L E G

7.36advanced sorting

Quick-Sort Tree
7 6 2 10 4 5 9 8

7 8 10 96 2 4 5

7.37advanced sorting

Quick-Sort Tree
8 10 9

7 6 2 4 5

8 10 9

2 4 5 7 6

7.38advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

7.39advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

4

2

8 10 9

5 7 6

2 4

7.40advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

7.41advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 62 4

7.42advanced sorting

Quick-Sort Tree
8 10 9

52 4

7 6

8 10 9

52 4

76

7.43advanced sorting

Quick-Sort Tree
8 10 9

52 4

76

8 10 9

52 4

76

7.44advanced sorting

Quick-Sort Tree
8 10 9

52 4

6

7

8 10 9

52 4

6 7

7.45advanced sorting

Quick-Sort Tree
8 10 9

52 4

6 7

8 10 9

52 4 6 7

7.46advanced sorting

Quick-Sort Tree
8 10 92 4 5 6 7

82 4 5 6 7

10 9

7.47advanced sorting

Quick-Sort Tree
8 10 92 4 5 6 7

9 10

82 4 5 6 7

9 10

7.48advanced sorting

Quick-Sort Tree
82 4 5 6 7

9 10

82 4 5 6 7

9

10

7.49advanced sorting

Quick-Sort Tree
82 4 5 6 7

9 10

82 4 5 6 7

9 10

7.50advanced sorting

Quick-Sort Tree
8 9 102 4 5 6 7

2 4 5 6 7 9 108

7.51advanced sorting

In-Place Quick-Sort
• Divide step: l scansthesequencefrom theleft, andr

from the right.

• A swap is performed whenl is at an element larger
than the pivot andr is at one smaller than the pivot.

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

31 24 63 45 17 85 96 50

rl

7.52advanced sorting

In Place Quick Sort (contd.)

• A final swapwith thepivot completesthedividestep

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

31 24 17 45 50 85 96 63

lr

7.53advanced sorting

In Place Quick Sort code
public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);

}

private void quicksort (Sequence S, Comparator c,
int leftBound,
int rightBound) {

// left and rightmost ranks of
// sorting range

if (S.size() < 2) return; //a sequence with 0 or
// 1 elements is already sorted

if (leftBound >= rightBound) return; //terminate
//recursion

// pick the pivot as the current last
// element in range

Object pivot = S.atRank(rightBound).element();

// indices used to scan the sorting range

int leftIndex = leftBound; // will scan
// rightward

int rightIndex = rightBound - 1; //will scan
// leftward

7.54advanced sorting

In Place Quick Sort code
(contd.)

// outer loop

while (leftIndex <= rightIndex) {

//scan rightward until an element larger than
//the pivot is found or the indices cross

while ((leftIndex <= rightIndex) &&
(c.isLessThanOrEqualTo
(S.atRank(leftIndex).element(),pivot))

leftIndex++;

//scan leftward until an element smaller than
//the pivot is found or the indices cross

while (rightIndex >= leftIndex) &&
(c.isGreaterThanOrEqualTo
(S.atRank(rightIndex).element(),pivot))

rightIndex--;

//if an element larger than the pivot and an
//element smaller than the pivot have been
//found, swap them

if (leftIndex < rightIndex)
S.swap(S.atRank(leftIndex),S.atRank(rightIndex));

} // the outer loop continues until
// the indices cross. End of outer loop.

7.55advanced sorting

In Place Quick Sort code
(contd.)

//put the pivot in its place by swapping it
//with the element at leftIndex

S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur
// on both sides

quicksort (S, c, leftBound, leftIndex-1);

quickSort (S, c, leftIndex+1, rightBound);

} // end quicksort method

} // end ArrayQuickSort class

7.56advanced sorting

Analysis of Running Time
• Consider a quick-sort treeT:

- Let si(n) denote the sum of the input sizes of the
nodes at depth i in T.

• We know that s0(n) = n since the root ofT is
associated with the entire input set.

• Also, s1(n) = n - 1 since the pivot is not propagated.

• Thus:eithers2(n) = n - 3,or n - 2 (if oneof thenodes
has a zero input size).

• The worst case running time of a quick-sort is then:

Which reduces to:

• Thusquick-sortrunsin time O(n2) in theworstcase.

O si n()
i 0=

n 1–
∑

O n i–()
i 0=

n 1–
∑

O i
i 1=

n
∑

O n2()= =

7.57advanced sorting

Analysis of Running Time
(contd.)

• Now to look at the best case running time:

• We can see that quicksort behaves optimally if,
wheneverasequenceSis dividedinto subsequences
L and G, they are of equal size.

• More precisely:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) =n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• This implies thatT has heightO(log n)

• Best Case Time Complexity: O(nlog n)

7.58advanced sorting

Randomized Quick-Sort
• Select the pivot as arandom element of the sequence

• The expected running time of randomized quick-sort
on a sequence of sizen is O(n log n)

• The timespentata level of thequick-sorttreeis O(n)

• We show that theexpected height of the quick-sort
tree isO(log n)

• good vs. bad pivots

- good: 1/4≤ nL/n ≤ 3/4
- bad: nL/n < 1/4 or nL/n > 3/4

• the probability of a good pivot is 1/2, thus we expect
k/2 good pivots out ofk pivots

• afteragoodpivot thesizeof eachchild sequenceis at
most 3/4 the size of the parent sequence

• After h pivots, we expect (3/4)h/2 n elements

• the expected heighth of the quick-sort tree is at most:
 2 log4/3 n

nL

0 n/4 n3n/4

