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Abstract

We begin by offering a new, direct proof of the equivalence between the problem of the
existence of kernels in digraphs, KER, and satisfiability of propositional theories, SAT, giving
linear reductions in both directions. Having introduced some linear reductions of the input
graph, we present new algorithms for KER, with variations utilizing solvers of boolean equa-
tions. In the worst case, the algorithms try all assignments to either a feedback vertex set, F',
or a set of nodes E touching only all even cycles. Hence KER is fixed parameter tractable not
only in the size of F', as observed earlier, but also in the size of E. A slight modification of
these algorithms leads to a branch and bound algorithm for KER which is virtually identical
to the DPLL algorithm for SAT. This suggests deeper analogies between the two fields and
the probable scenario of KER research facing the challenges known from the work on SAT.

1 Introduction

The concept of a kernel of a digraph (an independent set reachable from every outside node by
an edge) was introduced in [28] as a generalization of a solution of a cooperative game and has
since then found applications in both positional and cooperative game theory as well as in logic.
Determining the existence of a kernel has become a problem of independent interest in graph
theory, starting with the classical results of Richardson, [24, 25], and followed in the last decades
by several publications, e.g., [22, 13, 14, 1, 16, 11], with a recent overview [4].

The problem of the existence of kernels in digraphs, KER, is NP-complete, [6], so in a trivial
sense it is equivalent to the satisfiability of propositional theories, SAT. The equivalence has been
applied, e.g., in [20] for representing finitely branching dags as consistent propositional theories,
in [10, 11] for studying default logic, in [12] for correlating models of logic programs and kernels
of appropriate digraphs and in [29] for analysing circularity in logical paradoxes. But it has not
received a separate treatment, independent from particular applications. From an algorithmic
perspective, it is natural to ask for a more fine-grained analysis of the exact relationship between
SAT and KER. An answer should provide an indication both as to whether kernel theory can
contribute to SAT-solving, and as to how techniques developed by SAT-solvers can be employed
to increase efficiency of deciding KER. Equivalence of the two problems with respect to some
complexity class does not suffice to answer such questions because, in order for a reduction to
be useful in practice, even constant factors may matter, requiring a more detailed analysis of the
actual choices and possible heuristics.

In this article we focus on KER, showing that the reducibility of KER to SAT has a practical,
algorithmic content. This is found not so much in the direct application of SAT-solvers, although
this too is a viable approach for some cases, but rather in the similarities between the problems
encountered while trying to solve KER (directly) and those faced by SAT-solvers. We present a
series of novel algorithms for KER, utilizing new observations of graph-theoretical nature but also
the possibility of solving SAT at appropriate places. These can be very efficient for some classes
of graphs, but are hardly optimal in general. We then present our final algorithm for KER, which
is very similar to the central SAT-algorithm DPLL, [9, 8]. We review several issues which, arising
from earlier experiences with SAT, are likely to affect future work on KER.
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The question of how kernel theory can be used to solve SAT more effectively is left for future
work, but we hope that the connection we demonstrate here indicates strongly that SAT-solvers
might indeed have something to gain from utilizing the graphical nature of KER.

Section 2 introduces the basic definitions and establishes the equivalence of KER and SAT,
giving new linear reductions in both directions, simpler than previously available. The problem of
finding a kernel is formulated in terms of assigning boolean values to the nodes of the graph, an
assignment is a solution when it determines a kernel and a graph is solvable if it has a solution.
Section 3 presents some linear (or low polynomial) graph reductions which preserve and reflect
solvability and are later used by the discussed algorithms. Section 4 presents several results
relating solvability to various conditions on feedback vertex sets. In Subsection 4.1 we also show
how to solve KER by constructing a dag from a digraph. This is essentially the technique used
in the algorithms from [10, 11]. In our case, however, a single dag suffices for either finding a
kernel or concluding its non-existence. In the worst case, it tries all assignments to a feedback
vertex set, and thus the complexity of the trivial brute-force O*(2!¢l) is reduced to O*(2/¥),
where F C G is a feedback vertex set.! Following that, we show that one can reduce this factor
even further to the number of even cycles only. Subsection 4.2 gives an algorithm which, for each
assignment to a subset of nodes E touching all even cycles, determines in linear time if the resulting,
induced assignment is a solution, thus giving the complexity O*(2!¥!). Both these algorithms show
that the problem is fixed parameter tractable, FPT, taking the size of F', respectively E, as the
parameter. We also discuss a variation which, instead of inducing the values along the obtained
dag, decides solvability of the appropriate system of |E| boolean equations over |E| variables.
Section 5 introduces the main, recursive algorithm, based on the simplifications introduced in
Section 3. It subsumes the algorithm from [11] as a special case and allows to show the complexity
bound O*(1.325/€1) for oriented graphs (with no 2-cycles). It turns out that, except for the fact
that it works on digraphs and not on CNFs, it is exactly the DPLL algorithm — the basis of
most modern SAT-solvers. This brings a new aspect of the relationship to SAT, and we conclude
listing a series of conjectures and hypotheses on the expected issues and choices in the further
development of the algorithms for KER, originating from the experiences with SAT-solvers.

2 Background

A digraph (directed graph) is a pair G = (G, E), where G is a finite set of nodes and E C G x G
is a binary relation that describes the directed edges of G.?

For a vertex z € G, we denote by E(x) = {y € G | E(x,y)} the set of successors of x, and by
E-(z) ={y € G| E(y,z)} the set of predecessors of x with respect to the directed-edge relation
of G. Letting E* denote the transitive closure of E, we use [¢) = {y | y € E*(z)} to denote the
set of vertices reachable from x and (z] = {y | = € [y)} to denote the set of vertices from which z
is reachable. These notational conventions are extended to subsets of vertices, for example, for all
X CG,welet B7(X) =U,cx E(x). Foran X C G, we also write G\ X to denote the subgraph
of G induced by the subset G \ X.

A walk p is a sequence of vertices (xg, z1, 22, ..., Tn) such that V0 < i < n: x;41 € E(z;) and
such that all edges traversed are distinct, i.e. whenever z; = z; for 0 < ¢ # j < n, we have
Tit1 7# xj4+1. The length of a walk is the number of edges it uses, {(p) = n. A walk is a path if it
is also a sequence of distinct vertices. A cycle is a walk {(xq, ..., n—1,Z,) such that (g, ..., Zp-1)
is a path and z,, = xg € E(xy—1)-

A sink in G is a vertex x € G without successors and sinks(G) = {x € G | E(x) = @} denotes
the set of sinks of G. A vertex which is not a sink is internal, int(G) = G \ sinks(G). A root of
G is a vertex € G such that every other vertex is reachable by a path from z. The degree of
x € G, d(x), is the number of edges incident to x in G.

IThe notation O*() suppresses polynomial factors from exponential functions

2Some results presented below apply to the infinite digraphs and infinitary propositional logic. However, in the
present context of algorithm design, we assume all involved sets to be finite. Also, unless stated otherwise, by a
graph we always mean a digraph.
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A subset of vertices S C G is strongly connected if (*): Vx,y € S:x € [y) Ay € [z). Such
an S is a strongly connected component if there is no set S’ D S such that (x) holds. A strongly
connected component S is final whenever E(S) = S. Since this will be of relevance for some
algorithms, we remind the reader that it is possible, for instance by using Tarjan’s algorithm [27],
to decompose a graph into its strongly connected components in linear time.

For a digraph G, G denotes the undirected graph obtained by turning every directed edge (z, y)
into an undirected one {z,y}. An oriented graph is a digraph G obtained from G by giving every
undirected edge some direction. Such a graph does not contain any cycles of length 2.

A kernel of a digraph G = (G, E) is a subset of vertices K C G such that:
(i) G\ K 2 E~(K) (K is an independent set in G) and
(ii) G\ K C E~(K) (from every non-kernel vertex there is at least one edge to a kernel vertex).

Any kernel of G is an independent and dominating set in G. These two properties are equivalent
to K being a maximal independent subset of G. Conversely, given a maximal independent subset
K, we can determine if it is a kernel of G by verifying that every vertex x € G\ K has a directed
edge into K (a G-edge in G might be only to x.)

Consequently, a possible (if not most efficient) algorithm for finding the kernels would unorient
the input digraph G, find G’s maximal independent subsets, and for each such check if every node
outside it has a directed edge to the subset. The number of maximal independent subsets of any
G is limited by Moon and Moser’s 3% bound, [21]. It follows that there is an algorithm that finds

all kernels in a graph in time O* (3@ ). This running time is in fact tight for the problem of finding
all kernels, as can be seen considering G that is a collection of disjoint symmetric cycles of length
3, i.e. the reversal of every edge is also present. For such a graph every maximal independent
subset of G is a kernel and there are 35" of them. Even though for most digraphs only a proper
subset of the maximal independent sets will be kernels, finding all kernels is not a computationally
feasible problem. We consider only the problem of determining the existence of a kernel which,
when one exists, amounts usually to producing it.

The problem is addressed using the equivalence between the existence of kernels and the
satisfiability of propositional theories, arising from an equivalent definition of kernels. For a
digraph G = (G, E), an assignment o € {0,1}¢ (of truth-values to the vertices of G) is correct at
avertex ¢ € G if a(z) =1 < a(E(z)) C {0} or equivalently, if:

(a(z) =1 A a(E(z)) C{0}) V (alz)=0 A 1€ a(E(z))) (2.1)

An a € {0,1}€ is a solution for G, a € s0l(G), if a is correct at every vertex of G, and if such
an « exists G is solvable. For any a C G x {0,1}, we denote o' = {z € G | (z,1) € a} and
a® = {z € G| (z,0) € a}. For all graphs G and all assignments o € {0,1}“ it holds that « is a
solution iff ol is a kernel:

a € 50l(G) <= o' = G\ E” (') <= o' is a kernel of G (2.2)

A possible algorithm for finding kernels is then based on the fact that every digraph G induces a
propositional theory 7 (G) by taking, for each z € G, the formula

x /\ -y, (2.3)

yEE(x)

with the convention that 1 = /\yez y.3 Then, letting mod(T) denote all models of a theory T, the
following equality holds: l
s0l(G) = mod(T(G)). (2.4)

3Satisfiability of such a theory is equivalent to the existence of solutions for the corresponding system of boolean
equations. This motivates the use of the name “solution”, which was also used in the early days of kernel theory,
e.g., in [28], p.588, or [25].
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Since determining kernels is a special case of determining the models of propositional theories, we
can feed the equations (2.3) together with z = 1 for all z € sinks(G) to a solver of systems of
boolean equations, to determine if G has a kernel. Alternatively, we can feed the problem to a
clausal SAT-solver. First, each equation (2.3) is equivalent to

1 = @v\/y A N\Cyv-a). (2.5)

yEE(x) yEE(x)

Collecting now the right-hand-sides of these new equations and adding the requirement for all
z € sinks(G), yields the formula in CNF:

CNF(G) = /\ ((:C v \/ y) A /\ (—y \/ﬁx)> A /\ z. (2.6)
(©)

rEint yeE(x) yeE(x) z€sinks(G)

Satisfiability of CNF(G) is equivalent to the solvability of the system of equations (2.5) for all
internal nodes, with all sinks assigned 1 which, in turn, is equivalent to the existence of a kernel
in G, by (2.4).4

The above reduction and the resulting C N F(G) are essentially the same as in [7]. The linear
reduction in the opposite direction used there 3-Colorability, so we give a direct reduction from
SAT: every propositional theory T can be transformed in linear time into a digraph G(T) such
that mod(T) = sol(G(T)). Many different graphs can satisfy these requirements, so we give only
one example. First, assume a theory T given as a set of equivalences of the form

T < /\ Y, (2'7)

icl,

where all y, x; are variables, and where every variable occurs at most once on the left of <». The
digraph G(T) is obtained by taking variables as vertices and, for every formula, introducing edges
x — y; for all ¢ € I,. In addition, for every variable z not occurring on the left of any <, we add a
new vertex Z and two edges z — Z and Z — z. This last addition ensures that each variable z of T
which would become a sink of G(T), and hence could only be assigned 1 by any solution of G(T),
can be also assigned 0 (when the respective Z is assigned 1). Letting V(T) denote all variables of
T, and sol(X)|y restriction of assignments in sol(X) to the variables in Y, we have that

mod(T) = SOZ(Q(T))|V(-|-) (2.8)

Now, an arbitrary theory T can be transformed into the above form. To simplify the transforma-
tion, assume T to be given as a set of clauses, each clause C = (CT,C~) consisting of the set of
positive, C* = {z, | p € P}, and negative, C~ = {—z,, | n € N}, literals. First, let ac be a new
variable. The formula C’ : ac <> —ac A —C' is equisatisfiable with C, with models related by the
equation mod(C") = mod(C) x {{(ac,0)}. Substituting for =C, we obtain a more explicit form
of C' : ac & —ac N /\p€P &y A N\,en Tn. We introduce for every variable in the initial theory
x € V(T), a new variable Z. For every such pair of variables we introduce the formulae (i), and
for every clause C' the formula (ii):

(i) <> T and T < —.
(il) ac ¢ —ac A /\peP =Ty A Npeny "Tn

The theory C” containing formulae (i) and (ii) is equisatisfiable with C' and mod(C) = mod(C")|y (¢
Defining T" = (Jor € and letting G(T) = G(T’), the equality (2.8) remains valid.

4Assuming the adjacency list representation of the argument G = (G, E), CNF is linear in the number of
vertices, |G|, and edges, |E| (each edge (x,y) giving rise to two pieces of data: —y V —z and the element y in the
disjunction for z : z V... Vy V ...).
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Example 2.9 For T, = {—a}, respectively, To = {—x Vy}, we obtain the digraphs:

Cacl—>f<:>a: Cac2—>f<:>:zr
G(Ty) g(Tz)\AyZ?

As a digression, we note that G(T) can be defined so that it is oriented and has no loops. In addition
to ac, add two more nodes in a 3-cycle {(ac, bc, co, ac), and for every x € V(T), introduce in (i)
two more new nodes, replacing the 2-cycle by the 4-cycle: (z, T, a’, 2", x).

Both equations (2.4) and (2.8) hold for arbitrary digraphs but when they have infinite branch-
ings, the corresponding theory is in infinitary propositional logic. In this paper, we are concerned
exclusively with usual propositional logic and finite graphs, so “graph” and “arbitrary graph”
mean here only a finite digraph.

3 Preprocessing

This section presents some simplifications reducing the input graph, which will be later combined
with different algorithms. In Subsection 3.1, we show that we can consider only the problem
for graphs without sinks, since kernels of an arbitrary graph G are determined by the kernels of
its appropriate, sinkless subgraph which can be obtained from G in linear time. Subsection 3.2
presents some further simplifications of a graph which are based on local dependencies and are of
linear, or low polynomial, complexity.

3.1 Forcing values

The obvious brute-force approach, simply checking the condition (2.1) for every possible assign-
ment, can be improved by observing consequences of a given partial assignment. The following
definition captures some such consequences that are recognizable locally in the graph.

Definition 3.1 A partial assignment to a graph G is an o € {0,1}X for any X C G. Given such
an o, we define inductively its extension to the nodes which obtain forced values:

al =al
a =a°

a?>1 E(ailfl) UEV(O%IA) UO‘?A
ajsy = sinks(G\ af)Uaj U{z € E(y) |y € o) Az} = E(y) \ o}

Fized-point is reached when of = ai_,, no later than for k = |G|. We then let @* = |Jo}

a® =Ja? and set@ = {(n,1) | nea'}u{(n,0)|neca}.
Example 3.2 Consider the following two graphs:

N N
<

G: e —>

C:

—~,—> O

In C, a = {{z,1)} gives a9 = {z,y}, a3 = {z,2} and then o = {z,y,2}, o} = {x,y, 2}, i.e.,
a={x,y,z} x {0,1}.

In G, from a = {{c,0)} we obtain @ = {{c,0), (b, 1), {a,0),(f,0),(e,1),(d,0)}, while § =
{{e, 1)} leads to B = {{c,1),(d,0), (b,0), (a,1),(f,1),{e,0)}. In both cases, the resulting assign-
ment is a a solution of G. Starting with v = {(e,0)} does not induce any values, i.e., ¥ = 7.
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C shows that @ may happen to be a (non-functional) relation, i.e., @* Na® # @. If this is the case,
then we cannot find a correct assignment that extends «. However, if @ is a function, then for all
x € dom(@) we have the following weaker form of correctness:

(@(z) =1 A @(E(z)) C{0}) Vv (a(z) =0 A Jy€ E(z):y¢a’) (3.3)

We say that @ is consistent in this case. Given a consistent partial assignment @, it might, but
need not, be possible to extend it to a solution for G. This depends on the solvability of the
subgraph yet to be assigned, but also on the possibility of finding a solution for the remaining
graph such that each vertex assigned 0 by @ is eventually justified by the assignment of 1 to one
of its successors. In particular, we have to meet this constraint on the border of «, defined as
follows:

Definition 3.4 Given a partial assignment a to a graph G, the border of « is the set bord(a) =
{z edom(a) |a(z) =0A1 ¢ a(E(z))}.

The formula (3.3) implies that a consistent partial assignment is correct everywhere with the
possible exception of its border.

Remark 3.5 When a partial assignment « is correct on its whole domain, i.e., a € sol(dom(c)),
then o C G is called a local kernel (sometimes semi-kernel) in kernel theory. Local kernels are
used in inductive proofs of sufficient conditions for the existence of kernels in digraphs from certain
classes, e.g. in [2, 14, 13, 16]. Deciding if a graph has a local kernel is NP-complete, [12].

Any 8 € s0l(G) must be such that its restriction to any subset B C G is consistent on the subgraph
induced by B. Also, every solution respects all values induced by its own restrictions, in particular,
induced from the empty assignment. Consequently, the values induced from the empty assignment
are the same in all solutions (if any). These observations are gathered in the following lemma. G,
denotes the subgraph G\ dom(a@), @ denotes the empty assignment, and we abbreviate G° = G.

Lemma 3.6 For an arbitrary G:
1. bord(@) = &;
2. for any partial assignment « : sinks(GY) = &;
3. VB € 50l(G) VB C G : Bl = Blym(ain)

4. sol(G) ={BUD | B € s0l(G°)}.

PROOF. 1. It follows by induction that each @; satisfies (2.1), i.e., E(@}) C @9 AVz € 29 :
E(r) N @} # @. This holds trivially at the start with @; = @, and after first iteration when
@1 = sinks(G) and @9 = @. Assuming (2.1) as IH for @;, then

for each new z € @9, : & € E~(@}), because E(@}) C @9 by TH

for each new x € @7, : x € sinks(G\ @2,;) — the last component does not apply, since for
any y € @9 there is a z € E(y) N @} by IH.
2. @ = a; = ;41 for some i > 0 and assume = € sinks(GS), i.e., E(z) C dom(@). If E(x)Na' # o,
then z € af, | and otherwise z € o, ;. In either case z € dom(a;11) = dom(a@). Contradiction.
3. By induction on the steps used in the construction of m, Definition 3.1, we show that for
all i : (B|B)i = Blaom((8|p):)- The basis is trivial since (8|p)1 = (6|B) = Blaom((s|s))- For the
induction step, any x € (8|5)i+1 gives one of the following cases:
(0) z € (B]B)Y,, ie., either

e 7 € (B]5)? which, by TH, means that z € 8° or
ez € E((Bl5)}) UE~((Blp)}) which, by IH and correctness of 3, means that z €
E(BY)UE-(B') C B or

(1) x € (B|B)L, ie., either



O©CO~NOOOTA~AWNPE

e x € (B|p)} which, by IH, means that = € 8 or
o z € sinks(G\ (B]B)%1), ie., E(x) C (B]5)%; € B° by point (0), and z € S* by
correctness of 3, or

o {z} =EW)\(BB): : v € (B]5)%1, i.e. by point (0) we have y € 8 and E(y)\ {z} C
B9, Then by correctness of 3 we must have {x} = E(y) \ 8° with x € 8.

4. For every x € G° : BE(z) D" = @ and, by 2, E(z) N G° # @. Hence, every 3 € sol(G°) can
be combined with & into a correct solution for G. But the values on dom (&) can not be chosen

otherwise since, by 3, Vo : « € s0l(G) — a|d0m(5) =d. =]

The construction from Definition 3.1, together with Lemma 3.6, will provide the basic simplifi-
cation mechanism used in all our algorithms. According to point 4, we can first (in linear time)
induce all values from the sinks of G, removing dom (&) from the graph. Then, trying various
partial assignments o to the remaining, sinkless subgraph G°, point 3 ensures that it suffices to
consider only the induced assignment &, thus reducing the search space.

In the following subsection, we identify some particular, structural patterns allowing local
simplifications of the graph.

3.2 Simplification

The number of possible simplifications, preserving and reflecting solvability, can be unlimited. In
practice, one has to choose some which can be expected to occur frequently and can be performed
cheaply. Two such simplifications are given, providing also some information about the structural
properties of kernels. The first one concerns a special type of paths.

Definition 3.7 A path p = (20,21, ..., xyp)) is isolated if VO < i < I(p) : E(x;) = {@it1}.

It follows from Definition 3.1 that any assignment, of 0 or 1, to any vertex on an isolated p will
induce values to every other vertex on the path. So the vertices on isolated paths do not contribute
anything to the structural properties of G determining its kernels. They can be removed.

Definition 3.8 For an isolated path p = (xop, ..., Typ),p) withl(p) > 2, let P C G denote all nodes
xip on p. The graph C(G,p), the contraction of G on p, is defined by a mapping f : G — C(G,p):

i C(G,p) =G \ {Ii,p | Tip € P} U {l“gvxé}

o [:G —C(G,p) is defined by f(x) = x when x € C(G,p), f(zip) =z when i +1(p) is even
and f(xip) = x,, otherwise

o C(E,p) ={(z,y) [ 3", y) € (f~ (@) x [TW)NE: 2" =axVa' =24, VY = Tip) p)

Example 3.9 We contract the isolated path p = (xg,x1, T2, T3, x4) in the digraph G, obtaining the
digraph C(G, p) where f is defined on p by f(xo) = f(x2) = f(xa) = 23, f(x1) = f(x3) = x,. Also
shown is the digraph C(G,q) obtained by contracting ¢ = (b, x1,x2,x3,x4) with f(b) = f(z2) =

floa) =2, for) = flas) = ).

G: C(G,p) : ¢(G,q)
7 b T, <——0b Lo — Ty
io/ V7 |

17, AN )
|

T3
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Contraction of isolated paths preserves and reflects solutions as stated in the following Fact. (f;g¢
denotes function composition in diagrammatic order: f followed by g.)

Fact 3.10 For any isolated path p with l(p) > 2 in any G :
sol(G) = {a | 38 € s0l(C(G,p)) : . = f;B}.

PrOOF. D) For a B € s0l(C(G,p)) define a € {0,1}¢ by Vo € G : a(z) = B(f(z)). To show
a € sol(G) it suffices, by definition of f, to show that « is correct on p. For x; , such that i +1(p) is
odd or i = I(p), correctness follows since by definition of f and the fact that p is isolated we have
f(E(zi,)) = E€CP)(f(x;,)). All other a;,’s are such that i + I(p) is even and i > 0, and since
p is isolated we have f(E(E(xip))) = f(%ip) = f(2i(p),p)- So correctness follows from correctness

of oz(xl(p)m)
C) Assume « € s0l(G). By definition of f and the fact that p is an isolated path it follows that

Vo : Vy1,y2 € f(2) : a(y1) = a(yz). Then we define g for every z € C(G, p) by choosing arbitrary
y € f~(x) and taking B(x) = a(y). Then § is correct and it satisfies Vo € G : a(x) = B(f(x)) O

As the second simplification we remove basic contradictions.
Definition 3.11 An x € G is a basic contradiction if Iy € E(z) : E(y) C E(z).

Important special cases include the predecessors of sinks, loops, and triangles such as the

following graph:

xr —

L ——

The following fact is obvious:

Fact 3.12 If x is a basic contradiction in G then Va € sol(G) : a(x) = 0.

PROOF. Let y € E(x) be such that E(y) C E(z) and « € s0l(G). If a(y) = 1 then a(z) = 0, while
if a(y) = 0 then, for some z € E(y) : a(z) = 1. But then also a(z) = 0 since z € E(y) C E(x). O

The notion of basic contradiction is motivated by the fact that a (general) contradiction, i.e. an
2 such that Va € sol(G) : a(z) = 0, may not be identifiable as such locally by inspecting its fixed
neighbourhood. For instance, in the following graph, x is a contradiction since = = 0 is necessary
(and sufficient) for the existence of a correct assignment to the rest of the graph.

N

The contraction of isolated paths can turn a contradiction into a basic one, as the following example
illustrates.

Example 3.13 The graph C(G,p) results from contracting the isolated path p = (xg,x1,x2) in G.
After contraction, ¢ becomes a basic contradiction, revealing that it is a contradiction in G:

G: C(G,p):
C—T) —T1 — T2 C—>$2<—£L‘Zl)

The specific case of Fact 3.10, covered by the following fact, characterizes the contradictions
which become basic after contraction of isolated paths. (Basic contradiction is a special case when

I(p)=0and l(q) =1.)
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Fact 3.14 Given isolated paths p = (Top, T1,p, s Ti(p),p)» 4 = (T0,0>T1,q5 -+ Ti(q),q = Ti(p).,p) Such
that I(p) + l(q) is odd. If c € G is such that xo p,x0,q € E(c), then Yo € s0l(G) : ac) = 0.

PRrROOF. Assume arbitrarily that p has odd length and that we start by contracting p to obtain
H = C(G,p). Then we have z}, € E"(c), and there is an isolated path ¢ = (x0,q, Z1,q; -, T1(g),g = T5)
in H. Contracting ¢ to obtain K = C(H,q) we obtain a graph where z) = z € EX(c) and
EX(x}) = {z9}. So by facts 3.10 and 3.12 it follows that Vo € sol(G) : a(c) = 0. O

Similar facts can be proven for other situations, where contracting some collection of paths
reveals a basic contradiction (for instance in the case of isolated cycles of odd length, or with two
paths p, ¢ as in Fact 3.14 but admitting also outgoing edges at nodes with even indices z2;.) We
do not attempt to give a complete classification, however.

Towards an algorithm for KER, we gather the two rules for isolated paths and basic contra-
dictions into the simplification procedure simp(G) as shown in Algorithm 3.15. The algorithm
returns the error value L if it discovers the non-existence of solutions. Otherwise, by Facts 3.10,
3.12 and Lemma 3.6, every solution to the input graph G can be obtained from a solution to the
returned graph. °

Algorithm 3.15 simp(G)

if there is an isolated path p with I(p) > 2 then
return simp(C(G,p))
else if there is a basic contradiction € G then
a = {(z,0)}
if @ is a function then
return simp(G\ dom(@))
else
return |
end if
else
return G
end if

4 Breaking cycles

According to Richardson’s theorem [25], every finitely branching (in particular, finite) graph not
containing odd cycles has a kernel. Consequently, a possible approach to KER is to try breaking
the odd cycles. Below, we reduce the number of cycles to consider and give a general treatment
of this approach utilizing the following concept.

Definition 4.1 For a graph G, we define B(G) = {X C G | V3 € s0l(G) : 3a € {0,1}* : @ = B}.
An X € B(G) is called a basis for sol(G).

Thus, for any X € B(G), any solution for G can be obtained by inducing from some assignment
to X, reducing the complexity of the brute-force approach to 2/X!. It remains to be proven that
suitable X € B(G) exists. Below we provide two types of bases, guaranteed to exist for any graph.
In algorithmic terms this means that KER, when parameterized by the size of either of these
bases, is FPT. It should be noted here that a more obvious choice of parameter for KER, the
size of the kernel we are looking for, does not make the problem FPT for general graphs unless

5Inducing and checking the existence of isolated paths can be done in linear time. The trivial search for basic
contradictions would visit, for every node x, each of its successors y € E(x), checking if E(y) C E(x). The worst
case |G|? hardly ever obtains and, in practice, even this trivial procedure is sub-quadratic.
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collapses, deemed unlikely, occur among the parameterized complexity classes.® So the result in
Subsection 4.2, admitting as a basis any set of vertices touching all even cycles, appears to be the
best currently available regarding the parameterized complexity of KER.

4.1 Feedback Vertex Sets
A feedback vertex set for a graph G is a subset F' C G such that G\ F' is acyclic (a dag).

Proposition 4.2 For any graph G, if F is a feedback vertex set for G then F € B(G).

PROOF. Let F be a feedback vertex set for G and consider arbitrary 5 € sol(G). Then by lemma
3.6 we have | = ﬂ|dom(m). All we need to prove is dom(B|r) = G. So consider G\ dom(8|r).
By Lemma 3.6.2, this graph has no sinks, and as F' is a feedback vertex set, it has no cycles. Since
G is finite, it follows that G\ dom(B|r) = @, as desired. O

This observation gives a simple algorithm for KER: find some feedback vertex set F' and try
all possible assignments to its nodes, verifying if the induced assignments are correct on the whole
graph. More cleverly, proposition 4.2 can be used to construct a branch and bound algorithm that
only branches at vertices from F. An algorithm based on this idea is presented in [11]. We will
return to branch and bound algorithms in Section 5, but note here that as the success of such an
approach depends on finding small feedback vertex sets, we can not expect it to be optimal for all
graphs. It will be good enough, though, for solving KER effectively on graphs that admit small
feedback vertex sets. This follows from the recent work in [5], showing that the problem of finding
a minimum feedback vertex set is FPT in the size of such a set. In particular, KER is FPT in the
size of a minimum feedback vertex set.

Feedback vertex sets are useful tools when graphs are viewed algebraically as systems of boolean
equations. In this context they allow for a systematic substitution of equals for equals that both
preserves and reflects solutions, allowing us to represent G more compactly than the system 7(G)
from (2.3). In the rest of this subsection we present this construction, linking substitution in
systems of boolean equations with feedback vertex sets of graphs. We do this by introducing
labeled dag’s that are nice in their own right in that they provide a visualization of the bases
originating from feedback vertex sets. *

F denotes such a set and given it, we represent G as a (labeled) dag D(F') = (Dp, Er), where
F' = {2’ |z € F} is a set of new elements and:

Dr = GUF

Er = (EG \{(y,z) |z € F}) U{(y,2') |2’ € F' Az € E(y)} (4.3)

The new vertices are exactly the new sinks F’ = sinks(D(F)) \ sinks(G) and |F’| < number of
cycles in G. The labeling, defined by I(x) = x for € G and I(2’) = x for the new 2’ € F’, serves
establishing a unique correspondence between solutions of D(F) and of G.

Example 4.4 D(a,b) € dag(G) is obtained from the feedback vertex set {a,b}.

a——————>1) b—sc—d—ec—f—y
L&/ NS4
G\€—>f

61n [17] it is shown that using the size of the kernel as parameter does make the problem FPT for planar digraphs.
([23] provides an introduction to parameterized complexity.)

"The question whether this correspondence could be applied for solving more general systems of boolean equa-
tions seems an interesting research challenge in its own right

10
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The double ‘a’ would disappear if we constructed the dag D(b) from the feedback set {b}. It would
have an edge from a’ (which became a) to ' and no extra a without incoming edges.

Let dag(G) denote the set of so obtained dags from a given G. Given a D(F) € dag(G), we can
use inductive definitions over this representation. In particular, any assignment to the new sinks,
B e {0,1}F /, induces an assignment 3 to the whole D, in linear time. We only verify that the
values assigned to the new sinks 2’ € F’ are the same as the values induced at the respective
2z € F. In the above D(a,b), trying a’ = 1 = ¥’ fails inducing a = 0. Trying b’ = 1 and o’ =0
induces the same values at b and a, allowing to conclude the existence of a kernel for G.

s0l(G) becomes thus captured by a new system of equations requiring the values assigned to
F’ to agree with the values induced in F. The system is defined as follows. For every vertex
x € G\ sinks(G) = int(D(F)), divide the set of its successors Er(x) into two disjoint subsets:
Er(x) = Ep(z) N F' and Egr(zr) = Ep(x) \ EL(x).

Definition 4.5 For x € sinks(G) let FRMppy(v) =1 and for x € int(D(F)) define:

FRMppy(z) = N\ -y A /\ ~FRMpr)(2).
yEl(EL(x)) z€ER(x)
The reduced system is EQUp(r)(G) = {FRMpry(z) = | v € F}.

Example 4.6 (4.4 continued) The reduced system EQUp(q)(G) has two equations: a = —b
and b= =(=b A =(=a A =(—a A —~b))).

The dag D(b) € dag(G) would give the corresponding reduced system with only one equation
(equivalent to the one obtained by substituting a = —b in the above system), namely: b = —(=b A
=(==b A =(==b A —==b))). Simplifying its right-hand side, we gradually obtain the trivial equation
b= —(=b A —(==b A —-—=b))) = =(=bA—-0)) =b.

Each FRMpp)(z) contains only variables from F, so an a € {0,1}* can be extended to a* €
{0,1}¢ as follows (a[¢] denotes the usual evaluation of the formula ¢ under the assignment «):

* _J a@) ifxeF
o) = { O‘[FRMD(F)(JC)] otherwise (4.7)

This makes a* a function consistent with @ induced according to Definition 3.1, ie., o C @
Every solution for G is, in fact, such an o* obtained from a solution for EQUpr)(G).

Proposition 4.8 For any D(F) € dag(G):
sol(G) = {a* | a € {0,1}F AVz € F : az) = a[FRMpr)(2)]}.

Proor. D) If the equality holds for F, then (4.7) makes it hold also for all other nodes. Then,
for every x € G, we have that (*) a*(z) = 1 < o[F RMp(r)(z)] = 1, and hence

af(z)=1 & ( A\ —a( /\/\ﬁaFRMD(F)(Z)])Zl ()

yel(EL(z )) z€ER(x)
& ( /\ )A /\ﬁa ) =1 (%)
yel(EL)(z ) ZGER(
& Nty = E(x) = l(EL(z)) U Egr(x)
yEE(x)

& Vy:yeE(@R) —a*(y) =0
C) For an arbitrary S € s0l(G), let o = |p. Since F € B(G), so @ = 5. But since @ and o* both
are functions and o* C @, so a* =a = (. O
In Example 4.6, the reduced system simplified to one trivial equation b = b, so the graph G has
exactly two solutions, each induced from a solution to this equation.
Expressing this proposition in terms of the assignment @&, induced in the dag D(F) € dag(G)
from the assignment o € {0,1}*" to its new sinks F”, gives the following claim:

sol(G) = {alg | a € {0,1}7 AVZ € F': a(z') = a(z)}.

11
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The above algorithms, whether utilizing the reduced system of equations EFQUpr)(G) or merely
inducing values directly in D(F'), rely on finding an arbitrary feedback vertex set. The following
subsection presents an algorithm for which it suffices to find a subset of nodes breaking only the
even cycles.

4.2 Breaking Even Cycles

Dually to Richardson’s theorem, we have the following fact.

Lemma 4.9 If G # &, sinks(G) = &, and G has no even cycles, then sol(G) = @.

PROOF. Assume towards contradiction that a € sol(G). Clearly, a' # @. So choose a € o' and
consider a sequence of sets V : N — P([a)) such that

Vo = {a}
Vaiy1 = UxEVgi E(z)
Vaire = Uyevy,,, ¥}, where y, € E(x) is such that a(y,) = 1 (if it exits).

By correctness of a, such a sequence satisfies | J; Va; C ot and |, Vaiy1 C o and, as sinks(G) = &
soVi € N:V; # @. Also, it is easy to see that for every n € N and every a,, € V,, there is a
sequence of edges (a,a1,as,...,a,) such that Vi : a; € V; N E(a;—1). So there is an infinite
sequence of edges p = (a,ay,as,...) such that Vi : a; € V; N E(a;—1). Since G is finite this is
only possible if 395 > i : a; = a;. Let i, j be a pair satisfying this condition and such that for all
i <k <l<j:ar# a. The sequence of edges C' = (ai, @it1, ..., a;) must be of even length since
otherwise a; € a' Na?, i.e., an even cycle, contradicting our assumption about G. O

From an algorithmic point of view, the observation that odd cycles are the only obstacle to the
existence of kernels suggests (not very efficient) algorithms based on breaking the odd cycles.
The above observation suggests that we can restrict attention to even cycles, and the following
proposition makes this suggestion precise. A subset of vertices X C G is an even cycle transversal,
if G\ X contains no even cycles.

Proposition 4.10 If X C G is an even cycle transversal, then X € B(G).

PROOF. For an arbitrary 8 € sol(G), Lemma 3.6 gives that f|x = ﬂ|dom(,6’\_x)' Assume towards
contradiction that G’ = G\ dom(B|x) # @. By Lemma 3.6.2, G’ has no sinks, and also Yz € G' :
Yy € E(z) Ndom(B|x) : B(y) = 0. This implies that g = ﬂ|dom(,@\_x) U B’ for some S’ € sol(G).
However, as G’ is a graph with no sinks and no even cycles we have sol(G') = & by Lemma 4.9.
This is our contradiction. o

Clearly, for many graphs this represents a significant improvement over the algorithms from the
previous subsection, reducing the worst case exponent from the number of cycles to the number
of even cycles. Even though an implementation seeking to take advantage of this encounters the
problem of finding an even cycle transversal (finding a minimum such is NP-hard, and not known
to be FPT), one can argue also for the practical relevance of Proposition 4.10, besides the merely
theoretical improvement. In some situations, it can happen that an even cycle transversal can be
easily obtained from the input. In general, it often suffices to find a small — and not a minimum
— such set and this can be done relatively efficiently.®

Example 4.11 (3.2, 4.4 continued) The graph G has two even cycles: (b,c,b) and (b, c,d, a,b).
Trying b =1 (respectively, 0), induces the assignment & (respectively, 8) as in Ezample 3.2. The
induced assignments are functions and hence solutions by Proposition 4.10 and Definition 4.1.

8Finding a minimum feedback vertex set is shown to be FPT in [5]. Given a graph with vertices G, and such a
subset V C G, one can try moving, one at a time, a vertex x from V back to the induced subgraph G\ V, checking
if the resulting, induced subgraph G \ V U {z} has an even cycle. This last problem is in P by the recent result
from [26]. If no even cycle appears, we continue with V' \ {z} and the induced subgraph extended with xz, while if
some does, x remains in V. What remains in V, after trying all its vertices, is an even cycle transversal.

12
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The above example might be insufficient since b is, in fact, a feedback vertex set, so the conclusion
follows already by Proposition 4.2. The following example, shows the difference.

Example 4.12 In the following graph G
b 7 d
a<——2=c
the only even cycle is C = (a,b,d, c,a). Breaking it at, say a, leads to two trials:

a =1 induces b=c=d =0 but then d =0 gives a conflict inducing b =1, and

a =0 induces b=1,d = 0, but no more nodes obtain induced value.
Neither assignment induces a solution, so Definition 4.1 and Proposition 4.10 imply sol(G) = @.

In the graph G\ {e}, we have the same even cycle. Trying a = 1 gives a conflict as above, but
from a =0, we obtainb=1=c and d=0 = f, yielding a solution.

o

This concludes the first set of our algorithms for KER. Except for the obvious algorithm using
CNF(G) from (2.6), testing SAT (of boolean equations) is of use here only as a possible enhance-
ment. The algorithms from the present section can be very efficient when applied to graphs with
few (even) cycles and, particularly, when cycles or feedback vertex sets are easily read from the
input. We do not think, however, that they will be optimal for all kinds of instances. Their likely
shortcoming will arise from the comparison to the algorithm proposed in the following section,
which also shows much tighter connections between KER and SAT.

5 KER and SAT

Algorithms in the previous section perform the initial simplification, Algorithm 3.15, extract a
relevant subset X of vertices and then answer KER solving a system of equations or trying blindly
assignments to X, which induce the assignments to the whole graph. The following, recursive
Algorithm 5.1 performs simplification and induction at each recursive call, returning an element
of s0l(G), if such exists, and L otherwise. It takes an additional argument, the partial assignment
«, and constructs its extension to a complete solution, if possible, or returns L if not.

Algorithm 5.1 sol(G, &)

Input: A digraph G and a partial assignment « (initially a = @).

Output: 5 € s50l(G) with o C S if it exists, L otherwise.
a0 /| Definition 3.1
if « is not a function then return | endif

G:= G\ dom(a)

if G = @ then return «a endif

G = SIMP(G) et /| Algorithm 3.15
if G = 1 then return 1 endif

Choose some z € G

return sol(G,a U {(z,1)}) ® sol(G,a U {(z,0)})

Strictly speaking, this is not an algorithms but a class of algorithms. For instance, the simplifi-
cation of a graph, as well as inducing of values from a given partial assignment, could be defined
otherwise and replace those used here. Also, several minor issues are left for more detailed deci-
sions. For instance, « is only a solution to the reduced graph obtained after a possible series of
contractions at line 5. The solution for the actual input graph has to be reconstructed from it
by a corresponding series of applications of Fact 3.10. The polynomial (in the size of the original
graph) time, spent in each recursive call on the computation of @, can be improved since, once
it starts going, it only needs to consider border vertices from dom(«), Definition 3.4. A conflict

13
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(a vertex assigned two values so that @ is no longer a function) must occur at these vertices, and
once it is detected, the algorithm can return the failure value at line 2.

Two more central decisions are left open. The operation @ denotes angelic choice, ignoring
the possible argument 1, ie, 2® 1L = 1@z =z, andax # LAy # L = (zdy) € {z,y}.
An implementation has to decide how to perform the choice of the first value tried. Finally,
we have not specified how to choose an & € G for branching at line 7. A specific instance of
the above algorithm was presented in [11]. It performs no simplification and branches only from
maximal degree cyclic vertices. Proposition 4.2 guarantees sufficiency of branching only from
cyclic vertices, and choosing maximal degree is often sound.® However, it is not always the best
choice, as evidenced by the following example.

Example 5.2 Consider the graph G:

Y

qu/

The minimal degree is 2 = deg(y) = deg(z) = deg(r). Branching from y gives two cases:

y = 1 induces the solution withx =q=z2z=0andy=w=r=1

y = 0 induces the solution withq=z=r=1and x =y =w =0.
Similarly, each branching from z induces a solution. So, Algorithm 5.1 branching first on some
nodes with minimal degree, terminates successfully in just one recursive call. This need not happen
when branching on x, the only vertex with maximal degree. Inducing from x =1 gives y =q =20
which yields a conflict at y, while x = 0 induces only r = 1, i.e., requires further recursive calls.

It is probably too much to ask for an algorithm that always makes the optimal choice of branching
vertex. As a simple and general rule for arbitrary graphs, choosing a vertex with maximal degree
is probably a good solution. It is possible, however, to specify the choice of branching vertex
in particular situations more carefully and thereby improve running times for certain classes of
graphs. This is done for the class of oriented graphs in the following Subsection 5.1.

5.1 Oriented graphs

The worst case complexity of Algorithm 5.1 is (’)*(2|G|), but many possibilities of improvements
exist in the interplay of the different choices involved. An interesting, related question is how much
the complexity can be improved when attention is restricted to special classes of graphs. We show
that it is possible, by choosing « € G for branching in a certain way, to obtain a better bound for
the oriented graphs. The following lemma is the main tool for showing this improvement.

Lemma 5.3 If G has no sinks then either all the final strongly connected components of G are
cycles or there is some final strongly connected component S C G with x € S such that |E~ (z)| > 2.

PROOF. Assume towards contradiction that G has a final strongly connected component S which
is not a cycle and such that Vo € S : |E¥(x)] < 1. Clearly, since S is not a cycle there is
some = € S such that |E(z)| > 2. Let y and z be two successors of some such xz. Then since
S is a final strongly connected component, there must be paths (y = vo,...,; Yn—1,yn = x) and
(z = 20,y Zm—1,2m = &) in S. Since y,, = 2, = x it follows that there is some maximal ¢ such
that y,—; = zm—; = w. Then we have |E~ (w)| > 2 O

Proposition 5.4 For oriented G : |sol(G)| < 1.325IC1 and Algorithm 5.1 can run in O*(1.325/€1).

9Whether degree refers to the in-degree, out-degree or their sum may depend on the implementation and, in
particular, on the way of inducing. In our case, inducing happens both along and against the direction of the edges,
so it is natural to take the degree of a node to be the number of all incoming and outgoing edges.

14
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PROOF. We run Algorithm 5.1 and consider different recurrences depending on which vertex we
branch on. First we make sure that we always branch on a vertex from a final strongly connected
component of the current G. (Using Tarjan’s algorithm, this can be ensured in linear time.)
This component cannot be a cycle of odd length since then it is contracted, revealed to be a
basic contradiction, and removed by Algorithm 3.15. It also follows by Algorithm 3.15 that if
it is a cycle of even length then it is presented to us as a cycle of length 2. However, since G
is oriented this cycle has been obtained as a result of contracting some isolated paths of length
> 3. Since this gave us an immediate reduction of the input size of at least 2, we are justified in
writing the recurrence as T'(|G|) = T(|G| — 2). Assignment of 1 or 0 to any vertex in a cycle of
length 2 with no outgoing edges forces a value to it’s successor, and so we obtain the recurrence
T(|G]) = 2T(|G| —4). If S is not a cycle then we branch on a vertex x € S such that |E~ (z)| > 2,
guaranteed to exist by lemma 5.3. Then if |E(z)| = 1 we will force 1 to it’s successor on assignment
of 0, and O to all three neighbours on assignment of 1. So we obtain a worst case recurrence of
T(|G)) =T(|G| —2)+ T(|G| — 4). If |[E(x)| > 2 we force values to four vertices when assigning 1
to x, and so we obtain T'(|G|) = T(|G| — 1) + T(|G| — 5). This latter bound serves as global worst
case. Since the largest real root of the characteristic polynomial A> — A* —1 = 0 is A ~ 1.325 it
follows that |sol(G)| < 1.325/¢ and that Algorithm 5.1 can decide their (non)existence in time
0*(1.325141). O

Notice that the proof of Proposition 5.4 does not specify completely how to choose a branching
vertex, but only narrows the choice down to sets of vertices with some desired properties. The
question about the exact choice is still highly relevant for an implementation.

5.2 DPLL

If, in Algorithm 5.1, we take G to be a CNF formula, the algorithm turns out to be exactly
the pseudo-code for the DPLL algorithm for satisfiability, [9, 8], which is the basis of virtually
all modern SAT-solvers (for a relatively recent overview, one can consult e.g., [19]). Inducing
in the first line amounts then, typically, to the unit propagation and the condition ‘« is not a
function’ amounts to the ‘conflict’ in the SAT-solving parlance. An « satisfying all clauses in G is
returned, line 4. Otherwise, the remaining problem is preprocessed for the next recursive call, line
5. Simplification may include elimination of clauses with pure literal (occurring only positively or
only negatively), as well as learning and many other heuristics depending on the implementation.
We suggested, similarly, a wide range of possible choices in Section 3. Choosing then wisely the
branching literal x is one of the crucial aspects of successful SAT-solvers.

The coincidence of Algorithm 5.1 and DPLL goes beyond the mere fact of both instantiating
the general branch and bound schema. It involves also the fact that kernels can be seen as
solutions, (2.2), and that during their gradual construction, partial assignments induce values to
the neighbourhoods, in analogy to unit propagation and other constraint propagation techniques
in SAT. One may therefore expect the lessons from SAT-solving to be relevant for KER-solving.
The crucial aspects of SAT-solvers concern the efficiency and range of inducing values from a
given, partial assignment, line 1, and the choices of the branching point and its value required
to get the most out of the propagation of constraints implied by the performed choices, line 7.
These two elements occupy the critical position, as SAT-solvers spend around 80% of time on
this phase. It is reasonable to expect a similar situation in KER-solving. The importance of this
aspect has been illustrated by the improved complexity bound (’)*(1.325‘0‘) for oriented graphs,
which was obtained due to such graphs enabling, at each recursive call, some minimal extension
of the current partial assignment, thus reducing the remaining search space.

There seems to be no general guidance in actually performing the choice of branching vertex.
High degree may often work well but, as we saw in example 5.2, is not necessarily optimal. It
might be too much to ask for a strategy working best in all cases but uncertainty at this point
may also reflect the lack of experience and overview of the problem instances. In SAT-solvers, the
choice is performed depending on the subclass of instances for which the solver is designed. Choice
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of the branching literal in solvers for random-SAT uses a lookahead procedure, which determines
the reduction in the search space effected by each choice. Solvers for industrial-SAT can use the
results of learning from the earlier encountered conflicts.

We have thus mentioned another important aspect: a SAT-solver is designed for a specific cat-
egory of instances. A solver deciding SAT quickly on instances from industrial, or other rational
and systematic contexts, may perform poorly on random instances. For random instances, “local
search” heuristics for merely finding a solution may be extremely efficient but remain incomplete,
being unable to conclude unsatisfiability. The winner of several categories of the SAT-competition
last years, SATzilla, is actually a collection of various algorithms, which are only chosen appro-
priately depending on the analysis of the actual instance. The lack of one, uniform approach and
the need to adjust solutions and heuristics to appropriately limited subclasses of instances is a
general lesson from SAT. One can expect KER to face the same challenge of identifying such rel-
evant subclasses. It is likely, however, that just as the DPLL schema is at the core of virtually all
efficient procedures for solving SAT, so does Algorithm 5.1 express the core structure of efficient
approaches for solving KER.

An important case of subclasses are those for which the problem becomes tractable. For
instance, 2-SAT is NL-complete and Horn-SAT is P-complete. Search for sufficient conditions
for kernel existence is an active research field, e.g., [1, 13, 14, 16, 3], with a recent overview
in [4]. Further research should, in our opinion, consider also the problem of finding classes of
graphs which may not admit kernels but have complexity bounds for the KER-problem below
NP-completeness.'°

Finally, let us mention an interesting SAT phenomenon — phase transition. When the clausal
density (the ratio of number of clauses to the number of variables) is below 4, the theory is, with
high probability satisfiable, while when it exceeds 4.5, the theory is almost certainly unsatisfiable.
The instances with the clausal density around the transition value, 4.25, are the most difficult to
solve. It is not obvious how to translate this into the graph language. Graph density (average
degree) seems to be a relative of the clausal density, so one might conjecture that sparse graphs
should be solvable with high probability (as are, e.g., all trees, dags and 50% of all cycles.) Very
dense graphs might be expected to be relatively easy (e.g., kernels in a weakly complete digraph
G (one with a complete underlying graph G) are exactly nodes x satisfying E~(z) = G\ {z})
but should be expected to be unsolvable. A naive guess might expect the most difficult problems
somewhere in the middle between these two extremes. This is partially confirmed by the tests of
the algorithm presented in [11]. According to them, sparse graphs and graphs with density over
50% are relatively easy, while those with density around 15-20% are most difficult. On the other
hand, it has been shown in [15] that the kernel problem is NP-complete for planar digraphs of
degree at most 3, so the “easy” instances of KER can certainly be difficult enough. It remains to
be seen if phase transition from SAT has a counterpart in KER and, if so, under what measure of
graph density.

6 Conclusions

We have studied the problem, KER, of solvability of digraphs or, in the more standard language, of
determining if a given digraph has a kernel. We began by observing its equivalence to the problem
of satisfiability of propositional formulae, whether in usual or infinitary propositional logic. Seeing
different applications of digraph kernels, in areas such as game theory and non-classical logics, it is
conceptually rewarding in itself to see that kernels can be expressed — equivalently and naturally
— as models of propositional theories.

We have proposed a series of graph reductions which preserve and reflect solvability and, being
linear (or low polynomial), can be incorporated into the algorithms for KER-solving. In Section 4,

100ne non-trivial result of this kind follows from the work done on stable matchings. An algorithm presented
in [18] decides existence of stable matchings for the roommates problem in polynomial time. This solves KER
in polynomial time for any digraph that is an orientation of a line graph and for which every weakly complete
subgraph is acyclic.

16



O©CO~NOOOTA~AWNPE

we gave two such algorithms: one based on the extraction of a feedback vertex set, F', and another
reducing the complexity even to O* (2‘E ‘), where F is an even cycle transversal. As a consequence,
KER is FPT not only in the size of F' but also of E. (As an instance of reducing KER to SAT, we
gave a variant of the first algorithm where solving a reduced system of boolean equations replaced
blind trials of all assignments to the sinks of a labeled dag, representing the input graph.) These
algorithms can be expected to perform well on graphs with few (even) cycles and, especially, when
even cycle transversal or, at least, feedback vertex set can be easily obtained from the input.

The question about a general algorithm for arbitrary instances of KER, led in Section 5 to
another, new algorithm, which turns out to be virtually identical to the well-known DPLL algo-
rithm, underlying modern SAT-solvers. From this we dare draw a series of conjectures for further
development of the research on KER. It suggests that this final algorithm may outperform others
on the large, practical instances of KER. This, however, will depend on more detailed decisions,
because the presented sketch gives only a class of algorithms. It leaves open the possibility for
further choices and improvements at points were such possibilities were realised or are still in-
vestigated in the context of SAT-solving. Experience with SAT-solving suggests that one will
have to adjust choices and heuristics to specific subclasses of instances. As a particular case, we
showed that, with a specific branching strategy, oriented digraphs guarantee a certain minimum
of inducing during the recursive trials, allowing to reduce their worst case bound to O*(1.325!¢1).

We have shown that SAT-solving can be, to some extent, incorporated in KER-algorithms.
More importantly and generally, however, solving KER appears to pose the same kind of choices
and challenges, as met earlier in the design of SAT-algorithms. One can therefore expect that
issues known from SAT, like those exemplified in Section 5.2, have graph-theoretic counterparts
that will come up in the design of KER-algorithms. This itself may provide an independent
motivation, and a specific direction, for the further study of KER. On the other hand, it does not
seem unreasonable to expect that SAT-solvers may eventually benefit from KER-algorithms. The
fact that KER can be formulated just as naturally in the language of graphs as in the language
of logic or of game-theory, suggests that the problem can act as a useful point of reference for
the exchange of ideas between these different fields. A better understanding of KER might very
well foster a better understanding of the relationship between different problems that, apart from
being computationally demanding, often appear to have little in common.

Having seen several new algorithms, the reader might expect also a report of their implemen-
tation and performance in practice. However, the analogy to SAT suggests that one should not
rely here on any simple statements of the kind “algorithms perform well in practice”. More pre-
cisely, any such statement should be qualified by a careful description of the instances and actual
performance measures. Experimentation with various implementations seems to be, in the case of
KER as it is in the case of SAT, an independent and extensive field of work, not to be dismissed
in a few sentences. We leave this important aspect for future work.
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