

# Sorting Algorithms (cont.)

- Insertion Sort is performed on a priority queue P which is a sorted sequence:
  - **Phase 1**: the first insertItem takes O(1), the second O(2), until the last insertItem takes O(n): overall  $O(n^2)$
  - **Phase 2**: removing an item takes *O*(1) time; overall *O*(*n*).
  - Time Complexity:  $O(n^2)$
- Heap Sort uses a priority queue K which is a heap. - insertItem and removeMin each take
  - $O(\log k)$ , k being the number of elements in the heap at a given time.
  - **Phase 1**: *n* elements inserted: *O*(*n*log *n*) time
  - **Phase 2**: *n* elements removed:  $O(n \log n)$  time.
  - Time Complexity: **O**(nlog n)

## **Divide-and-Conquer**

- *Divide and Conquer* is more than just a military strategy, it is also a method of algorithm design that has created such efficient algorithms as Merge Sort.
- In terms or algorithms, this method has three distinct steps:
  - **Divide**: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets.
  - **Recur**: Use divide and conquer to solve the subproblems associated with the data subsets.
  - **Conquer**: Take the solutions to the subproblems and "merge" these solutions into a solution for the original problem.

### **Merge-Sort**

- Algorithm:
  - **Divide**: If S has at leas two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences,  $S_1$  and  $S_2$ , each containing about half of the elements of S. (i.e.  $S_1$  contains the first  $\left[ n/2 \right]$  elements and  $S_2$  contains the remaining  $\lfloor n/2 \rfloor$  elements.
  - **Recur**: Recursive sort sequences  $S_1$  and  $S_2$ .
  - **Conquer**: Put back the elements into *S* by merging the sorted sequences  $S_1$  and  $S_2$  into a unique sorted sequence.
- Merge Sort Tree:
  - Take a binary tree T
  - Each node of T represents a recursive call of the merge sort algorithm.
  - We assocoate with each node *v* of *T* a the set of input passed to the invocation v represents.
  - The external nodes are associated with individual elements of *S*, upon which no recursion is called.

advanced sorting

7.5







advanced sorting

advanced sorting













7.15









### Java Implementation of Merge-Sort

• Interface SortObject

```
public interface SortObject {
```

```
//sort sequence S in nondecreasing order
using compartor c
public void sort (Sequence S, Comparator c);
```

```
}
```

```
Java Implementation
of Merge-Sort(cont.)
```

```
public class ListMergeSort implements SortObject {
 public void sort(Sequence S, Comparator c) {
    int n = S.size();
   if (n < 2) return; // a sequence with 0 or</pre>
  1 element is already sorted.
   // divide
   Sequence S1 = (Sequence)S.newContainer();
   // put the first half of S into S1
   for (int i=1; i <= (n+1)/2; i++) {
    S1.insertLast(S.remove(S.first()));
   }
   Sequence S2 = (Sequence)S.newContainer();
   // put the second half of S into S2
   for (int i=1; i <= n/2; i++) {
     S2.insertLast(S.remove(S.first()));
   }
   sort(S1,c); // recur
   sort(S2,c);
   merge(S1,S2,c,S); // conquer
}
```



#### Running Time of Merge-Sort (cont.)

- If we let *i* represent the depth of node *v* in the mergesort tree, the time spent at node *v* is  $O(n/2^i)$  since the size of the sequence associated with *v* is  $n/2^i$ .
- Observe that T has exactly 2<sup>i</sup> nodes at depth i. The total time spent at depth i in the tree is then O(2<sup>i</sup>n/2<sup>i</sup>), which is O(n). We know the tree has height logn

Therefore, the time complexity is  $O(n \log n)$ 

### Set ADT

- A Set is a data structure modeled after the mathematical notation of a set. The fundamaental set operations are *union*, *intersection*, and *subtraction*.
- A brief aside on mathemeatical set notation:
  - $A \cup B = \{ x: x \in A \text{ or } x \in B \}$
  - $A \cap B = \{ x: x \in A \text{ and } x \in B \}$
  - $\mathbf{A} \mathbf{B} = \{ x: x \in \mathbf{A} \text{ and } x \notin \mathbf{B} \}$
- The specific methods for a Set A include the following:
  - union(B): Set A equal to  $A \cup B$ .
  - intersect(B): Set A equal to  $A \cap B$ .
  - subtract(B): Set A equal to A – B.

### **Generic Merging**

| Algorithm genericMerge(A, B):                     |
|---------------------------------------------------|
| <b>Input</b> : Sorted sequences A and B           |
| <b>Output</b> : Sorted sequence C                 |
| let A' be a copy of A { We won't destroy A and B} |
| let $B'$ be a copy of $B$                         |
| while A' and B' are not empty do                  |
| $a \leftarrow A'.first()$                         |
| $b \leftarrow B'$ .first()                        |
| if <i>a<b< i=""> then</b<></i>                    |
| aIsLess(a, C)                                     |
| A'.removeFirst()                                  |
| else if <i>a=b</i> then                           |
| bothAreEqual $(a, b, C)$                          |
| A'.removeFirst()                                  |
| B'.removeFirst()                                  |
| else                                              |
| bIsLess(b, C)                                     |
| B'.removeFirst()                                  |
| while A' is not empty do                          |
| a←A'.first()                                      |
| aIsLess(a, C)                                     |
| A'.removeFirst()                                  |
| while B' is not empty do                          |
| $b \leftarrow B'$ .first()                        |
| bIsLess(b, C)                                     |
| B'.removeFirst()                                  |
| advanced sorting 7.29                             |

### **Set Operations**

- We can specialize the generic merge algorithm to perform set operations like union, intersection, and subtraction.
- The generic merge algorithm examines and compare the current elements of A and B.
- Based upon the outcome of the comparision, it determines if it should copy one or none of the elements a and b into C.
- This decision is based upon the particular operation we are performing, i.e. union, intersection or subtraction.
- For example, if our operation is union, we copy the smaller of a and b to C and if a=b then it copies either one (say *a*).
- We define our copy actions in alsLess, bothAreEqual, and bIsLess.
- Let's see how this is done ...

advanced sorting

}

}

}

7.30

## **Set Operations (cont.)**

```
• For union
  public class UnionMerger extends Merger {
    protected void alsLess(Object a, Object b, Sequence C) {
      C.insertLast(a);
    }
    protected void bothAreEqual(Object a, Object b,
                                  Sequence C) {
      C.insertLast(a);
    }
    protected void blsLess(Object b, Sequence C) {
      C.insertLast(b);
  }
• For intersect
  public class IntersectMerger extends Merger {
    protected void alsLess(Object a, Object b, SequenceC) {
    protected void bothAreEqual(Object a, Object b,
                                 Sequence C) {
      C.insertLast(a);
    }
    protected void blsLess(Object b, Sequence C) { }
  }
```

## **Set Operations (cont.)** • For subtraction public class SubtractMerger extends Merger { protected void alsLess(Object a, Object b, Sequence C) { C.insertLast(a); protected void bothAreEqual(Object a, Object b, Sequence C) { protected void blsLess(Object b, Sequence C) {





advanced sorting

























advanced sorting



#### In Place Quick Sort code (contd.)

//put the pivot in its place by swapping it
//with the element at leftIndex

S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur
// on both sides

quicksort (S, c, leftBound, leftIndex-1);

quickSort (S, c, leftIndex+1, rightBound);

```
}// end quicksort method
```

}// end ArrayQuickSort class

# Analysis of Running Time

- Consider a quick-sort tree *T*:
  - Let s<sub>i</sub>(n) denote the sum of the input sizes of the nodes at depth *i* in *T*.
- We know that  $s_0(n) = n$  since the root of *T* is associated with the entire input set.
- Also,  $s_1(n) = n 1$  since the pivot is not propagated.
- Thus: either s<sub>2</sub>(*n*) = *n* 3, or *n* 2 (if one of the nodes has a zero input size).
- The worst case running time of a quick-sort is then:

$$O\binom{n-1}{\sum_{i=0}^{n-1} \mathbf{s}_i(n)}$$

Which reduces to:

$$O\binom{n-1}{\sum_{i=0}^{n}(n-i)} = O\binom{n}{\sum_{i=1}^{n}i} = O(n^2)$$

• Thus quick-sort runs in time  $O(n^2)$  in the worst case.

