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Chapter 1

Introduction

1.1 Introduction

The study of Interior-Point Methods (IPMs) is currently one of the most active
research areas in optimization. The name “interior-point methods” originates
from the fact that the points generated by an IPM lie in the interior of the
feasible region. This is in contrast with the famous and well-established simplex
method where the iterates move along the boundary of the feasible region from one
extreme point to another. Nowadays, IPMs for Linear Optimization (LO) have
become quite mature in theory, and have been applied to practical LO problems
with extraordinary success. In this chapter, a short survey of the fields of linear
optimization and interior point methods is presented. Based on the simple model
of standard linear optimization problems , some basic concepts of interior point
methods and various strategies used in the algorithm are introduced. The scope
of this thesis follows at the end of the chapter.

1.2 A short history of Linear Optimization

Linear optimization is one of the most widely applied mathematical techniques.1

The last 15 years gave rise to revolutionary developments, both in computer tech-
nology and in algorithms for LO. As a consequence, LO-problems that 15 years
ago required a computational time of one year, can now be solved within a cou-
ple of minutes. The achieved acceleration is due partly to advances in computer
technology but significant part also to the new IPMs for LO .

1This section is based on a historical review in [Roo02].

1



2 INTRODUCTION 1.2

During the 1940’s it became clear that an effective computational method
was required to solve the many linear optimization problems that originated from
logistical questions that had to be solved during World War II.

The first practical method for solving LO-problems was the simplex method,
proposed by Dantzig [Dan63], in 1947. This algorithm explicitly explores the
combinatorial structure of the feasible region to locate a solution by moving from
a vertex of the feasible set to an adjacent vertex while improving the value of
the objective function. Since then, the method has been routinely used to solve
problems in business, logistics, economics, and engineering. In an effort to explain
the remarkable efficiency of the simplex method, using the theory of complexity,
one has tried very hard to prove that the computational effort to solve an LO-
problem via the simplex method is polynomially bounded in terms of the size of a
problem instance. Klee and Minty [Kle72], have shown in 1972 that in the process
of solving the problem

maximize
n∑

j=1

10n−jxj

s.t.


2

i−1∑

j=1

10i−jxj


+ xi ≤ 100i−1, (i, j = 1, . . . , n) , (1.2.1)

xj ≥ 0.

the simplex method goes through 2n−1 vertices.2 This shows that the worst-case
behavior of the simplex method is exponential.

The first polynomial method for solving LO problems was proposed by Khachiy-
an, in 1979. It is the so-called ellipsoid method [Kha79]. It is based on the ellipsoid
technique for nonlinear optimization developed by Shor [Sho87]. With this tech-
nique, Khachiyan proved that LO belongs to the class of polynomially solvable
problems. Although this result had a great theoretical impact, it failed to keep
up its promises in actual computational efficiency. A second proposal was made
in 1984 by Karmarkar [Kar84]. Karmarkar’s algorithm is also polynomial, with
a better complexity bound than Khachiyan’s, but it has the further advantage of
being highly efficient in practice. After an initial controversy it has been estab-
lished that for very large, sparse problems, subsequent variants of Karmarkar’s
method often outperform the simplex method.

Though the field of LO was then considered more or less mature, after Karm-
arkar’s paper it suddenly surfaced as one of the most active areas of research in
optimization. In the period 1984-1989 more than 1300 papers were published on
the subject. Originally, the aim of the research was to get a better understanding
of the so-called projective method of Karmarkar. Soon it became apparent that

2Recently in [Dez04a; Dez04b] the authors prove that by adding an exponential number of

redundant inequalities, the central path-following interior point methods visits small neighbor-

hoods of all the vertices of the Klee-Minty cube.
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this method was related to classical methods like the affine scaling method of Dikin
[Dik67; Dik74; Dik88], the logarithmic barrier method of Frisch [Fri55; Fri56], and
the center method of Huard [Hua67], and that the last two methods, when tuned
properly, could also be proved to be polynomial. Moreover, it turned out that the
IPM-approach to LO has a natural generalization to the related field of convex
nonlinear optimization, which resulted in a new stream of research and an excel-
lent monograph of Nesterov and Nemirovski [Nes93]. This monograph opened the
way into other new subfields of optimization, like semidefinite optimization and
second order cone optimization, with important applications in system theory,
discrete optimization, and many other areas. For a survey of these developments
the reader may consult Vandenberghe and Boyd [Boy96], and the book of Ben-Tal
and Nemirovski [BT01].

1.3 Primal-dual interior point methods for LO
In this section we proceed by describing primal-dual interior point methods for LO
and some recent results [Pen01; Pen02a; Pen02b]. There are many different ways
to represent an problem. The two most popular and widely used representations
are the standard and the canonical3 forms. It is well known [Gol89] that any
LO problem can be converted into standard or canonical form. In this thesis we
consider the standard linear optimization problem

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

where A ∈ Rm×n is a real m× n matrix of rank m, and x, c ∈ Rn, b ∈ Rm. The
dual problem of (P ) is given by

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
,

with y ∈ Rm and s ∈ Rn.
The two problems (P ) and (D) share the matrix A and the vectors b and c in their
description. But the role of b and c has been interchanged: the objective vector
c of (P ) is the right-hand side vector of (D), and, similarly, the right-hand side
vector b of (P ) is the objective vector of (D). Moreover, the constraint matrix in
(D) is the transposed matrix AT , where A is the constraint matrix in (P ). It is
well known [Roo05], that finding an optimal solution of (P ) and (D) is equivalent
to solving the non-linear system of equations

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1.3.1)

xs = 0.

3In the canonical form of the LO problem all constraints are inequality constraints, e.g.,

min
{
cT x : Ax ≥ b, x ≥ 0

}
.
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The first equation requires that x is feasible for (P ), and the second equation
that the pair (y, s) is feasible for (D), whereas the third equation is the so-called
complementarity condition for (P ) and (D); here xs denotes the coordinatewise
product of the vectors x and s, i.e.

xs = [x1s1;x2s2; . . . ;xnsn].

We shall also use the notation

x

s
=

[
x1
s1

;
x2
s2

; . . . ;
xn
sn

]
,

for each vector x and s such that si 6= 0, for all 1 ≤ i ≤ n. For an arbitrary
function f : R→ R, and an arbitrary vector x we will use the notation

f(x) = [f(x1); f(x2); . . . ; f(xn)].

The basic idea underlying primal-dual IPMs is to replace the third (non-linear)
equation in (1.3.1) by the nonlinear equation xs = µ1, with parameter µ > 0 and
with 1 denoting the all-one vector (1; 1; . . . ; 1). The system (1.3.1) now becomes:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1.3.2)

xs = µ1.

Note that if x and s solve this system then these vectors are necessarily positive.
Therefore, in order for (1.3.2) to be solvable there needs to exist a triple (x0, y0, s0)
such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0. (1.3.3)

We assume throughout that both (P) and (D) satisfy this condition, which is
known as the interior-point condition (IPC). For this and some of the properties
mentioned below, see, e.g., [Roo05].

Satisfaction of the IPC can be assumed without loss of generality. In fact we
may, and will, even assume that x0 = s0 = 1 [Roo05]. From (1.3.3) we observe
that these x0 and s0, for some appropriate y0, solve (1.3.2) when µ = 1. If the IPC
holds, the parameterized system (1.3.2) has a unique solution (x(µ), y(µ), s(µ))
for each µ > 0; x(µ) is called the µ-center of (P ) and (y(µ), s(µ)) is the µ-center
of (D). The set of µ-centers (with µ > 0) defines a homotopy path, which is
called the central path of (P ) and (D) [Meg89; Son86]. If µ→ 0 then the limit of
the central path exists. This limit satisfies the complementarity condition , and
hence yields optimal solutions for (P ) and (D) [Roo05].

IPMs follow the central path approximately. Let us briefly indicate how this
works. Without loss of generality we assume that (x(µ), y(µ), s(µ)) is known for
some positive µ. For example, due to the above choice, we may assume this to be
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the case for µ = 1, with x(1) = s(1) = 1. We then decrease µ to µ+ := (1− θ)µ,
for some θ ∈ (0, 1) and apply Newton’s method to iteratively solve the non-linear
equations (1.3.2). So for each step we have to solve the following Newton system.

A∆x = 0,

AT∆y +∆s = 0, (1.3.4)

s∆x+ x∆s = µ+1− xs.

Because A has full row rank, the system (1.3.4) uniquely defines a search direction
(∆x,∆s,∆y) for any x > 0 and s > 0; this is the so-called Newton direction and
this direction is used in all existing implementations of the primal-dual method.
The first two equations take care of primal and dual feasibility after a (small
enough) step along the Newton direction, whereas the third equation serves to
drive the new iterates to the µ+−centers. The third equation is called the cen-
tering equation.

By taking a step along the search direction, with the step size defined by a
line search rule, one constructs a new triple (x, y, s), with x > 0 and s > 0. If
necessary, we repeat the procedure until we find iterates that are close enough
to (x(µ), y(µ), s(µ)) . Then µ is again reduced by the factor 1 − θ and we apply
Newton’s method targeting at the new µ−centers, and so on. This process is
repeated until µ is small enough, say until nµ ≤ ε; at this stage we have found
ε−solutions of the problems (P ) and (D).

In this thesis we follow [Bai04a; Pen00a; Pen00b; Pen01; Roo05; Ye97] and
reformulate this approach by defining the same search direction in a different way.
To make this clear we associate to any triple (x, s, µ), with x > 0 and s > 0 and
µ > 0, the vector

v :=

√
xs

µ
. (1.3.5)

Note that if x is primal feasible and s is dual feasible then the pair (x, s) coincides
with the µ-center (x(µ), s(µ)) if and only if v = 1.
Introducing the notations

Ā :=
1

µ
AV −1X = AS−1V, (1.3.6)

V := diag(v), X := diag(x), S := diag(s), (1.3.7)

and defining the scaled search directions dx and ds according to

dx :=
v∆x

x
, ds :=

v∆s

s
, (1.3.8)

the system (1.3.4), can be rewritten as

Ādx = 0,
ĀT∆y + ds = 0,

dx + ds = v−1 − v.
(1.3.9)
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Note that dx and ds are orthogonal vectors, since dx belongs to the null space of
the matrix Ā and ds to its row space. Hence, we will have dx = ds = 0 if and
only if v−1 − v = 0, which is equivalent to v = 1. We conclude that dx = ds = 0
holds if and only if the pair (x, s) coincides with the µ-center (x(µ), s(µ)).

We make another crucial observation. The third equation in (1.3.9) is called
the scaled centering equation. The right-hand side v−1− v in the scaled centering
equation equals minus the gradient of the function

Ψc(v) :=

n∑

i=1

(
v2i − 1

2
− log vi

)
. (1.3.10)

Not that ∇2Ψc(v) = diag
(
1+ v−2

)
and that this matrix is positive definite,

so Ψc(v) is strictly convex. Moreover, since ∇Ψc(1) = 0, it follows that Ψc(v)
attains its minimal value at v = 1, with Ψc(1) = 0. Thus it follows that Ψc(v) is
nonnegative everywhere and vanishes if and only if v = 1, i.e., if and only if x =
x(µ) and s = s(µ). The µ-centers x(µ) and s(µ) can therefore be characterized
as the minimizers of Ψc(v).

1.3.1 Primal-dual interior point methods based an kernel functions

Now we are ready to describe the idea underlying the approach in this thesis. In
the scaled centering equation, the last equation of (1.3.9), we replace the scaled
barrier function Ψc(v) by an arbitrary strictly convex function Ψ(v), v ∈ Rn

++

such that Ψ(v) is minimal at v = 1 and Ψ(1) = 0, where Rn
++ denote a positive

orthant. Thus the new scaled centering equation becomes

dx + ds = −∇Ψ(v). (1.3.11)

As before, we will have dx = 0 and ds = 0 if and only if v = 1, i.e., if and only if
x = x(µ) and s = s(µ), as it should be.

To simplify matters we restrict ourselves to the case where Ψ(v) is separable
with identical coordinate functions. Thus, letting ψ denote the function on the
coordinates, we write

Ψ(v) =

n∑

i=1

ψ(vi), (1.3.12)

where ψ(t) : D → R+, with R++ ⊆ D, is strictly convex and minimal at t = 1,
with ψ(1) = 0. In the present context we call the univariate function ψ(t) the
kernel function of Ψ(v). We will always assume that the kernel function is twice
differentiable. Observe that ψc(t), given by

ψc(t) :=
t2 − 1

2
− log t, t > 0, (1.3.13)
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is the kernel function yielding the Newton direction, as defined by (1.3.9). In this
general framework we call Ψ(v) a scaled barrier function. An unscaled barrier
function, whose domain is the (x, s, µ)-space, can be obtained via the definition

Φ(x, s, µ) = Ψ(v) =

n∑

i=1

ψ (vi) =

n∑

i=1

ψ

(√
xisi
µ

)
. (1.3.14)

One may easily verify that by application of this definition to the kernel function
in (1.3.13) we obtain — up to a constant factor and a constant term — the
classical logarithmic barrier function.

Any proximity function Ψ(v) gives rise to a primal-dual IPM, as described
below in Figure 1.1. With Ā as defined in (1.3.7), the search direction in the
algorithm is obtained by solving the system

Ādx = 0,
ĀT∆y + ds = 0,

dx + ds = −∇Ψ(v),
(1.3.15)

for dx, ∆y and ds, and then computing ∆x and ∆s from

∆x =
xdx
v
, ∆s =

sds
v
, (1.3.16)

according to (1.3.8).

The inner while loop in the algorithm is called inner iteration and the outer
while loop outer iteration. So each outer iteration consists of an update of the
barrier parameter and a sequence of one or more inner iterations.

It is generally agreed that the total number of inner iterations required by
the algorithm is an appropriate measure for the efficiency of the algorithm. This
number will be referred to as the iteration complexity of the algorithm. Usually
the iteration complexity is described as a function of the dimension n of the
problem and the accuracy parameter ε.

A crucial question is, of course, how to choose the parameters that control
the algorithm, i.e., the proximity function Ψ(v), the threshold parameter τ , the
barrier update parameter θ, and the step size α, so as to minimize the iteration
complexity.

In practice one distinguishes between large-update methods [Ans92; Gon92;
Gon91; Her92; Jan94a; Koj93a; Koj93b; Tod96; Roo89], with θ = Θ(1), and
small-update methods, with θ = Θ(1/

√
n) [And96; Her94; Tod89].

Figures 1.2 and 1.3 exhibit the behavior of IPMs with large-update and small-
update for a specific two-dimensional LO problem. These figures are drawn in
xs-space. Note that in the xs-space the central path is represented by the straight
line consisting of all vectors µe, µ > 0. In these figures we have drawn the iterates
for a simple problem and also the level curves for ψ(v) = 1 around the target
points on the central path that are used during the algorithm.
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Generic Primal-Dual Algorithm for LO

Input:

A kernnel function ψ(t);

a threshold parameter τ > 0;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := 1; s := 1; µ := 1;

while nµ > ε do

begin
µ := (1− θ)µ;
v :=

√
xs
µ
;

while Ψ(v) > τ do

begin
x := x+ α∆x;

s := s+ α∆s;

y := y + α∆y;

v :=
√

xs
µ
;

end
end

end

Figure 1.1: The algorithm.

Until recently, only algorithms based on the logarithmic barrier function were
considered. In this case, where the proximity function is the scaled logarithmic
barrier function, as given by (1.3.10), the algorithm has been well investigated
(see, e.g., [Gon92; Her94; Jan94b; Koj89; Mon89; Tod89]). The corresponding
complexity results can be summarized as follows.

Theorem 1.3.1 (cf. [Roo05]). If the kernel function is given by (1.3.13) and

τ = O(1), then the algorithm requires

O
(√

n log
n

ε

)
(1.3.17)
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Figure 1.2: Performance of a large-update IPM (θ = 0.99).

inner iterations if θ = Θ
(
1√
n

)
, and

O
(
n log

n

ε

)

inner iterations if θ = Θ(1). The output is a positive feasible pair (x, s) such that

nµ ≤ ε and Ψ(v) = O(1).

As Theorem 1.3.1 makes clear, small-update methods theoretically have the best
iteration complexity. Despite this, large-update methods are in practice much
more efficient than small-update methods [And96]. This has been called the
’irony of IPMs [Ren01]. In fact, the observed iteration complexity of large-update
methods is about O

(
log n log n

ε

)
in practice. This unpleasant gap between theory

and practice has motivated many researchers to search for variants of large-update
methods whose theoretical iteration complexity comes closer to what is observed
in practice. As pointed out below, some progress has recently been made in this
respect but, regrettably, it has to be admitted that we are still far from the desired
result.

We proceed by describing some recent results. Note that if ψ(t) is a kernel
function then ψ(1) = ψ′(1) = 0, and hence ψ(t) is completely determined by its
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Figure 1.3: Performance of a small-update IPM (θ = 1√
2n

).

second derivative:

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (1.3.18)

In [Pen02a] the iteration complexity for large-update methods was improved to

O
(√

n (log n) log
n

ε

)
, (1.3.19)

which is currently the best result for such methods. This result was obtained by
considering kernel functions that satisfy

ψ′′(t) = Θ(tp−1 + t−1−q), ∀t ∈ (0,∞). (1.3.20)

The analysis of an algorithm based on such a kernel function is greatly simplified
if the kernel function also satisfies the following property:

ψ
(√
t1t2

)
≤ 1
2 [ψ (t1) + ψ (t2)] , ∀t1, t2 > 0. (1.3.21)

The latter property has been given the name of exponential convexity (or shortly
e-convexity) [Bai03a; Pen01]. In [Pen02a] kernel functions satisfying (1.3.20) and
(1.3.21) were named self-regular. The best iteration complexity for large-update
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methods based on self-regular kernel functions is as given by (1.3.19) [Pen02a].
Subsequently, the same iteration complexity was obtained in [Pen01] in a more
simple way for the specific self-regular function

ψ(t) =
t2 − 1

2
+
t1−q − 1

q − 1
, q = 1

2 log n.

1.4 The scope of this thesis
In this thesis we further explore the idea of IPMs based on kernel functions as
described before.

In Chapter 2 we present a new class of barrier functions which are not necessary
self-regular. This chapter is based on [Bai04a; Bai03a; Bai03b; Bai02b; Gha04b;
Gha04a; Gha05a]. The proposed class is defined by some simple conditions on the
kernel function and its first three derivatives. The best iteration bound for small-
and large-update methods as given by (1.3.17) and (1.3.19) respectively are also
achieved for kernel functions in this class.

In Chapter 3 we investigate the extension of primal-dual IPMs based on kernel
functions studied in Chapter 2 to semidefinite optimization (SDO). The chapter
is based on [Gha05b].

In Chapter 4 we report some numerical experiments. The aim of this section
is to investigate the computational performance of IPMs based on various kernel
functions. These tests indicate that the computational efficiency of an algorithm
highly depends on the kernel function underlying the algorithm.

Finally, Chapter 5 contains some conclusions and recommendations for further
research.
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Chapter 2

Primal-Dual IPMs for LO Based on
Kernel Functions

2.1 Introduction

As pointed out in Chapter 1, Peng, Roos, and Terlaky [Pen00a; Pen00b; Pen01;
Pen02a; Pen02b] recently, introduced so-called self-regular barrier functions for
primal-dual interior point methods (IPMs) for linear optimization. Each such
barrier function is determined by its univariate self-regular kernel function. In
this chapter we present a new class of barrier functions. The proposed class
is defined by some simple conditions on the kernel function and its first three
derivatives. As we will show, the currently best known bounds for both small-
and large-update primal-dual IPMs are achieved by functions in the new class.

2.2 A new class of kernel functions

We call ψ : (0,∞) → [0,∞) a kernel function if ψ is twice differentiable and the
following conditions are satisfied.

(i) ψ′(1) = ψ(1) = 0;

(ii) ψ′′(t) > 0, for all t > 0.

In this chapter we restrict our selves to functions that are coercive, i.e.,

(iii) limt↓0 ψ(t) = limt→∞ ψ(t) =∞.

13



14 PRIMAL-DUAL IPMS FOR LO BASED ON KERNEL FUNCTIONS 2.2

Clearly, (i) and (ii) say that ψ(t) is a nonnegative strictly convex function such
that ψ(1) = 0. Recall from (1.3.18) that this implies that ψ(t) is completely
determined by its second derivative:

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (2.2.1)

Moreover, by (iii), ψ(t) has the so called barrier property. Having such a function
ψ(t), its definition is extended to positive n-dimensional vectors v by (1.3.12), thus
yielding the induced (scaled) barrier function Ψ(v). The barrier function induces
primal-dual barrier search directions, by using (1.3.11) as the centering equation.
In the sequel we also use the norm-based proximity measure δ(v) defined by

δ(v) = 1
2 ‖∇Ψ(v)‖ = 1

2 ‖dx + ds‖ . (2.2.2)

Note that
Ψ (v) = 0⇔ δ (v) = 0⇔ v = e.

In this chapter we consider more conditions on the kernel function, namely ψ ∈ C3
and

tψ′′(t) + ψ′(t) > 0, t < 1, (2.2.3-a)

tψ′′(t)− ψ′(t) > 0, t > 1, (2.2.3-b)

ψ′′′(t) < 0, t > 0, (2.2.3-c)

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1, (2.2.3-d)

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (2.2.3-e)

Condition (2.2.3-a) is obviously satisfied if t ≥ 1, since then ψ′(t) ≥ 0. Simi-
larly, condition (2.2.3-b) is satisfied if t ≤ 1, since then ψ′(t) ≤ 0. Also (2.2.3-d)
is satisfied if t ≥ 1 since then ψ′(t) ≥ 0, whereas ψ′′′(t) < 0. We conclude that
conditions (2.2.3-a) and (2.2.3-d) are conditions on the barrier behavior of ψ(t).
On the other hand, condition (2.2.3-b) deals only with t ≥ 1 and hence concerns
the growth behavior of ψ(t). Condition (2.2.3-e) is technically more involved; we
will discuss it later.

Remark 2.2.1. It is worth pointing out that the conditions (2.2.3-a)-(2.2.3-d)

are logically independent. Table 2.1 shows five kernel functions and the signs

indicate whether a condition is satisfied (+) or not (−). ¥

The next two lemmas make clear that conditions (2.2.3-a) and (2.2.3-b) admit
a nice interpretation.

Lemma 2.2.2 (Lemma 2.1.2 in [Pen02b]). The following three properties are

equivalent:
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ψ(t) (2.2.3-a) (2.2.3-b) (2.2.3-c) (2.2.3-d) (2.2.3-e)

t2−1
2

+ e−σ(t−1)−1
σ

, σ ≥ 1. − + + + +

t− 1− log t + − + + +

t3 + t−3 − 2 + + − + +

8t2 − 11t+ 1 + 2√
t
− 4 log t + + + − +

1
2
(t+ 2) (t− 1)− log t + − + + −

Table 2.1: The conditions (2.2.3-a)-(2.2.3-d) are logically independent.

(i) ψ
(√
t1t2

)
≤ 1
2 (ψ (t1) + ψ (t2)), for all t1, t2 > 0;

(ii) ψ′(t) + tψ′′(t) ≥ 0, t > 0;

(iii) ψ
(
eξ
)
is convex.

Proof. (iii) ⇔ (i): From the definition of convexity, we know that ψ(exp(ζ)) is

convex if and only if for any ζ1, ζ2 ∈ R, the following inequality holds

ψ

(
exp

(
1

2
(ζ1 + ζ2)

))
≤ 1

2
(ψ(exp (ζ1)) + ψ(exp (ζ2))) .

Letting t1 = exp (ζ1), t2 = exp (ζ2), obviously one has t1, t2 ∈ (0,+∞), and the

above relation can be rewritten as

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)) .

(iii) ⇔ (ii): The function ψ(exp (ζ)) is convex if and only if the second

derivative with respect to ζ is nonnegative. This gives exp (2ζ)ψ′′(exp (ζ)) +

exp (ζ)ψ′(exp (ζ)) ≥ 0. Substituting t = exp (ζ), one gets tψ′(t) + t2ψ′′(t) ≥ 0

which is equivalent to ψ′(t) + tψ′′(t) ≥ 0 for t > 0. This completes the proof of

the lemma. 2

Lemma 2.2.3. Let ψ(t) be a twice differentiable function for t > 0. Then the

following three properties are equivalent:

(i) ψ

(√
t21+t

2
2

2

)
≤ 1
2 (ψ (t1) + ψ (t2)), for t1, t2 > 0;
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(ii) tψ′′(t)− ψ′(t) ≥ 0, t > 0;

(iii) ψ
(√
ξ
)
is convex.

Proof. (iii)⇔ (i): We know that ψ
(√
ξ
)
is convex if and only if for any ξ1, ξ2 ∈

R+, the following inequality holds:

ψ

(√
1

2
(ξ1 + ξ2)

)
≤ 1

2

(
ψ
(√

ξ1

)
+ ψ

(√
ξ2

))
.

By letting t1 =
√
ξ1, t2 =

√
ξ2, the above relation can be equivalently rewritten

as

ψ

(√
t21 + t22

2

)
≤ 1

2
(ψ (t1) + ψ (t2)) .

(iii) ⇔ (ii): The second derivative of ψ
(√
ξ
)
is nonnegative if and only if

1

4ξ
3
2

(√
ξψ′′(

√
ξ)− ψ′ (√ξ

))
≥ 0. Substituting t =

√
ξ gives 1

4t3 (tψ
′′(t)− ψ′(t)) ≥

0, which is equivalent to tψ′′(t)− ψ′(t) ≥ 0, for t > 0. 2

Following [Bai03a], we call the property described in Lemma 2.2.2 exponential

convexity, or shortly e-convexity. This property will turn out to be very useful in

the analysis of primal-dual algorithms based on kernel functions.

In the next lemma we show that if ψ(t) satisfies (2.2.3-b) and (2.2.3-c), then ψ(t)

also satisfies condition (2.2.3-e).

Lemma 2.2.4. If ψ(t) satisfies (2.2.3-b) and (2.2.3-c), then ψ(t) satisfies (2.2.3-e).

Proof. For t > 1 we consider

f(β) := ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt), β ≥ 1.

Note that f(1) = 0. Moreover,

f ′(β) = tψ′′(t)ψ′′(βt)− ψ′(t)ψ′′(βt)− βtψ′(t)ψ′′′(βt)

= ψ′′(βt) (tψ′′(t)− ψ′(t))− βtψ′(t)ψ′′′(βt) > 0.

The last inequality follows since ψ′′(βt) > 0, tψ′′(t)−ψ′(t) > 0, by (2.2.3-b), and

−βtψ′(t)ψ′′′(βt) > 0, since t > 1, which implies ψ′(t) > 0, and ψ′′′(βt) < 0, by

(2.2.3-c). Thus it follows that f(β) > 0 for β > 1, proving the lemma. 2

As a preparation for later, we present in the next section some technical results

for the new class of kernel functions.
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2.2.1 Properties of kernel functions

Lemma 2.2.5. One has

tψ′(t) ≥ ψ(t), if t ≥ 1.

Proof. Defining g(t) := tψ′(t) − ψ(t) one has g(1) = 0 and g′(t) = tψ′′(t) ≥ 0.

Hence g(t) ≥ 0 for t ≥ 1 and the lemma follows. 2

Lemma 2.2.6. If ψ is a kernel function that satisfies (2.2.3-c), then

ψ(t) >
1

2
(t− 1)ψ′(t) and ψ′(t) > (t− 1)ψ′′(t), if t > 1,

ψ(t) <
1

2
(t− 1)ψ′(t) and ψ′(t) > (t− 1)ψ′′(t), if t < 1.

Proof. Consider the function f(t) = 2ψ(t) − (t− 1)ψ′(t). Then f(1) = 0 and

f ′(t) = ψ′(t)− (t− 1)ψ′′(t). Hence f ′(1) = 0 and f ′′(t) = − (t− 1)ψ′′′(t). Using

that ψ′′′(t) < 0 it follows that if t > 1 then f ′′(t) > 0, whence f ′(t) > 0 and

f(t) > 0, and if t < 1 then f ′′(t) < 0, so f ′(t) > 0 and f(t) < 0. From this the

lemma follows. 2

Lemma 2.2.7. If ψ(t) satisfies (2.2.3-c), then

1

2
ψ′′(t) (t− 1)

2
< ψ(t) <

1

2
ψ′′(1) (t− 1)

2
, t > 1,

1

2
ψ′′(1) (t− 1)

2
< ψ(t) <

1

2
ψ′′(t) (t− 1)

2
, t < 1.

Proof. Using Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1

2
ψ′′(1)(t− 1)2 +

1

3!
ψ′′′(ξ)(t− 1)3, ξ > 0.

Since ψ′′′(t) < 0 the second inequality for t > 1 and the first inequality for t < 1 in

the lemma follows. The remaining two inequalities are an immediate consequence

of Lemma 2.2.6. 2

Lemma 2.2.8. Suppose that ψ(t1) = ψ(t2), with t1 ≤ 1 ≤ t2 and β ≥ 1. Then

ψ(βt1) ≤ ψ(βt2).

Equality holds if and only if β = 1 or t1 = t2 = 1.
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Proof. Consider

f(β) := ψ(βt2)− ψ(βt1).

One has f(1) = 0 and

f ′(β) = t2ψ
′(βt2)− t1ψ′(βt1).

Since ψ′′(t) ≥ 0 for all t > 0, ψ′(t) is monotonically non-decreasing. Hence

ψ′(βt2) ≥ ψ′(βt1). Substitution gives

f ′(β) = t2ψ
′(βt2)− t1ψ′(βt1) ≥ t2ψ

′(βt2)− t1ψ′(βt2) = ψ′(βt2) (t2 − t1) ≥ 0.

The last inequality holds since t2 ≥ t1, and ψ′(t) ≥ 0 for t ≥ 1. This proves

that f(β) ≥ 0 for β ≥ 1, and hence the inequality in the lemma follows. If

β = 1 then we obviously have equality. Otherwise, if β > 1, and f(β) = 0, then

the mean value theorem implies f ′(ξ) = 0 for some ξ ∈ (1, β). But this implies

ψ′(ξt2) = ψ′(ξt1). Since ψ
′(t) is strictly monotonic, this implies ξt2 = ξt1, whence

t2 = t1. Since also t1 ≤ 1 ≤ t2, we obtain t2 = t1 = 1. 2

Lemma 2.2.9. Suppose that ψ(t1) = ψ(t2), with t1 ≤ 1 ≤ t2. Then ψ′(t1) ≤ 0

and ψ′(t2) ≥ 0, whereas

−ψ′(t1) ≥ ψ′(t2).

Proof. The lemma is obvious if t1 = 1 or if t2 = 1, because then ψ(t1) = ψ(t2) = 0

implies t1 = t2 = 1. We may therefore assume that t1 < 1 < t2. Since ψ(t1) =

ψ(t2), Lemma 2.2.7 implies:

1

2
(t1 − 1)

2
ψ′′(1) < ψ(t1) = ψ(t2) <

1

2
(t2 − 1)

2
ψ′′(1).

Hence, since ψ′′(1) > 0, it follows that t2 − 1 > 1 − t1. Using this and Lemma

2.2.6, while assuming −ψ′(t1) < ψ′(t2), we may write

ψ(t2) >
1

2
(t2 − 1)ψ′(t2) >

1

2
(1− t1)ψ′(t2)

> −1

2
(1− t1)ψ′(t1) =

1

2
(t1 − 1)ψ′(t1) > ψ(t1).

This contradiction proves the lemma. 2
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2.2.2 Ten kernel functions

By way of example we consider in this thesis ten kernel functions, as listed in

Table 2.2. Note that some of these kernel functions depend on a parameter (e.g.,

ψ2(t) depends on the parameter q > 1), and hence when the parameter is not

specified, it represents a whole class of kernel functions.

i kernel functions ψi

1 t2−1
2
− log t

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1), q > 1

3 t2−1
2

+ (e−1)2

e

1
et−1

− e−1
e

4 1
2

(
t− 1

t

)2

5 t2−1
2

+ e
1
t
−1 − 1

6 t2−1
2
−
∫ t
1
e
1
ξ
−1
dξ

7 t2−1
2

+ t1−q−1
q−1

, q > 1

8 t− 1 + t1−q−1
q−1

, q > 1

9 t1+p−1
1+p

− log t, p ∈ [0, 1]

10 tp+1−1
p+1

+ t1−q−1
q−1

, p ∈ [0, 1], q > 1

Table 2.2: Ten kernel functions.

The first proximity function, ψ1(t), gives rise to the classical primal-dual log-

arithmic barrier function and is a special case of ψ9(t), for p = 1. The second

kernel function ψ2 is the special case of the prototype self-regular kernel function

[Pen02b],

Υp,q(t) =
t1+p − 1

1 + p
+
t−q+1 − 1

q (q − 1)
− q − 1

q
(t− 1) , p, q ≥ 1, (2.2.4)
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i ψ′i ψ′′i

1 t− 1
t

1 + 1
t2

2 t− 1− t−q−1
q

1 + t−q−1

3 t− et(e−1)2

e(et−1)2
1 +

(e−1)2et(et+1)
e(et−1)3

4 t− 1
t3

1 + 3
t4

5 t− e
1
t
−1

t2
1 + 1+2t

t4
e
1
t
−1

6 t− e 1t−1 1 + e
1
t
−1

t2

7 t− t−q 1 + qt−q−1

8 1− t−q qt−q−1

9 tp − 1
t

ptp−1 + 1
t2

10 tp − t−q ptp−1 + qt−q−1

Table 2.3: First two derivatives of the ten kernel functions.

for p = 1. The third kernel function has been studied in [Bai03b]. The fourth

kernel function has been studied in [Pen00a]; one may easily verify that it is a

special case of ψ7(t), when taking q = 3. The fifth and sixth kernel functions

have been studied in [Bai04a]. The seventh kernel function has been studied

in [Pen01; Pen02b]. Also note that ψ1(t) is the limiting value of ψ7(t) when q

approaches 1.

In each of the first seven cases we can write ψ(t) as

ψ(t) =
t2 − 1

2
+ ψb(t), (2.2.5)

where t2−1
2 is the so-called growth term and ψb(t) the barrier term of the kernel

function. The growth term dominates the behavior of ψ(t) when t goes to infinity,

whereas the barrier term dominates its behavior when t approaches zero. Note

that in all cases the barrier term is monotonically decreasing in t.

The three last kernel functions in the table differ from the first seven others in

that the growth terms, i.e., t−1, t1+p−1
q+1 and t1+p−1

q+1 , respectively, are not quadratic

in t. ψ8 was first introduced and analyzed in [Bai04a], ψ9 was analyzed in [Gha04a]

and ψ10 has been studied for second order cone optimization in [Bai04b].
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Figure 2.1: Three different kernel functions.

Figure 2.1 demonstrates the growth and barrier behavior of the three kernel

functions ψ1, ψ4 and ψ9 (with p = 0). From this figure we can see that the growth

behaviors of ψ1 and ψ4 are quite similar as t −→ ∞, and that ψ9 (with p = 0)

grows much slower. However, when t −→ 0, ψ1 and ψ9 (with p = 0) are quite

similar whereas ψ4 grows much faster.

Now we proceed by showing that the ten kernel functions satisfy conditions

(2.2.3-a), (2.2.3-c), (2.2.3-d), and (2.2.3-e). By using the information from Table

2.3 one may easily construct the entries in Table 2.4. It is almost obvious that all

ten functions satisfy the condition (2.2.3-a) and from the second column in Table

2.5 we can see that the ten functions satisfy the condition (2.2.3-c). Also from

the third column in Table 2.4 it is immediately seen that the first seven functions

satisfy (2.2.3-b). Lemma 2.2.4 implies that the first seven functions satisfy also

(2.2.3-e). The last column in Table 2.5 makes clear that ψ8, ψ9 and ψ10, also

satisfy (2.2.3-e). It remains to deal with (2.2.3-d). For this we use Table 2.6.
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i tψ′′
i (t) + ψ′

i(t) tψ′′
i (t)− ψ′

i(t)

1 2t 2
t

2 2t+ q−1
q

(t−q − 1) (q+1)t−q+q−1
q

3 2t+ (e−1)2
e

(t+1)et+(t−1)e2t
(et−1)3

et(e−1)2
e(et−1)2

(
t(et+1)
et−1 + 1

)

4 2t+ 2
t3

4
t3

5 2t+ 1+t
t3
e
1
t
−1 1+3t

t3
e
1
t
−1

6 2t+ 1−t
t
e
1
t
−1 1+t

t
e
1
t
−1

7 2t+ (q − 1) t−q (q + 1) t−q

8 1 + (q − 1) t−q −1 + (q + 1) t−q

9 (1 + p) tp (p− 1) tp + 2
t

10 (p+ 1) tp + (q − 1) t−q (p− 1) tp + (q + 1) t−q

Table 2.4: The conditions (2.2.3-a) and (2.2.3-b).

This table immediately shows that ψ1, ψ4, ψ8, ψ9, and ψ10 satisfy (2.2.3-d). The

five remaining kernel functions also satisfy (2.2.3-d), as can be shown by simple,

but rather technical arguments.

It may be noted that in [Pen02b] the kernel function ψ(t) is defined to be

self-regular if ψ(t) is e-convex and, moreover,

ψ′′(t) = Θ
(
Υ′′
p,q(t)

)
,

where Υp,q(t) was defined in (2.2.4). Since

Υ′′
p,q(t) = tp−1 + t−q−1, Υ′′′

p,q(t) = (p− 1)tp−2 − (q + 1)t−q−2,

the prototype self-regular kernel function satisfies (2.2.3-c) only if p ≤ 1. Note

that the kernel functions ψ2, ψ4 and ψ7 are self-regular.

It was observed in [Sal04a] that ψ5 in Table 2.2 is the limit of the following

sequence of functions

ψ(k)(t) =
t2 − 1

2
+

(
1 +

1

k

)1−k((
1 +

1

kt

)k
−
(
1 +

1

k

)k)
, k = 1, 2, . . .
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i ψ′′′
i (t) Condition (2.2.3-e)

1 − 2
t3

2(β2−1)
βt

2 − (q + 1) t−q−2 −−

3 − et(e−1)2
e(et−1)4

(
e2t + 4et + 1

)
−−

4 − 12
t5

4(β4−1)
β3t3

5 − 1+6t+6t2
t6

e
1
t
−1 −−

6 − 1+2t
t4

e
1
t
−1 −−

7 −q (q + 1) t−q−2
(q−1)(βq+1−1)

βqtq

8 −q (q + 1) t−q−2
q(1−β−q)
tq+1

9 −p (1− p) tp−2 − 2
t3

tp(1+p)(βp+1−1)
βt2

10 −p (1− p) tp−2 − q (q + 1) t−q−2 (p+q)(βp−βq)
tq+1−p

Table 2.5: The conditions (2.2.3-c) and (2.2.3-e).

By using Lemma 2.1.2 from [Pen02b], one can show that ψ(k)(t) is a S-R function

for every k ≥ 1. Furthermore, for any fixed t > 0, one has

lim
k→∞

ψ(k)(t) =
t2 − 1

2
+ e

1
t
−1 − 1 = ψ5(t).

This result implies that ψ5 is the limit point of a sequence of S-R functions. Since

ψ5 itself is not S-R, it follows that the set of S-R functions is not closed. Note also

that in our table only the first four kernel functions are S-R, and the two kernel

functions ψ8 and ψ9 lie outside the closure of the set of S-R functions if p < 1.

2.3 Algorithm

In principle any kernel function gives rise to a primal-dual algorithm. The generic

form of this algorithm is shown in Figure 1.1. The parameters τ, θ, and the

step size α should be chosen in such a way that the algorithm is ‘optimized’ in

the sense that the number of iterations required by the algorithm is as small

as possible. Obviously, the resulting iteration bound will depend on the kernel

function underlying the algorithm, and our main task becomes to find a kernel
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i 2ψ′′
i (t)

2 − ψ′
i(t)ψ

′′′
i (t)

1 2 + 6
t2

2 2
(
1 + q

tq+1

)2
+ (q+1)

tq+2

(
t− 1 + 1−t−q

q

)

3 2

(
1 +

(e−1)2et(et+1)
e(et−1)3

)2
+
(
t− et(e−1)2

e(et−1)2

)(
et(e−1)2
e(et−1)4

(
e2t + 4et + 1

))

4 2 + 24
t4

+ 6
t8

5 2
t8

(
t4 + (1 + 2t) e

1
t
−1
)2
−
(
1 + 6t+ 6t2

) (
e
1
t
−1 − t3

)
e
1
t
−1

6 1
t4

(
2
(
1 + e

1
t
−1
)2

+ (1 + 2t)
(
t− e 1t−1

)
e
1
t
−1
)

7 2
(
1 + q

tq+1

)2
+

q(q+1)(tq+1−1)
t2(q+1)

8 q (q − 1 + (q + 1) tq) t−2(q+1)

9
t1+p(p2+3p+2)+p(p+1)t2+2p

t4

10
p(p+1)t2p+(q2−p+4pq+p2+q)tp−q+q(q−1)t−2q

t2

Table 2.6: The condition (2.2.3-d).

function that minimizes the iteration bound.

2.3.1 Upper bound forΨ(v) after each outer iteration

Note that at the start of each outer iteration of the algorithm, just before the

update of µ, we have Ψ(v) ≤ τ . By updating µ, the vector v is divided by√
1− θ, which generally leads to an increase in the value of Ψ(v). Then, during

the subsequent inner iterations, Ψ(v) decreases until it passes the threshold τ

again. Hence, during the course of the algorithm the largest values of Ψ(v) occur

just after the updates of µ. That is why in this section we derive an estimate for

the effect of a µ-update on the value of Ψ(v). In other words, with β = 1√
1−θ , we

want to find an upper bound for Ψ(βv) in terms of Ψ(v).

It will become clear that in the analysis of the algorithm some inverse functions

related to the underlying kernel functions and its first derivative play a crucial

role. We introduce these inverse functions here.
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We denote by % : [0,∞)→ [1,∞) and ρ : [0,∞)→ (0, 1] the inverse functions

of ψ(t) for t ≥ 1, and − 12ψ′(t) for t ≤ 1, respectively. In other words

s = ψ(t) ⇔ t = %(s), t ≥ 1, (2.3.1)

s = − 12ψ
′(t) ⇔ t = ρ(s), t ≤ 1. (2.3.2)

We have the following result.

Theorem 2.3.1. For any positive vector v and any β > 1, we have

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)

n

))
.

Proof. We consider the following maximization problem:

max
v
{Ψ(βv) : Ψ(v) = z} ,

where z is any nonnegative number. The first order optimality conditions for this

problem are

βψ′(βvi) = λψ′(vi), i = 1, . . . , n, (2.3.3)

where λ denotes the Lagrange multiplier. Since ψ′(1) = 0 and βψ′(β) > 0, we

must have vi 6= 1 for all i. We even may assume that vi > 1 for all i. To see

this, let zi be such that ψ(vi) = zi. Given zi, this equation has two solutions:

vi = v
(1)
i < 1 and vi = v

(2)
i > 1. As a consequence of Lemma 2.2.8 we have

ψ(βv
(1)
i ) ≤ ψ(βv

(2)
i ). Since we are maximizing Ψ(βv), it follows that we may

assume vi = v
(2)
i > 1. This means that without loss of generality we may assume

that vi > 1 for all i. Note that then (2.3.3) implies βψ′(βvi) > 0 and ψ′(vi) > 0,

whence also λ > 0. Now defining

g(t) =
ψ′(t)

ψ′(βt)
, t ≥ 1,

we deduce from (2.3.3) that g(vi) =
β
λ
for all i. We proceed by showing that this

implies that all vi’s are equal by proving that g(t) is strictly monotonic. One has

g′(t) =
ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt)

(ψ′(βt))
2 .

Using that ψ(t) satisfies condition (2.2.3-e), we see that g′(t) > 0 for t > 1, since

β > 1. Thus we have shown that g(t) is strictly increasing. It thus follows that

all vi’s are equal. Putting vi = t > 1, for all i, we deduce from Ψ(v) = z that



26 PRIMAL-DUAL IPMS FOR LO BASED ON KERNEL FUNCTIONS 2.3

nψ(t) = z. This implies that t = %( z
n
). Hence the maximal value that Ψ(v) can

attain is given by

Ψ (βt1) = nψ (βt) = nψ
(
β%
( z
n

))
= nψ

(
β%

(
Ψ(v)

n

))
.

This proves the theorem. 2

Remark 2.3.2. Note that the bound of Theorem 2.3.1 is sharp: one may easily

verify that if v = β1, with β ≥ 1, then the bound holds with equality. ¥

As a result of Theorem 2.3.1 we have that if Ψ(v) ≤ τ and β = 1√
1−θ then

Lψ(n, θ, τ) := nψ

(
%
(
τ
n

)
√
1− θ

)
(2.3.4)

is an upper bound for Ψ( v√
1−θ ), the value of Ψ(v) after the µ-update.

Corollary 2.3.3. For any positive vector v and any β > 1, we have

Lψ(n, θ, τ) ≤
n

2
ψ′′(1)

(
%
(
τ
n

)
√
1− θ

− 1

)2
.

Proof. Since 1√
1−θ > 1 and %( τ

n
) ≥ 1, the corollary follows from Theorem 2.3.1

by using Lemma 2.2.7. 2

2.3.2 Decrease of the barrier function during an inner iteration

In this section, we compute a default step size α and the resulting decrease of the

barrier function function. After a damped step we have

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s.

Hence, recalling from (1.3.5) and (1.3.16) that

v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
,

we have

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx) ,

and

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds) .
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Thus we obtain, using xs = µv2,

v2+ =
x+s+
µ

= (v + αdx) (v + αds) . (2.3.5)

Hence,

f(α) := Ψ (v+)−Ψ(v) = ψ
(√

(v + αdx) (v + αds)
)
−Ψ(v) .

It is clear that f(α) is not necessarily convex1 in α. To simplify the analysis we

use a convex upper bound for f(α). Such a bound is obtained by using that ψ(t)

is e-convex. This gives

Ψ (v+) = Ψ
(√

(v + αdx) (v + αds)
)

=

n∑

i=1

ψ
(√

(vi + αdxi) (vi + αdsi)
)

≤ 1

2

(
n∑

i=1

ψ (vi + αdxi) +
n∑

i=1

ψ (vi + αdsi)

)

= 1
2 (Ψ (v + αdx) + Ψ (v + αds)) .

Therefore f(α) ≤ f1(α), where

f1(α) :=
1
2 (Ψ (v + αdx) + Ψ (v + αds))−Ψ(v) ,

which is convex in α, because Ψ(v) is convex. Obviously,

f(0) = f1(0) = 0.

Taking the derivative respect to α, we get

f ′1(α) =
1
2

n∑

i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi) .

This gives, using (1.3.11) and (2.2.2),

f ′1(0) =
1
2∇Ψ(v)T (dx + ds) = − 12∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (2.3.6)

Differentiating once more, we obtain

f ′′1 (α) =
1
2

n∑

i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
. (2.3.7)

1Example: Let ψ(t) = t+ t−1 − 2 = ψ8, (q = 2), and n = 1. For v1 = 1, dx1 = 1, ds1 = −
1
2
,

it is easy to verify that ψ
(√
(1 + α)

(
1− 1

2
α
))
, is not convex.
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Below we use the following notation:

v1 := min(v), δ := δ(v).

Lemma 2.3.4. One has f ′′1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ).

Proof. Since dx and ds are orthogonal, (2.2.2) implies that ‖(dx; ds)‖ = 2δ. There-

fore, ‖dx‖ ≤ 2δ and hence ‖ds‖ ≤ 2δ, and

vi + αdxi ≥ v1 − 2αδ, vi + αdsi ≥ v1 − 2αδ, 1 ≤ i ≤ n. (2.3.8)

Due to (2.2.3-c), ψ′′(t) is monotonically decreasing, so from (2.3.7) we obtain

f ′′1 (α) ≤ 1
2 ψ

′′ (v1 − 2αδ)

n∑

i=1

(
dx
2
i + ds

2
i

)
= 2δ2 ψ′′ (v1 − 2αδ) .

This proves the lemma. 2

Lemma 2.3.5. f ′1(α) ≤ 0 holds if α satisfies the inequality

−ψ′ (v1 − 2αδ) + ψ′ (v1) ≤ 2δ. (2.3.9)

Proof. We may write, using Lemma 2.3.4, and also (2.3.6),

f ′1(α) = f ′1(0) +

∫ α

0

f ′′1 (ξ) dξ

≤ −2δ2 + 2δ2
∫ α

0

ψ′′ (v1 − 2ξδ) dξ

= −2δ2 − δ
∫ α

0

ψ′′ (v1 − 2ξδ) d (v1 − 2ξδ)

= −2δ2 − δ (ψ′ (v1 − 2αδ)− ψ′ (v1)) .

Hence, f ′1(α) ≤ 0 will certainly hold if α satisfies

−ψ′ (v1 − 2αδ) + ψ′ (v1) ≤ 2δ,

which proves the lemma. 2

The next lemma uses the inverse function ρ : [0,∞) → (0, 1] of − 12ψ′(t) for

t ∈ (0, 1], as introduced in (2.3.2).

Lemma 2.3.6. The largest step size α that satisfies (2.3.9) is given by

ᾱ :=
1

2δ
(ρ (δ)− ρ (2δ)) . (2.3.10)
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Proof. We want α such that (2.3.9) holds, with α as large as possible. Since

ψ′′(t) is decreasing, the derivative to v1 of the expression at the left in (2.3.9)

(i.e. −ψ′′ (v1 − 2αδ) + ψ′′ (v1)) is negative. Hence, fixing δ, the smaller v1 is, the

smaller α will be. One has

δ = 1
2 ‖∇Ψ(v)‖ ≥ 1

2 |ψ
′ (v1)| ≥ − 12ψ

′ (v1) .

Equality holds if and only if v1 is the only coordinate in v that differs from 1, and

v1 ≤ 1 (in which case ψ′ (v1) ≤ 0). Hence, the worst situation for the step size

occurs when v1 satisfies

− 12ψ
′ (v1) = δ. (2.3.11)

The derivative to α of the expression at the left in (2.3.9) equals

2δψ′′ (v1 − 2αδ) ≥ 0,

and hence the left-hand side is increasing in α. So the largest possible value of α

satisfying (2.3.9), satisfies

− 12ψ
′ (v1 − 2αδ) = 2δ. (2.3.12)

Due to the definition of ρ, (2.3.11) and (2.3.12) can be written as

v1 = ρ (δ) , v1 − 2αδ = ρ (2δ) .

This implies,

α =
1

2δ
(v1 − ρ (2δ)) =

1

2δ
(ρ (δ)− ρ (2δ)) ,

proving the lemma. 2

Lemma 2.3.7. Let ᾱ be as defined in Lemma 2.3.6. Then

ᾱ ≥ 1

ψ′′ (ρ (2δ))
. (2.3.13)

Proof. By the definition of ρ,

−ψ′ (ρ(δ)) = 2δ.

Taking the derivative to δ, we find

−ψ′′ (ρ(δ)) ρ′(δ) = 2,
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which implies that

ρ′(δ) = − 2

ψ′′ (ρ(δ))
< 0. (2.3.14)

Hence ρ is monotonically decreasing in δ. An immediate consequence of (2.3.10)

and (2.3.14) is

ᾱ =
1

2δ

∫ δ

2δ

ρ′(σ) dσ =
1

δ

∫ 2δ

δ

dσ

ψ′′ (ρ(σ))
. (2.3.15)

To obtain a lower bound for ᾱ, we want to replace the argument of the last

integral by its minimal value. So we want to know when ψ′′ (ρ(σ)) is maximal,

for σ ∈ [δ, 2δ]. Due to (2.2.3-c), ψ′′ is monotonically decreasing. So ψ′′ (ρ(σ)) is

maximal when ρ(σ) is minimal for σ ∈ [δ, 2δ]. Since ρ is monotonically decreasing

this occurs when σ = 2δ. Therefore

ᾱ =
1

δ

∫ 2δ

δ

dσ

ψ′′ (ρ(σ))
≥ 1

δ

δ

ψ′′ (ρ(2δ))
=

1

ψ′′ (ρ(2δ))
,

which proves the lemma. 2

In the sequel we use the notation

α̃ =
1

ψ′′ (ρ(2δ))
, (2.3.16)

and we will use α̃ as the default step size. By Lemma 2.3.7 we have ᾱ ≥ α̃.

Lemma 2.3.8. If the step size α is such that α ≤ ᾱ then

f(α) ≤ −α δ2. (2.3.17)

Proof. Let h(α) be defined by

h (α) := −2αδ2 + αδψ′ (v1)−
1

2
ψ (v1) +

1

2
ψ (v1 − 2αδ) .

Then

h(0) = f1(0) = 0, h′(0) = f ′1(0) = −2δ2, h′′(α) = 2δ2 ψ′′ (v1 − 2αδ) .

Due to Lemma 2.3.4, f ′′1 (α) ≤ h′′(α). As a consequence, f ′1(α) ≤ h′(α) and

f1(α) ≤ h(α). Taking α ≤ ᾱ, with ᾱ as defined in Lemma 2.3.6, we have

h′(α) = −2δ2 + 2δ2
∫ α

0

ψ′′ (v1 − 2ξδ) dξ

= −2δ2 − δ (ψ′ (v1 − 2αδ)− ψ′ (v1)) ≤ 0.
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Since h′′(α) is increasing in α, using Lemma A.1.3, we may write

f1(α) ≤ h(α) ≤ 1
2αh

′(0) = −αδ2.

Since f(α) ≤ f1(α), the proof is complete. 2

By combining the results of Lemmas 2.3.7 and 2.3.8 we obtain

Theorem 2.3.9. With α̃ being the default step size, as given by (2.3.16), one has

f(α̃) ≤ − δ2

ψ′′ (ρ (2δ))
. (2.3.18)

Lemma 2.3.10. The right-hand side expression in (2.3.18) is monotonically de-

creasing in δ.

Proof. Putting t = ρ(2δ), which implies t ≤ 1, and which is equivalent to

4δ = −ψ′(t), t is monotonically decreasing if δ increases. Hence, the right-hand

expression in (2.3.18) is monotonically decreasing in δ if and only if the function

g(t) :=
(ψ′(t))

2

16ψ′′(t)

is monotonically decreasing for t ≤ 1. Note that g(1) = 0 and

g′(t) =
2ψ′(t)ψ′′(t)2 − ψ′(t)2ψ′′′(t)

16ψ′′(t)2
.

Hence, since ψ′(t) < 0 for t < 1, g(t) is monotonically decreasing for t ≤ 1 if and

only if

2ψ′′(t)2 − ψ′(t)ψ′′′(t) ≥ 0, t ≤ 1.

The last inequality is satisfied, due to condition (2.2.3-d). Hence the lemma is

proved. 2

Theorem 2.3.9 expresses the decrease of the barrier function value during a

damped step, will step size α̃, as a function of δ, and this function is monotonically

decreasing in δ. In the sequel we need to express the decrease as a function of

Ψ(v). To this end we need a lower bound on δ(v) in terms of Ψ(v). Such a bound

is provided in the following section.
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2.3.3 Bound on δ(v) in terms ofΨ(v)

The following theorem gives a lower bound of δ(v) in terms of Ψ(v).

Theorem 2.3.11. One has

δ(v) ≥ 1
2ψ

′ (% (Ψ(v)) .

Proof. The statement in the lemma is obvious if v = 1 since then δ(v) = Ψ(v) = 0.

Otherwise we have δ(v) > 0 and Ψ(v) > 0. To deal with the nontrivial case we

consider, for ω > 0, the problem

zω = min
v

{
δ(v)2 = 1

4

n∑

i=1

ψ′(vi)
2 : Ψ(v) = ω

}
.

The first order optimality condition are

1
2ψ

′(vi)ψ
′′(vi) = λψ′(vi), i = 1, . . . , n,

where λ ∈ R is the Lagrange multiplier. From this we conclude that we have either

ψ′(vi) = 0 or ψ′′(vi) = 2λ, for each i. Since ψ′′(t) is monotonically decreasing

(2.2.3-c), this implies that all vi’s for which ψ′′(vi) = 2λ have the same value.

Denoting this value as t, and observing that all other coordinates have value 1

(since ψ′(vi) = 0 for these coordinates), we conclude that, after reordering the

coordinates, v has the form

v = (t; . . . ; t︸ ︷︷ ︸
k times

; 1; . . . ; 1︸ ︷︷ ︸
n−k times

).

Now Ψ(v) = ω implies kψ(t) = ω. Given k, this uniquely determines ψ(t), whence

we have

4δ(v)2 = k (ψ′(t))
2
, ψ(t) =

ω

k
.

Note that the equation ψ(t) = ω
k

has two solutions, one smaller than 1 and

one larger than 1. By Lemma 2.2.9, the larger value gives the smallest value of

(ψ′(t))
2
. Since we are minimizing δ(v)2, we conclude that t > 1 (since ω > 0).

Hence we may write

t = %
(ω
k

)
,

where, as before, % denotes the inverse function of ψ(t) for t ≥ 1. Thus we obtain

that

4δ(v)2 = k (ψ′(t))
2
, t = %

(ω
k

)
. (2.3.19)
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The question is now which value of k minimizes δ(v)2. To investigate this we take

the derivative with respect to k of (2.3.19) extended to k ∈ R. This gives

d 4δ(v)2

dk
= (ψ′(t))

2
+ 2kψ′(t)ψ′′(t)

dt

dk
. (2.3.20)

From ψ(t) = ω
k
we derive that

ψ′(t)
dt

dk
= − ω

k2
= −ψ(t)

k
,

which gives
dt

dk
= − ψ(t)

kψ′(t)
.

Substitution into (2.3.20) gives

d 4δ(v)2

dk
= (ψ′(t))

2 − 2kψ′(t)ψ′′(t)
ψ(t)

kψ′(t)
= (ψ′(t))

2 − 2ψ(t)ψ′′(t).

Defining f(t) = (ψ′(t))
2 − 2ψ(t)ψ′′(t) we have f(1) = 0 and

f ′(t) = 2ψ′(t)ψ′′(t)− 2ψ′(t)ψ′′(t)− 2ψ(t)ψ′′′(t) = −2ψ(t)ψ′′′(t) > 0.

We conclude that f(t) > 0 for t > 1. Hence dδ(v)2

dk
> 0, so δ(v)2 increases when

k increases. Since we are minimizing δ(v)2, at optimality we have k = 1. Also

using that ψ(t) ≥ 0, we obtain from (2.3.19) that

min
v
{δ(v) : Ψ(v) = ω} = 1

2ψ
′ (t) = 1

2ψ
′ (%(ω)) = 1

2ψ
′ (% (Ψ(v)) .

This completes the proof of the theorem. 2

Remark 2.3.12. The bound of Theorem 2.3.11 is sharp. One may easily verify

that if v is such that all coordinates are equal to 1 except one coordinate which is

greater than or equal to 1, then the bound holds with equality. ¥

Corollary 2.3.13. One has

δ(v) ≥ Ψ(v)

2 % (Ψ(v))
.

Proof. Using Theorem 2.3.11, i.e., δ(v) ≥ 1
2ψ

′(%(Ψ(v))), we obtain from Lemma

2.2.5 that

δ(v) ≥ 1

2
ψ′(%(Ψ(v))) ≥ ψ (%(Ψ(v)))

2 % (Ψ(v))
=

Ψ(v)

2 % (Ψ(v))
.

This proves the corollary. 2
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Remark 2.3.14. It is worth noting that the proof of Theorem 2.3.11 implies that

our kernel functions satisfy the inequality (cf. [[Pen02b, page 37])

ψ′(t)2 − 2ψ(t)ψ′′(t) ≥ 0, t ≥ 1.

¥

Combining the results of Theorem 2.3.9 and Theorem 2.3.11 we obtain

f(α̃) ≤ − (ψ′ (% (Ψ(v)))
2

4ψ′′ (ρ (ψ′ (% (Ψ(v))))
. (2.3.21)

This expresses the decrease in Ψ(v) during an inner iteration completely in terms

of the kernel function ψ, its first and second derivatives and the inverse functions

ρ and %.

To conclude this section we show in Table 2.7 the dependence of the results

obtained so far on the conditions (2.2.3-a)–(2.2.3-e).

Conditions Theorem (Th) or Lemma (L)

(2.2.3-a) L 2.2.2

(2.2.3-b) L 2.2.3, L 2.2.4

(2.2.3-c) L 2.2.4, L 2.2.6, L 2.2.7, L 2.3.7, L 2.3.4, Th 2.3.11

(2.2.3-d) L 2.3.10

(2.2.3-e) Th 2.3.1

Table 2.7: Use of conditions (2.2.3-a)-(2.2.3-e).

2.4 Complexity

In this section we derive the complexity results for primal-dual interior point

methods based on kernel functions satisfying the conditions (2.2.3-a), (2.2.3-c),

(2.2.3-d) and (2.2.3-e).
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After the update of µ to (1− θ)µ we have, by Theorem 2.3.1 and (2.3.4),

Ψ(v+) ≤ Lψ(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
. (2.4.1)

We need to count how many inner iterations are required to return to the situation

where Ψ(v) ≤ τ . We denote the value of Ψ(v) after the µ-update as Ψ0, and the

subsequent values are denoted as Ψk, k = 1, 2, . . .. A (negative) upper bound for

the decrease during each inner iteration is provided by (2.3.21).

In the sequel we use that there exist a positive constants κ and γ, γ ∈ [0, 1]

such that the right hand side expression in (2.3.21) satisfies

(ψ′ (% (Ψ(v)))
2

4ψ′′ (ρ (ψ′ (% (Ψ(v))))
≥ κΨ(v)1−γ . (2.4.2)

This holds because, since Ψ(v) ≥ τ > 0, γ = 1 and

κ =
(ψ′ (% (τ))

2

4ψ′′ (ρ (ψ′ (% (τ)))
≤ (ψ′ (% (Ψ(v)))

2

4ψ′′ (ρ (ψ′ (% (Ψ(v))))
.

satisfy (2.4.2). But our aim is to find smaller values of γ. The reason is this

following lemma.

Lemma 2.4.1. If K denotes the number of inner iterations, we have

K ≤ Ψγ0
κγ

.

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κΨ1−γk , k = 0, 1, · · · ,K − 1.

Yet we apply Lemma A.1.2, with tk = Ψk. This yields the desired inequality. 2

The last lemma provides an estimate for the number of inner-iterations in

terms of Ψ0 and the constants κ and γ. Recall that Ψ0 is bounded above ac-

cording to (2.4.1). An upper bound for the total number of iterations is obtained

by multiplying (the upper bound for) the number K by the number of barrier

parameter updates, which is bounded above by (cf. [Roo05, Lemma II.17, page

116] )
1

θ
log

n

ε
.

Thus we obtain the following upper bound on the total number of iterations:

Ψγ0
θκγ

log
n

ε
≤ 1

θκγ

(
nψ

(
%
(
τ
n

)
√
1− θ

))γ
log

n

ε
. (2.4.3)
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2.5 Application to the ten kernel functions

We apply the results of the previous sections, especially the upper bound (2.4.3)

for the total number of iterations, to obtain iteration bounds for large-update and

small-update methods based on the ten kernel functions ψi i ∈ {1, . . . , 10} intro-
duced before. Since these kernel functions satisfy the conditions (2.2.3-a),(2.2.3-c),

(2.2.3-d) and (2.2.3-e), we may simply apply the scheme in Figure 2.2 to each of

the ten kernel functions. The subsequent steps in this scheme are justified by

earlier results as indicated in Table 2.8.

Step Based on

1 Equation (2.3.2)

2 Theorem 2.3.9

3 Equation (2.3.1)

4 Theorem 2.3.11

5 Step 3 and step 4

6 Theorem 2.3.1

7 Equation (2.4.3)

8 Small- and large-updates methods

Table 2.8: Justification of the validity of the scheme in Figure 2.2.

Using the scheme in Figure 2.2, our aim is to compute iteration bounds for

large- and small-update methods based on the ten kernel functions. Large-update

methods are characterized by τ = O(n) and θ = Θ(1). It may be noted that we

could also take smaller values of τ , e.g., τ = O(1), but one may easily check from

the outcome of our analysis that this would not affect the order of magnitude of the

bounds. Small-update methods are characterized by τ = O(1) and θ = Θ
(
1√
n

)
.

2.5.1 Some technical lemmas

Before dealing with each of the functions separately we derive some lemmas that

will turn out to be useful. This is especially true if the inverse functions % and ρ

cannot be computed explicitly.
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Step 0: Specify a kernel function ψ(t); an update parameter θ, 0 < θ < 1; a

threshold parameter τ ; and an accuracy parameter ε.

Step 1: Solve the equation − 12ψ′(t) = s to get ρ(s), the inverse function of

− 12ψ′(t), t ∈ (0, 1]. If the equation is hard to solve, derive a lower bound

for ρ(s).

Step 2: Calculate the decrease of Ψ(v) during an inner iteration in terms of δ for

the default step size α̃ from

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
.

Step 3: Solve the equation ψ(t) = s to get %(s), the inverse function of ψ(t), t ≥ 1.

If the equation is hard to solve, derive lower and upper bounds for %(s).

Step 4: Derive a lower bound for δ in terms of Ψ(v) by using

δ(v) ≥ 1
2ψ

′ (% (Ψ(v)) .

Step 5: Using the results of step 3 and step 4 find a valid inequality of the form

f(α̃) ≤ −κΨ(v)1−γ

for some positive constants κ and γ, with γ ∈ (0, 1] as small as possible.

Step 6: Calculate the upper bound of Ψ0 from

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
≤ n

2
ψ′′(1)

(
%( τ
n
)√

1− θ
− 1

)2
.

Step 7: Derive an upper bound for the total number of iterations by using that

Ψγ0
θκγ

log
n

ε

is an upper bound for this number.

Step 8: Set τ = O(n) and θ = Θ(1) to calculate a complexity bound for large-

update methods, and set τ = O(1) and θ = Θ( 1√
n
) to calculate a com-

plexity bound for small-update methods.

Figure 2.2: Scheme for analyzing a kernel-function-based algorithm.
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Lemma 2.5.1. When ψ(t) = ψi(t) and 1 ≤ i ≤ 7, then

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s. (2.5.1)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t from the

equation ψ(t) = s, for t ≥ 1. In almost all cases it is hard to solve this equation

explicitly. However, we can easily find a lower and an upper bound for t and this

suffices for our goal. First one has

s = ψ(t) =
t2 − 1

2
+ ψb(t) ≤

t2 − 1

2
,

where ψb(t) denotes the barrier term. The inequality is due to the fact that

ψb(1) = 0 and ψb(t) is monotonically decreasing. It follows that

t = % (s) ≥
√
1 + 2s.

For the second inequality we derive from (2.2.1) and ψ′′(t) ≥ 1 that

s = ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ ≥
∫ t

1

∫ ξ

1

dζdξ =
1

2
(t− 1)2,

which implies

t = % (s) ≤ 1 +
√
2s.

This completes the proof. 2

Lemma 2.5.2. When ψ(t) = ψi(t) with i ∈ {8, 10}, and q ≥ 2, then

t ≤ 1 +
√
tψ(t), t ≥ 1.

Proof. Defining f(t) = tψ(t) − (t − 1)2 one has f(1) = 0 and f ′(t) = ψ(t) +

tψ′(t) − 2(t − 1). Hence f ′(1) = 0 and f ′′(t) = 2ψ′(t) + tψ′′(t) − 2. Since

f ′′(t) = (q− 2)t−q + ptp + 2 (tp − 1) ≥ 0 for ψ8(t), and f
′′(t) = (q− 2)t−q ≥ 0 for

ψ10(t), the lemma follows. 2

Lemma 2.5.3. Let 1 ≤ i ≤ 7. Then one has

Lψ(n, θ, τ) ≤
ψ′′(1)

2

(√
2τ + θ

√
n
)2

1− θ .

Hence, if τ = O(1) and θ = Θ( 1√
n
), then Ψ0 = O(ψ′′(1)).
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Proof. By Lemma 2.5.1 we have % (s) ≤ 1 +
√
2s. Hence, also using (2.4.1) we

have

Lψ(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
≤ nψ



1 +

√
2τ
n√

1− θ


 .

Applying Lemma 2.2.7 we obtain

Lψ(n, θ, τ) ≤
nψ′′(1)

2



1 +

√
2τ
n√

1− θ
− 1



2

≤ nψ′′(1)

2



θ +

√
2τ
n√

1− θ



2

=
ψ′′(1)

2

(√
2τ + θ

√
n
)2

1− θ ,

where we also used

1−
√
1− θ = θ

1 +
√
1− θ

≤ θ. (2.5.2)

This proves the lemma. 2

Lemma 2.5.4. Let ρ : [0,∞) → (0, 1] be the inverse function of the restriction

of −ψ′
b(t) to the interval (0, 1]. When ψ(t) = ψi(t) and 1 ≤ i ≤ 7, then

ρ(s) ≥ ρ (1 + 2s).

Proof. Let t = ρ(s). Due to the definition of ρ as the inverse function of − 12ψ′(t)

for t ≤ 1 this means that

−2s = ψ′(t) = t+ ψ′
b(t), t ≤ 1.

Since t ≤ 1 this implies

−ψ′
b(t) = t+ 2s ≤ 1 + 2s.

Since −ψ′
b(t) is monotonically decreasing in all seven cases, it follows from this

that

t = ρ(s) ≥ ρ (1 + 2s),

proving the lemma. 2

One more remark is in order. At the start of each inner iteration we have

Ψ(v) ≥ τ . We will always assume that τ is large enough to guarantee that then

δ(v) ≥ 1.



40 PRIMAL-DUAL IPMS FOR LO BASED ON KERNEL FUNCTIONS 2.5

Lemma 2.5.5. Let ψ(t) = ψi(t) with 1 ≤ i ≤ 7. If τ ≥ 12 then δ(v) ≥ 1 at the

start of each inner iteration.

Proof. By Corollary 2.3.13 we have δ(v) ≥ Ψ(v)
2%(Ψ(v)) . Using the right-hand side of

(2.5.1), we get

δ(v) ≥ Ψ(v)

2% (Ψ(v))
≥ Ψ(v)

2
(
1 +

√
2Ψ(v)

) ≥ τ

2
(
1 +

√
2τ
) ≥ 12

2
(
1 +

√
24
) ≈ 1.01... > 1.

Thus the lemma follows. 2

We will use the same argument as in Lemma 2.5.5 ψ(t) = ψi(t) and 8 ≤ i ≤ 10,

by changing the upper bound of %. This upper bound will be derived in the next

section.

2.5.2 Analysis of the ten kernel functions

Example 1. Consider the case where ψ(t) = ψ1(t):

ψ(t) =
t2 − 1

2
− log t.

Step 1: The inverse function t = ρ(s) of − 12ψ′(t) for t ∈ (0, 1] follows by solving

t from the equation − 12ψ′(t) = s:

−
(
t− 1

t

)
= 2s.

This enables us to compute ρ(s) exactly:

t = ρ(s) =
1

s+
√
1 + s2

.

Step 2: It follows that for the default step size α̃ we have

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
= − δ2

1 + 1
ρ(2δ)2

= − δ2

1 +
(
2δ +

√
1 + 4δ2

)2 ≤ −
1

19
.

For the last inequality we assumed that δ ≥ 1.

Step 3 and Step 4: are not needed.

Step 5: We have

f(α) ≤ −κψ(v)1−γ ,
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with κ = 1
19 and γ = 1.

Step 6: We have to derive an upper bound for Ψ(v) just after a µ-update. By

using Lemma 2.5.3, with ψ′′(1) = 2, we obtain

Ψ0 ≤
(
θ
√
n+

√
2τ
)2

1− θ .

Step 7: The total number of iterations is bounded above by

19

(
θ
√
n+

√
2τ
)2

θ(1− θ) log
n

ε
.

Step 8: For large-update methods (with τ = O(n) and θ = Θ(1)) the right hand

side expression is O
(
n log n

ε

)
. For small-update methods (with τ = O(1) and

θ = Θ
(
1√
n

)
) the right hand side expression is O

(√
n log n

ε

)
.

Note that in this case ψ(t) is the kernel function of the logarithmic barrier

function and that the iteration bounds agree with the bounds in Theorem 1.3.1.

Example 2. Consider the case where ψ(t) = ψ2(t)

ψ(t) =
t2 − 1

2
+
t1−q − 1

q(q − 1)
− q − 1

q
(t− 1), q > 1.

Step 1: The inverse function of −ψ′
b(t) = 1+ t−q−1

q
is given by ρ(s) = 1

(1+q(s−1))
1
q

.

Hence, by Lemma 2.5.4,

ρ(s) ≥ 1

(1 + 2qs)
1
q

.

Step 2: It follows that

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
= − δ2

1 + 1
ρ(2δ)q+1

≤ − δ2

1 + (1 + 4qδ)
q+1
q

.

Step 3: By Lemma 2.5.1 the inverse function of ψ(t) for t ∈ [1,∞) satisfies

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s.

Thus we have, omitting the argument v,

% (Ψ(v)) ≥
√
1 + 2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), and assuming Ψ ≥ τ ≥ 1, we

obtain

δ ≥ 1

2

(√
1 + 2Ψ− 1 +

1

q

(
1− 1

(1 + 2Ψ)
q

))
≥ 1

2

(√
1 + 2Ψ− 1

)
=

Ψ

1 +
√
1 + 2Ψ

.
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Step 5: Substitution this, after some elementary reductions we arrive at

f(α̃) ≤ − δ2

1 + (1 + 4qδ)
q+1
q

≤ − 1

53 q
Ψ

q−1
2q .

Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
53 q and γ = q+1

2q , and where K denotes the number of inner iterations.

Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

=
106 q2

q + 1
Ψ

q+1
2q

0 ≤ 106 qΨ
q+1
2q

0 .

Step 6: To estimate Ψ0 we use Lemma 2.5.3, with ψ′′(1) = 2. Thus we obtain,

Ψ0 ≤
(
θ
√
n+

√
2τ
)2

1− θ ,

Step 7: The total number of iterations is bounded above by

106 q

θ

((
θ
√
n+

√
2τ
)2

1− θ

) q+1
2q

log
n

ε
.

Step 8: For large-update methods (with τ = O(n) and θ = Θ(1)) the right hand

side expression is

O
(
q n

q+1
2q log

n

ε

)
.

For small-update methods (with τ = O(1) and θ = Θ
(
1√
n

)
) the right hand

side expression is O
(
q
√
n log n

ε

)
.

Example 3. Consider the case where ψ(t) = ψ3(t):

ψ(t) =
t2 − 1

2
+

(e− 1)
2

e

1

et − 1
− e− 1

e

Step 1: In this example its hard to calculate explicitly the lower bound of the

inverse function of − 12ψ′(t) = et(e−1)2
e(et−1)2−t. Letting t = ρ(2δ), we have −ψ′(t) = 4δ,

since ρ : [0,∞)→ (0, 1] denotes the inverse function of the restriction of − 12ψ′(t)

to the interval (0, 1]. Therefore, we may write et(e−1)2
e(et−1)2 − t = 4δ, then we have

et

(et − 1)
2 =

e

(e− 1)
2 (4δ + t) ≤ e

(e− 1)
2 (4δ + 1) .



2.5 APPLICATION TO THE TEN KERNEL FUNCTIONS 43

Step 2: It follows that

f(α̃) ≤ − δ2

ψ′′(t)
= − δ2

1 + (e−1)2et(et+1)
e(et−1)3

= − δ2

1 + (e−1)2
e

(
e
1
2 t + e−

1
2 t
)(

et

(et−1)2

) 3
2

By substitution we get

f(α̃) ≤ − δ2

1 +
√
e

(e−1)

(
e
1
2 t + e−

1
2 t
)
(4δ + 1)

3
2

.

Note that 0 < t ≤ 1. Hence e
1
2 t + e−

1
2 t ≤ e

1
2 + e−

1
2 = 2.2553 < 5

2 , and since√
e

(e−1) = 0.959517 < 1. Thus we conclude that

f(α̃) ≤ − δ2

1 + 5
2 (4δ + 1)

3
2

≤ −δ
1
2

37
.

For the last inequality we assumed that δ ≥ 1.

Step 3: Using the same argument as in Example 2, step 3, we have

% (Ψ(v)) ≥
√
1 + 2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), and assuming Ψ ≥ τ ≥ 1, we

obtain

δ ≥ 1

2

(
√
1 + 2Ψ− e

√
1+2Ψ (e− 1)

2

e
(
e
√
1+2Ψ − 1

)2

)
≥ 1

2

(√
1 + 2Ψ− 1

)
=

Ψ

1 +
√
1 + 2Ψ

.

Step 5: Substitution this, after some elementary reductions we arrive at

f(α̃) ≤ − δ2

1 + 5
2 (4δ + 1)

3
2

≤ −Ψ
1
4

74
.

Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
74 and γ = 3

4 , and where K denotes the number of inner iterations.

Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

=
296

3
Ψ
3
4
0 ≤ 99Ψ

3
4
0 .
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Step 6: To estimate Ψ0 we use Lemma 2.5.3, with ψ′′(1) = 1 + e+1
e−1 . Thus we

obtain,

Ψ0 ≤
ψ′′(1)

2

(
θ
√
n+

√
2τ
)2

1− θ ,

Step 7: The total number of iterations is bounded above by

99

θ

((
θ
√
n+

√
2τ
)2

1− θ

) 3
4

log
n

ε
.

Step 8: For large-update methods (with τ = O(n) and θ = Θ(1)) the right hand

side expression is O
(
n
3
4 log n

ε

)
.

For small-update methods (with τ = O(1) and θ = Θ
(
1√
n

)
) the right hand

side expression is O
(√
n log n

ε

)
.

Example 4. Consider the case where ψ(t) = ψ4(t):

ψ(t) =
1

2

(
t− 1

t

)2
=
t2 − 1

2
+
t−2 − 1

2
.

Step 1: The inverse function of −ψ′
b(t) =

1
t3

is given by ρ(s) = 1

s
1
3
. Hence, by

Lemma 2.5.4,

ρ(s) ≥ 1

(1 + 2s)
1
3

.

Step 2: It follows that for the default step size α̃ we have

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
= − δ2

1 + 3
ρ(2δ)4

≤ − δ2

1 + 3 (1 + 4δ)
4
3

≤ −δ
2
3

27
.

For the last inequality we assumed that δ ≥ 1.

Step 3: One may easily versify that the inverse function of ψ(t) for t ∈ [1,∞) is

given by

% (s) =

√
s

2
+

√
1 +

s

2
. (2.5.3)

Omitting the argument v, we have

% (Ψ(v)) =

√
Ψ

2
+

√
1 +

Ψ

2
≥ 2

√
Ψ

2
=
√
2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), and assuming Ψ ≥ τ ≥ 1, we

obtain

δ ≥ 1

2



√
2Ψ− 1

(√
2Ψ
)3


 ≥ 0.5303Ψ

1
2 ≥ 1

2
Ψ
1
2 .
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Step 5: Substitution gives

f(α̃) ≤ −δ
2
3

27
≤ −

(
0.5303Ψ

1
2

) 2
3

27
= −0.02333Ψ 1

3 ≤ − 1

42
Ψ
1
3 .

Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
42 and γ = 2

3 , and where K denotes the number of inner iterations.

Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

=
Ψ
2
3
0

1
42 × 2

3

= 63Ψ
2
3
0 .

Step 6: To estimate Ψ0, i.e., the value of Ψ(v) just after a µ-update we could

have used Lemma 2.5.3. A little sharper result is obtained as follows. By (2.4.1):

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
.

Using (2.5.3), substitution yields, after some elementary reductions,

Ψ0 ≤
(
τ + nθ +

√
τ2 + 2nτ

)2

(1− θ)
(√
τ +

√
2n+ τ

)2 =
1

1− θ

(√
τ +

nθ√
τ +

√
2n+ τ

)2

≤ 1

1− θ

(√
τ +

nθ√
2n

)2
.

Step 7: Thus the total number of iterations is bounded above by

63

θ(1− θ) 23

(√
τ +

θ
√
n√
2

) 4
3

log
n

ε
.

Step 8: For large-update methods the right-hand side expression is O
(
n
2
3 log n

ε

)
.

For small-update methods the right-hand side expression is O
(√
n log n

ε

)
.

Example 5. Consider the case where ψ(t) = ψ5(t):

ψ(t) =
t2 − 1

2
+ e

1
t
−1 − 1.

Step 1: The inverse function of −ψ′
b(t) =

e
1
t
−1

t2
is such that

ρ (s) = t ⇔ e
1
t
−1

t2
= s, t ≤ 1.
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It follows that e
1
t
−1 = st2 ≤ s whence ρ (s) = t ≥ 1

1+log s . Hence, by Lemma

2.5.4,

ρ(s) ≥ ρ (1 + 2s).

Step 2: Since ψ′′(t) is monotonically decreasing we thus have

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
≤ − δ2

ψ′′
(
ρ (1 + 4δ)

) .

Now putting t = ρ (1 + 4δ) we have t ≤ 1 and may write

f(α̃) ≤ − δ2

ψ′′ (t)
= − δ2

1 + 1+2t
t4

e
1
t
−1 ≤ −

δ2

1 + 3
t4
e
1
t
−1

= − δ2

1 + 3(1+4δ)
t2

≤ − δ2

1 + 15δ
t2

.

Since
1

t2
=

1
(
ρ (1 + 4δ)

)2 ≤ (1 + log (1 + 4δ))
2

we finally get

f(α̃) ≤ − δ2

1 + 15δ (1 + log (1 + 4δ))
2 .

Step 3: By Lemma 2.5.1 the inverse function of ψ(t) for t ∈ [1,∞) satisfies

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s.

Omitting the argument v, we have

% (Ψ(v)) ≥
√
1 + 2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), we obtain

δ ≥ 1

2

(
√
1 + 2Ψ− e

1√
1+2Ψ

−1

1 + 2Ψ

)
≥ 1

2

(√
1 + 2Ψ− 1

)
=

Ψ

1 +
√
1 + 2Ψ

.

Step 5: Substitution gives, after some elementary reductions, while assuming

Ψ0 ≥ Ψ ≥ τ ≥ 1,

f(α̃) ≤ − Ψ
1
2

44
(
1 + log(1 +

√
2Ψ)

)2 ≤ −
Ψ
1
2

44
(
1 + log(1 +

√
2Ψ0)

)2 .
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Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1

44(1+log(1+
√
2Ψ0))

2 and γ = 1
2 , and where K denotes the number of inner

iterations. Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

= 88
(
1 + log(1 +

√
2Ψ0)

)2
Ψ
1
2
0 .

Step 6: We use Lemma 2.5.3, with ψ′′(1) = 4, to estimate Ψ0. This gives

Ψ0 ≤ 2

(
θ
√
n+

√
2τ
)2

1− θ .

Substitution in the expression for K gives

K ≤ 88
√
2

(
1 + log

(
1 + 2

θ
√
n+

√
2τ√

1− θ

))2
θ
√
n+

√
2τ√

1− θ
.

Step 7: Thus the total number of iterations is bounded above by

88
√
2

(
1 + log

(
1 + 2

θ
√
n+

√
2τ√

1− θ

))2
θ
√
n+

√
2τ

θ
√
1− θ

log
n

ε

Step 8: For large-update methods the right hand side expression becomesO
(√

n (log n)
2
log n

ε

)
.

For small-update methods the right hand side expression becomesO
(√
n log n

ε

)
.

Example 6. We proceed with ψ(t) = ψ6(t):

ψ(t) =
t2 − 1

2
−
∫ t

1

e
1
ξ
−1dξ.

Step 1: The inverse function of −ψ′
b(t) = e

1
t
−1 is given by ρ(s) = 1

1+log s . Hence,

by Lemma 2.5.4,

ρ(s) ≥ 1

1 + log(1 + 2s)
.

Step 2: It follows that

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
= − δ2

1 + e
1

ρ(2δ)
−1

ρ(2δ)2

≤ − δ2

1 + (1 + 4δ) (1 + log(1 + 4δ))
2 .

Step 3: By Lemma 2.5.1 the inverse function of ψ(t) for t ∈ [1,∞) satisfies

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s.
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Omitting the argument v, we have

% (Ψ(v)) ≥
√
1 + 2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), we obtain

δ ≥ 1

2

(√
1 + 2Ψ− e

1√
1+2Ψ

−1
)
≥ 1

2

(√
1 + 2Ψ− 1

)
=

Ψ

1 +
√
1 + 2Ψ

.

Step 5: Substitution gives, after some elementary reductions, while assuming

Ψ0 ≥ Ψ ≥ τ ≥ 1,

f(α̃) ≤ − Ψ
1
2

21
(
1 + log(1 +

√
Ψ)
)2 ≤ −

Ψ
1
2

21
(
1 + log(1 +

√
Ψ0)

)2 .

Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1

21(1+log(1+
√
Ψ0))

2 and γ = 1
2 , and where K denotes the number of inner

iterations. Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

= 42
(
1 + log(1 +

√
Ψ0)

)2
Ψ
1
2
0 .

Step 6: We use Lemma 2.5.3, with ψ′′(1) = 2, to estimate Ψ0. This gives

Ψ0 ≤
(
θ
√
n+

√
2τ
)2

1− θ .

Substitution in the expression for K gives

K ≤ 42

(
1 + log

(
1 +

θ
√
n+

√
2τ√

1− θ

))2
θ
√
n+

√
2τ√

1− θ
.

Step 7: Thus the total number of iterations is bounded above by

42

(
1 + log

(
1 +

θ
√
n+

√
2τ√

1− θ

))2
θ
√
n+

√
2τ

θ
√
1− θ

log
n

ε
.

Step 8: For large-update methods the bound becomes O
(√

n (log n)
2
log n

ε

)
.

and for small-update methods we get the iteration bound O
(√
n log n

ε

)
.
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Example 7. Consider the case where ψ(t) = ψ7(t):

ψ(t) =
t2 − 1

2
+
t1−q − 1

q − 1
, q > 1.

Step 1: The inverse function of −ψ′
b(t) =

1
tq

is given by ρ(s) = 1

s
1
q

. Hence, by

Lemma 2.5.4,

ρ(s) ≥ 1

(1 + 2s)
1
q

.

Step 2: For the default step size α̃ we thus have

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
= − δ2

1 + q
ρ(2δ)q+1

≤ − δ2

1 + q (1 + 4δ)
q+1
q

.

Step 3: By Lemma 2.5.1 the inverse function of ψ(t) for t ∈ [1,∞) satisfies

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s.

Omitting the argument v, we have

% (Ψ(v)) ≥
√
1 + 2Ψ ≥

√
2Ψ.

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (% (Ψ(v))), and assuming Ψ ≥ τ ≥ 1, we

obtain

δ ≥ 1

2


√2Ψ− 1(√

2Ψ
)q


 ≥ 1

2

(√
2Ψ− 1√

2Ψ

)
≥ 1

2

(
Ψ

2

) 1
2

.

Step 5: Substitution gives

f(α̃) ≤ − δ2

1 + q (1 + 4δ)
q+1
q

≤ − Ψ

8

(
1 + q

(
1 +

√
2Ψ
) q+1

q

) ≤ − 1

56 q
Ψ

q−1
2q .

Thus it follows that

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
56 q and γ = q+1

2q , and where K denotes the number of inner iterations.

Hence the number K of inner iterations is bounded above by

K ≤ Ψγ0
κγ

=
112 q2

q + 1
Ψ

q+1
2q

0 ≤ 112 qΨ
q+1
2q

0 .
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Step 6: We now have to estimate Ψ0, i.e., the value of Ψ(v) just after a µ-update.

Since ψ′′(1) = q + 1, when using Lemma 2.5.3 we get a factor q + 1 that we can

avoid as follows. By (2.4.1):

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
ρ
(
τ
n

)
√
1− θ

)
≤ nψ



1 +

√
2τ
n√

1− θ


 .

If t ≥ 1 then ψ(t) ≤ 1
2 (t

2 − 1). Using this we obtain

Ψ0 ≤
n

2




(
1 +

√
2τ
n

)2

1− θ − 1


 =

n

2

θ + 2τ
n

+ 2
√
2τ
n

1− θ =
θn+ 2τ + 2

√
2τn

2 (1− θ) .

Step 7: Thus the total number of iterations is bounded above by

112 q

θ

(
θn+ 2τ + 2

√
2τn

2 (1− θ)

) q+1
2q

log
n

ε
.

Step 8: For large-update methods the right hand side expression isO
(
q n

q+1
2q log n

ε

)

and for small-update methods O
(
qn

3q+1
4q log n

ε

)
.

The bound for small-update methods can be improved. For this we go back to

Step 6.

Step 6: Using Lemma 2.5.3, with ψ′′(1) = q + 1, to estimate Ψ0, we obtain

Ψ0 ≤
q + 1

2

(
θ
√
n+

√
2τ
)2

1− θ .

Step 7: Thus, using (q+1)
q+1
2q ≤ q+1, the total number of iteration is bounded

above by

K

θ
log

n

ε
≤ 112q(q + 1)

θ

((
θ
√
n+

√
2τ
)2

2 (1− θ)

) q+1
2q

log
n

ε
.

Step 8: For small-update methods we thus get the bound O
(
q2
√
n log n

ε

)
.

Example 8. We proceed with ψ(t) = ψ8(t), which is a special case of ψ10 (p = 0):

ψ(t) = t− 1 +
t1−q − 1

q − 1
, q > 1.
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Step 1: To obtain the inverse function t = ρ(s) of − 12ψ′(t) for t ∈ (0, 1] we need

to solve t from the equation − 12ψ′(t) = s:

−1 + 1

tq
= 2s, t ∈ (0, 1].

This implies

t = ρ(s) =
1

(2s+ 1)
1
q

.

Step 2: Since ψ′′(t) = qt−q−1, it follows that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
= −δ

2ρ(2δ)
q+1

q
= − δ2

q (4δ + 1)
q+1
q

≤ − δ2

q (4δ + 1)
q+1
q

.

Step 3: This is the only case where the growth term is linear. As a consequence

we can not use Lemma 2.5.1 and in particular the treatment of %, the inverse

function of ψ(t) for t ∈ [1,∞), needs special attention. One has

t = % (s) ⇔ ψ(t) = t− 1 +
t1−q − 1

q − 1
= s, t ≥ 1.

Using that t ≥ 1 one easily sees that

1 + s ≤ % (s) ≤ s+
q

q − 1
.

We have

%(Ψ(v)) ≥ Ψ(v) + 1.

Step 4: Now using that δ(v) ≥ 1
2ψ

′(%(Ψ(v))), omitting the argument v, and

assuming Ψ ≥ τ ≥ 1, we obtain

δ ≥ 1

2

(
1− 1

(Ψ + 1)q

)
≥ 1

4
.

Step 5: Substitution yields

f(α̃) ≤ − 1

16 q 2
q+1
q

≤ − 1

64 q
.

Hence we have

Ψk+1 ≤ Ψk −
1

64 q
, k = 0, 1, . . . ,K − 1,

where K denotes the number of the inner iterations. Thus the number K is bound

above by

K ≤ 64qΨ0.
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Step 6: We finally have to estimate Ψ0, i.e., to derive an upper bound for Ψ(v)

just after a µ-update. To this end we use (2.4.1):

Ψ0 ≤ nψ

(
%
(
τ
n

)
√
1− θ

)
≤ nψ

(
τ
n
+ q

q−1√
1− θ

)
≤ n

(
τ
n
+ q

q−1√
1− θ

− 1

)
.

By using (2.5.2), we have

Ψ0 ≤ n

(
θ + τ

n
+ 1

q−1√
1− θ

)
.

Step 7: The total number of iterations is bound above by

64q
θn+ τ + n

q−1

θ
√
1− θ

log
n

ε
.

Step 8: If τ = O(n) and θ = Θ(1), then assuming that q is bounded away from

1, the right-hand side expression is O
(
qn log n

ε

)
. Note that if q = O(1), then this

iteration bound is the same as the bound for the logarithmic barrier function.

For small-update methods the iteration bound obtained in this way is

O
(
qn log

n

ε

)
.

It may be noted that the bad iteration bound for small-update methods is due

to the fact that the upper bound used for % (s) is not tight at s = 0: it should be

equal to % (0) = 1 when s = 0. We will see below that an upper bound that is

tight at s = 0 will lead to a better iteration bound. By Lemma 2.5.2,

t ≤ 1 +
√
tψ(t).

Step 3: Substituting t ≤ ψ(t) + q
q−1 we obtain

t = %(s) ≤ 1 +

√
s2 +

q

q − 1
s.

Note this upper bound is tight at s = 0.

We recall that the number K of inner iterations is bound above by

K ≤ 64qΨ0.

Step 6: To estimate Ψ0, we use (2.3.4) and Lemma 2.2.7, with ψ′′(1) = q. We
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then obtain

Ψ0 ≤ nψ

(
%
(
τ
n

)
√
1− θ

)
≤ nψ



1 +

√
τ2

n2
+ q

q−1
τ
n√

1− θ




≤ qn

2



1 +

√
τ2

n2
+ q

q−1
τ
n√

1− θ
− 1



2

.

Using (2.5.2) and q
q−1 ≤ 2 this can be simplified to

Ψ0 ≤
qn

2



θ +

√
τ2

n2
+ 2τ

n√
1− θ



2

=

q

(
θ
√
n+

√
τ2

n
+ 2τ

)2

2(1− θ) .

Step 7: We conclude that the total number of iterations is bounded above by

K

θ
log

n

ε
≤ 32

q2
(
θ
√
n+

√
τ2

n
+ 2τ

)2

θ(1− θ) log
n

ε
.

Step 8: This makes clear that the iteration bound for small-update methods is

O
(
q2
√
n log n

ε

)
.

Example 9. We proceed with ψ(t) = ψ9(t):

ψ(t) =
tp+1 − 1

p+ 1
− log t, p ∈ [0, 1].

Step 1: To obtain the inverse function t = ρ(s) of − 12ψ′(t) for t ∈ (0, 1] we need

to solve t from the equation

−tp + 1

t
= 2s, t ∈ (0, 1].

Using that 1
t
= 2s+ tp ≤ 2s+ 1, this implies

t = ρ(s) ≥ 1

2s+ 1
.

Step 2: It follows that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
= − δ2

p (ρ(2δ))
p−1

+ 1
(ρ(2δ))2

≤ − 1

p (4δ + 1)
1−p

+ (4δ + 1)
2 .
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Since p (4δ + 1)
1−p ≤ (4δ + 1)

2
, for p ∈ [0, 1], it follows that

f(α̃) ≤ − δ2

2 (4δ + 1)
2 .

Step 3: As in Example 8, we can not use Lemma 2.5.1 and the estimate of %,

the inverse function of ψ(t) for t ∈ [1,∞), needs special treatment. One has

t1+p − 1

1 + p
− log t = s, t ≥ 1,

whence
t1+p − 1

1 + p
= log t+ s,

which implies the following lower bound for %(s) = t :

%(s) = t ≥ (1 + (1 + p) s)
1
1+p , p ∈ [0, 1]. (2.5.4)

On the other hand, using (t−1)2
2t ≤ ψ(t) = s. Hence we have the following inequal-

ity.

t2 − 2t (1 + s) + 1 ≤ 0.

This implies

1 + s−
√
s2 + 2s ≤ t ≤ 1 + s+

√
s2 + 2s.

Therefore, we certainly have the following upper and lower bounds for t = %(s):

(1 + (1 + p) s)
1
1+p ≤ t = %(s) ≤ 1 + s+

√
s2 + 2s.

Step 4: Now using that δ(v) ≥ 1
2ψ

′(%(Ψ(v))), omitting the argument v, and

assuming Ψ ≥ τ ≥ 1, we obtain

δ(v) ≥ 1

2

(
(1 + (1 + p)Ψ)

p
1+p − 1

(1 + (1 + p)Ψ)
1
1+p

)
,

then

δ(v) ≥ (1 + p)Ψ(v)

2 (1 + (1 + p)Ψ)
1
1+p

≥ (1 + p)Ψ(v)

2 (1 + Ψ(v))
.

The last inequality follows from Bernoulli’s inequality. Note that if Ψ ≥ τ ≥ 1,

substitution gives

δ(v) ≥ 1

4
. (2.5.5)
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Step 5: Using (9), we have

f(α̃) ≤ − 1

2 (4δ + 1)
2 ≤ −

1

128
.

Hence we have

Ψk+1 ≤ Ψk −
1

128
, k = 0, 1, . . . ,K − 1,

where K denotes the number of the inner iterations. Thus the number K is bound

above by

K ≤ 128Ψ0.

Step 6: To estimate Ψ0, the value of Ψ(v) just after a µ-update, we use (2.4.1):

Ψ0 ≤ nψ

(
%
(
τ
n

)
√
1− θ

)
≤ n (1 + p)

2


1 + τ

n
+

√(
τ
n

)2
+ 2τ

n√
1− θ

− 1



2

.

By using

1−
√
1− θ = θ

1 +
√
1− θ

≤ θ,

we obtain

Ψ0 ≤ n (1 + p)

2 (1− θ)

(
θ +

τ

n
+

√( τ
n

)2
+

2τ

n

)2

=
(1 + p)

2 (1− θ)

(
θ
√
n+

τ√
n
+

√
τ2

n
+ 2τ

)2
.

Step 7: Thus the total number of iterations is bound above by

K

θ
log

n

ε
≤ 64 (1 + p)

(
θ
√
n+ τ√

n
+
√

τ2

n
+ 2τ

)2

θ (1− θ) log
n

ε
.

Step 8: For large-update methods the iteration bound becomesO
(
(1 + p)n log n

ε

)

and for small-update methods O
(
(1 + p)

√
n log n

ε

)
.

Example 10. We finally consider ψ(t) = ψ10(t):

tp+1 − 1

p+ 1
+
t1−q − 1

q − 1
, p ∈ [0, 1], q > 1.

Step 1: To obtain the inverse function t = ρ(s) of − 12ψ′(t) for t ∈ (0, 1] we need

to solve t from the equation

−tp + t−q = 2s, t ∈ (0, 1].
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Using that t−q = 2s+ tp ≤ 2s+ 1, this implies

t = ρ(s) ≥ 1

(2s+ 1)
1
q

.

Step 2: It follows that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
= − δ2

p (ρ(2δ))
p−1

+ 1
(ρ(2δ))q+1

≤ − 1

p (4δ + 1)
1−p
q + q (4δ + 1)

q+1
q

.

Since (4δ + 1)
1−p ≤ (4δ + 1)

q+1
, for p ∈ [0, 1], and q ≥ 1, it follows that

f(α̃) ≤ − 1

(p+ q) (4δ + 1)
q+1
q

. (2.5.6)

Step 3: If p < 1 then the growth term of ψ8(t) is not quadratic, hence we can

not use Lemma 2.5.1 to derive %(s), the inverse function of ψ(t) for t ∈ [1,∞).

Putting t = %(s) we have

t1+p − 1

1 + p
=

1− t1−q
q − 1

+ s.

From this we easily get the following lower and upper bounds for %(s) = t :

(1 + (1 + p) s)
1
1+p ≤ %(s) = t ≤

(
(1 + p) s+

p+ q

q − 1

) 1
1+p

. (2.5.7)

Step 4: Now using that δ(v) ≥ 1
2ψ

′(%(Ψ(v))), and ψ′ is monotonically increasing

for t ≥ 1, we may replace %(Ψ(v)) by a smaller value. Thus omitting the argument

v, and assuming Ψ ≥ τ ≥ 1, we obtain

δ(v) ≥ 1

2

(
(1 + (1 + p)Ψ)

p
1+p − 1

(1 + (1 + p)Ψ)
q
1+p

)

≥ 1

2

(
(1 + (1 + p)Ψ)

p
1+p − 1

(1 + (1 + p)Ψ)
1
1+p

)
,

whence

δ(v) ≥ (1 + p)Ψ(v)

2 (1 + (1 + p)Ψ)
1
1+p

≥ Ψ(v)

2 (1 + 2Ψ(v))
1
1+p

≥ 1

6
Ψ(v)

p
1+p .
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Step 5: Since the right hand sid expression in (2.5.6) is monotonically decreasing

in δ, also using (9), we obtain

f(α̃) ≤ − Ψ
2p
1+p

36 (p+ q)
(
2
3Ψ

p
1+p + 1

) q+1
q

≤ − 1

100 (p+ q)
Ψ

p(q−1)
q(1+p) .

Hence we have

Ψk+1 ≤ Ψk − κΨk1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
100(p+q) and γ = q+p

q(1+p) , and where K denotes the number of the inner

iterations. Thus the number K is bounded above by

K ≤ 100 (1 + p) qΨ
q+p

q(1+p)

0 .

Step 6: Now we need to find an upper bound of Ψ0. To this end we use (2.4.1)

and ψ(t) ≤ t1+p

1+p for t ≥ 1. This gives

Ψ0 ≤ nψ

(
%
(
τ
n

)
√
1− θ

)
≤ nψ




(
(1+p)τ
n

+ q+p
q−1

) 1
1+p

√
1− θ


 ≤

(
(1 + p) τ + q+p

q−1n
)

(p+ 1) (1− θ)
p+1
2

.

Step 7: Thus we obtain an upper bound for the total number of iterations,

namely,

100 (1 + p) q

θ (1− θ)
p+q
2q

(
(1 + p) τ + q+p

q−1n

1 + p

) p+q
q(1+p)

log
n

ε
.

Step 8: For large-update methods the right hand side expression becomes

O
(
qn

p+q
q(1+p) log

n

ε

)
,

and for small-update methods

O
(
q
√
nn

p+q
q(1+p) log

n

ε

)
.

The last bound can be sharpened, as we show below. Just as in Example 8 we go

back to Step 3, and use Lemma 2.5.2 to derive bounds for the inverse function %

of ψ(t). We have

t ≤ 1 +
√
tψ(t).
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Step 3: Substituting t ≤
(
(1 + p)ψ(t) + q+p

q−1

) 1
1+p

we obtain

t = %(s) ≤ 1 +
√
s

(
(1 + p) s+

p+ q

q − 1

) 1
2(1+p)

.

Step 6: Thus we obtain the following upper bound of Ψ0.

Ψ0 ≤
n (p+ q)

2



1 +

√
τ
n

(
(1 + p) τ

n
+ p+q

q−1

) 1
2(1+p)

√
1− θ

− 1




2

.

By using 1−
√
1− θ ≤ θ, by (2.5.2), we get

Ψ0 ≤ n (p+ q)

2 (1− θ)

(
θ +

√
τ

n

(
(1 + p)

τ

n
+
p+ q

q − 1

) 1
2(1+p)

)2

=
(p+ q)

2 (1− θ)

(
θ
√
n+ τ

(
(1 + p)

τ

n
+
p+ q

q − 1

) 1
2(1+p)

)2
.

Step 7: Thus the total number of iterations is bound above by

100 (1 + p) q

θ



(

(p+ q)

2 (1− θ)

)(
θ
√
n+ τ

(
(1 + p)

τ

n
+
p+ q

q − 1

) 1
2(1+p)

)2


(p+q)
q(1+p)

log
n

ε
.

Since p+q
q(1+p) ≤ 1 for all p ∈ [0, 1] and q ≥ 2, the bound can be simplified to

50q (1 + p) (p+ q)

θ (1− θ)

(
θ
√
n+ τ

(
(1 + p)

τ

n
+
p+ q

q − 1

) 1
2(1+p)

)2
log

n

ε
.

Step 8: For small-update methods and p ∈ [0, 1], the right hand side expression

is O
(
q2
√
n log n

ε

)
.

2.5.3 Summary of results

The various iteration bounds for small-update methods are listed in Table 2.9.

Note that the small-update methods based on the kernel functions considered in

this chapter all have the same complexity as the small-update method based on

the logarithmic barrier function, namely O
(√
n log n

ε

)
. As is well known this is

up till now the best iteration bound for methods solving LO problems.
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i kernel functions ψi iteration complexity references

1 t2−1
2
− log t O

(√
n log n

ε

)
[And96; Her94; Tod89]

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1), q > 1 O
(
q
√
n log n

ε

)
[Pen02a; Pen02b]

3 t2−1
2

+ (e−1)2

e

1
et−1

− e−1
e

O
(√
n log n

ε

)
[Bai02a]

4 1
2

(
t− 1

t

)2
O
(√
n log n

ε

)
[Pen00a]

5 t2−1
2

+ e
1
t
−1 − 1 O

(√
n log n

ε

)
[Bai04a]

6 t2−1
2
−
∫ t
1
e
1
ξ
−1
dξ O

(√
n log n

ε

)
[Bai04a]

7 t2−1
2

+ t1−q−1
q−1

, q > 1 O
(
q2
√
n log n

ε

)
[Pen01; Pen02b]

8 t− 1 + t1−q−1
q−1

, q > 1 O
(
q2
√
n log n

ε

)
[Bai02b]

9 t1+p−1
1+p

− log t, p ∈ [0, 1] O
(√
n log n

ε

)
[Gha04a]

10 tp+1−1
p+1

+ t1−q−1
q−1

, p ∈ [0, 1], q > 1 O
(√
n log n

ε

)
New

Table 2.9: Complexity results for small-update methods.

For large-update methods, the resulting iteration bounds are summarized in

the second columns of Table 2.10. For ψ2 and ψ7 the bound is minimal if we choose

q = 1
2 log n, and for ψ8 the bound is minimal if we choose p = 1 and q = 1

2 log n.

This gives the best bound known so far for large-update interior-point methods:

O
(√
n (log n) log n

ε

)
.

2.6 A kernel function with finite barrier term

We conclude this chapter by showing that by refining the analysis also other kernel

functions than those satisfying our conditions can be used to define very efficient
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i kernel functions ψi iteration complexity references

1 t2−1
2
− log t O

(
n log n

ε

)
[And96; Her94; Tod89]

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1), q > 1 O
(
qn

q+1
2q log n

ε

)
[Pen02a; Pen02b]

3 t2−1
2

+ (e−1)2

e

1
et−1

− e−1
e

O
(
n
3
4 log n

ε

)
[Bai02a]

4 1
2

(
t− 1

t

)2
O
(
n
2
3 log n

ε

)
[Pen00a]

5 t2−1
2

+ e
1
t
−1 − 1 O

(√
n log2 n log n

ε

)
[Bai04a]

6 t2−1
2
−
∫ t
1
e
1
ξ
−1
dξ O

(√
n log2 n log n

ε

)
[Bai04a]

7 t2−1
2

+ t1−q−1
q−1

, q > 1 O
(
qn

q+1
2q log n

ε

)
[Pen01; Pen02b]

8 t− 1 + t1−q−1
q−1

, q > 1 O
(
qn log n

ε

)
[Bai02b]

9 t1+p−1
1+p

− log t, p ∈ [0, 1] O
(
n log n

ε

)
[Gha04a]

10 tp+1−1
p+1

+ t1−q−1
q−1

, p ∈ [0, 1], q > 1 O
(
qn

p+q
q(1+p) log n

ε

)
New

Table 2.10: Complexity results for large-update methods.

IPMs. By way of example we consider kernel functions of the following form.

ψp,σ(t) =
t1+p − 1

p+ 1
+
eσ(1−t) − 1

σ
, p ∈ [0, 1], σ ≥ 1. (2.6.1)

Note that all kernel functions in Table 2.2 have the properties limt↓0 ψ(t) = ∞
and limt→∞ ψ(t) = ∞. The function ψp,σ has the second property, but lacks the

first property, because

lim
t↓0

ψp,σ(t) = ψ(0) =
eσ − 1

σ
− 1

p+ 1
<∞.

Let note that the case p = 1 has been considered before in [Bai03a].

Figure (2.3) shows the graph of: ψ1(t) =
t2−1
2 − log(t), and ψ1,2(t) =

t2−1
2 +

e−2(t−1)−1
2 .
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Figure 2.3: Figure of ψ1,2 and ψ1.

2.6.1 Properties

The first three derivatives of ψ are given by

ψ′(t) = tp − eσ(1−t), (2.6.2)

ψ
′′

(t) = ptp−1 + σeσ(1−t), (2.6.3)

ψ
′′′

(t) = −p (1− p) tp−2 − σ2eσ(1−t). (2.6.4)

It follows that ψ(1) = ψ′(1) = 0 and ψ′′(t) ≥ 0.

Lemma 2.6.1. Let ψ be as defined in (2.6.1). Then,

tψ′′(t) + ψ′(t) ≥ 0, if t ≥ 1

σ
, (2.6.5-a)

ψ′′′(t) < 0, if t > 0, (2.6.5-b)

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) ≥ 0, if t ≥ 1, β ≥ 1. (2.6.5-c)
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Proof. Using (2.6.2) and (2.6.3) we write, also using t ≥ 1
σ
,

ψ′(t) + tψ
′′

(t) = (1 + p) tp + (tσ − 1) eσ(1−t) ≥ 0.

Thus (2.6.5-a) follows. Inequality (2.6.5-b) immediately follows from (2.6.4).

By (2.6.2) and (2.6.3),

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) = σ (β − 1) e−σ(t−2+βt) + tp−1g(β) ≥ tp−1g(β),

where

g(β) = βp (p+ σt) e−σ(t−1) − (βσt+ p) e−σ(βt−1).

One has g(1) = 0 and

g′(β) = pβp−1 (p+ σt) e−σ(t−1) + σt (σβt+ p− 1) eσ(βt−1) ≥ 0,

because σβt ≥ 1. Hence g(β) ≥ 0. From this (2.6.5-c) follows. 2

We see that ψp,σ(t) is not e-convex for all t > 0, but only if t ≥ 1
σ
. This means

that we must ensure that t is large enough, before using inequality (2.6.5-a).

Lemma 2.6.2. If σ ≥ 2, then one has

tψ(t) ≥ (t− 1)
2
, for t ≥ 1.

Proof. Defining g(t) := tψ(t) − (t− 1)
2
one has g(1) = 0 and g′(t) = ψ(t) +

tψ′(t)− 2(t− 1). Hence g′(1) = 0 and g′′(t) = 2ψ′(t) + tψ′′(t)− 2. Since g′′(t) =

2 (tp − 1) + (tσ − 2) e−σ(t−1) + ptp ≥ 0, the lemma follows. 2

2.6.2 Fixing the value of σ

After the update of µ to (1 − θ)µ we have v+ = v√
1−θ . Application of Theorem

2.3.1 yields that

Ψ(v+) ≤ L(n, θ, τ) := nψ

(
ρ
(
τ
n

)
√
1− θ

)
. (2.6.6)

As before L(n, θ, τ) is a uniform upper bound for Ψ(v) during the course of the

algorithm, since during subsequent inner iteration the value of Ψ(v) decreases, as

will follow below.
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Lemma 2.6.3. Suppose that L(n, θ, τ) ≥ 9 and Ψ(v) ≤ L(n, θ, τ). If σ ≥ 1 +

2 log (L(n, θ, τ) + 1) , then vi >
3
2σ , for all i = 1, . . . , n.

Proof. First note that Ψ(v) ≤ L(n, θ, τ) implies that ψ(vi) ≤ L(n, θ, τ), for each

i = 1, . . . , n. Hence, putting t = vi, we have

t1+p − 1

1 + p
+

1

σ

(
e−σ(t−1) − 1

)
≤ L(n, θ, τ).

It follows that

1

σ

(
e−σ(t−1) − 1

)
≤ L(n, θ, τ) +

1− t1+p
1 + p

≤ L(n, θ, τ) + 1. (2.6.7)

This implies

e1−σt ≤ 1 + σ (L(n, θ, τ) + 1)

eσ−1
.

Since the right-hand side expression is monotonically decreasing in σ and σ ≥
1 + 2 log (L(n, θ, τ) + 1), it follows that

e1−σt ≤ 1 + (1 + 2 log (L(n, θ, τ) + 1)) (L(n, θ, τ) + 1)

(L(n, θ, τ) + 1)
2 .

The expression at the right-hand side is monotonically decreasing in L(n, θ, τ).

The value at L(n, θ, τ) = 9 is 0.5705... < e−
1
2 . Thus we obtain that e1−σt < e−

1
2 ,

which implies 1− σt < − 12 , or t > 3
2σ , proving the lemma. 2

Note that at the start of each inner iteration τ < Ψ(v) ≤ L(n, θ, τ). To ensure

that L(n, θ, τ) satisfies the conditions of Lemma 2.6.3, we assume from now that

L(n, θ, τ) ≥ 9. and we choose

σ = 1 + 2 log (L(n, θ, τ) + 1) ≥ 1 + 2 log 10 ≈ 5.61. (2.6.8)

2.6.3 Lower bound for δ(v) in terms ofΨ(v)

In this section we establish a lower bound of δ(v) in terms of Ψ(v).

Lemma 2.6.4. If Ψ(v) ≥ 1, then

δ(v) ≥ 1

6
Ψ(v)

p
1+p . (2.6.9)
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Proof. The proof of this lemma uses Corollary 2.3.13. So we have to estimate

the inverse function % of ψ for t ∈ [1,∞). This is obtained by solving t from the

equation

ψ(t) =
t1+p − 1

1 + p
+
e−σ(t−1) − 1

σ
= s, t ≥ 1.

Assuming s ≥ 1, and using σ ≥ 1, we get

t1+p − 1

1 + p
= s+

1− e−σ(t−1)
σ

≤ s+
1

σ
≤ s+ 1 ≤ 2s,

whence

t1+p ≤ 1 + 2 (1 + p) s ≤ 3 (1 + p) s,

and therefore

%(s) = t ≤ (3 (1 + p) s)
1
1+p ≤ 3s

1
1+p , for p ∈ [0, 1], s ≥ 1.

Assuming Ψ(v) ≥ 1, we thus have

%(Ψ(v)) ≤ 3Ψ(v)
1
1+p .

Now, using Corollary 2.3.13, we obtain

δ(v) ≥ Ψ(v)

2ρ (Ψ(v))
≥ 1

6
Ψ(v)

p
1+p .

This proves the lemma. 2

Note that if Ψ(v) ≥ 1, substitution in (2.6.9) gives

δ(v) ≥ 1

6
. (2.6.10)

2.6.4 Decrease of the proximity during a (damped) Newton step

After a damped step, with step size α, we have as before,

f(α) := Ψ (v+)−Ψ(v) := Ψ
(√

(v + αdx) (v + αds)
)
−Ψ(v) .

For the moment we assume that the step size α is such that:

vi + αdxi ≥
1

σ
, vi + αdsi ≥

1

σ
, 1 ≤ i ≤ n. (2.6.11)

Later in the proof we show that this assumption is valid (cf. (2.6.16)). Now ψ

is e-convex, so we can use the same argument as before to derive the following

results
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α̃ =
1

ψ′′ (ρ(2δ))
≤ ᾱ and f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
, (2.6.12)

where ᾱ satisfies
1

ψ′′ (ρ (2δ))
≤ ᾱ ≤ 1

ψ′′ (ρ (δ))
.

Lemma 2.6.5. Let ρ : [0,− 12ψ′(0)) → (0, 1] denote the inverse function of

− 12ψ′(t) restricted to the interval (0, 1], and α̃ as in (2.6.12) and Ψ(v) ≥ 1.

Then

f(α̃) ≤ − δ

16σ
. (2.6.13)

Proof. To obtain the inverse function t = ρ(s) of − 12ψ′(t) for t ∈ [ 1
σ
, 1] we need

to solve t from the equation

−ψ(t) = −
(
tp − eσ(1−t)

)
= 2s.

This implies, using t ≤ 1,

eσ(1−t) = 2s+ tp ≤ 2s+ 1.

Hence, putting t = ρ(2δ), which is equivalent to 4δ = −ψ′(t), we get

eσ(1−t) ≤ 4δ + 1. (2.6.14)

Thus we have, using t ≥ 1
σ
, and p ∈ [0, 1],

α̃ =
1

ψ′′(t)
=

1

ptp−1 + σeσ(1−t)
≥ 1

pσ1−p + σeσ(1−t)
≥ 1

σ
(
1 + eσ(1−t)

) .

Also using (2.6.14) we get, using (2.6.10) (i.e., 6δ ≥ 1),

α̃ ≥ 1

σ (2 + 4δ)
=

1

2σ (1 + 2δ)
≥ 1

2σ (6δ + 2δ)
=

1

16σδ
.

Hence

f(α̃) ≤ − δ2

16σδ
= − δ

16σ
.

Thus the theorem follows. 2

In the sequel

α̂ =
1

16σδ
(2.6.15)
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will be our default step size. Finally, to validate the above analysis we need to

show that α̂ satisfies (2.6.11). This is now easy. Using (2.3.8) and Lemma 2.6.3,

we may write

v1 − 2α̂δ ≥ 3

2σ
− 2δ

16δσ
≥ 3

2σ
− 1

8σ
=

11

8σ
>

1

σ
. (2.6.16)

Using (2.6.9), by substitution in (2.6.13), gives

f(α̃) ≤ − δ

16σ
≤ −Ψ

p
1+p

96σ
.

Lemma 2.6.6. If K denotes the number of inner iterations between two subse-

quent updates of µ, we have

K ≤ 96σ (1 + p)Ψ
1
1+p

0 .

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)1−β , k = 0, 1, · · · ,K − 1,

with κ = 1
96σ and β = 1

1+p . Application of Lemma A.1.2, with tk = Ψk yields the

desired inequality. 2

2.6.5 Complexity

In this section we will derive the complexity bounds for large-update methods

and small-update methods. Using ψ0 ≤ L(n, θ, τ), and Lemma 2.6.6 we obtain

the following upper bound on the total number of iterations:

96σ (1 + p)L(n, θ, τ)
1
1+p

θ
log

n

ε
≤ 192σL(n, θ, τ)

1
1+p

θ
log

n

ε
, p ∈ [0, 1]. (2.6.17)

Large-update methods

We just established that (2.6.17) is an upper bound for the total number of iter-

ations, where the number L(n, θ, τ) is as given in (2.6.6):

L(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
. (2.6.18)
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To estimate this number we need an upper bound for the inverse function % of

ψ(t) for t ∈ [1,∞). So, if ψ(t) = s, t ≥ 1, we need an upper bound for t. Using

σ ≥ 1, one has

t1+p − 1

1 + p
= ψ(t) +

1− e−σ(t−1)
σ

≤ ψ(t) +
1

σ
≤ 1 + ψ(t),

which gives

t ≤ ((1 + p) (ψ(t) + 1) + 1)
1
1+p ≤ (2ψ(t) + 3)

1
1+p = (2s+ 3)

1
1+p , (2.6.19)

for all p ∈ [0, 1]. By Lemma 2.6.2 we have

t ≤ 1 +
√
tψ(t).

Now substituting (2.6.19) we obtain

%(s) = t ≤ 1 + (2s+ 3)
1

2(1+p)
√
s. (2.6.20)

Using

ψ(t) =
t1+p − 1

p+ 1
+
eσ(1−t) − 1

σ
≤ t1+p

1 + p
≤ t1+p, for t ≥ 1,

and (2.6.20), by substitution in (2.6.18) we obtain

L(n, θ, τ) ≤ n%
(
τ
n

)1+p

(1− θ)
1+p
2

≤ n

(1− θ)
1+p
2

(
1 +

(
2τ

n
+ 3

) 1
2(1+p)

√
τ

n

)1+p
.

Using (2.6.17), thus the total number of iterations is bounded above by

K

θ
log

n

ε
≤ 192σ

θ
√
1− θ


n
(
1 +

(
2τ

n
+ 3

) 1
2(1+p)

√
τ

n

)1+p


1
1+p

log
n

ε
.

A large-update methods uses τ = O(n) and θ = Θ(1) and σ = O (log n). The

right-hand side expression is thenO
(
n

1
1+p (log n) log n

ε

)
, as easily may be verified.

Small-update methods

For small-update methods one has τ = O(1) and θ = Θ
(
1√
n

)
. Using Lemma

2.2.7, with ψ′′(1) = p+ σ, we then obtain

L(n, θ, τ) = nψ

(
%
(
τ
n

)
√
1− θ

)
≤ n (p+ σ)

2

(
%
(
τ
n

)
√
1− θ

− 1

)2
≤ nσ

(
%
(
τ
n

)
√
1− θ

− 1

)2
,
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for σ ≥ 1, and p ∈ [0, 1]. Using (2.6.20), then

L(n, θ, τ) ≤ nσ


1 +

√
2

√(
τ
n

)2
+ τ

n√
1− θ

− 1



2

.

Using 1−
√
1− θ = θ

1+
√
1−θ ≤ θ, this leads to

L(n, τ, θ) ≤ σ

(
θ
√
n+

√
2
√

τ2

n
+ τ

)2

1− θ = σO(1). (2.6.21)

Using (2.6.8) (i.e., σ = 1 + 2 log (1 + L(n, θ, τ))), by (2.6.21) we have

σ ≤ 1 + 2 log (1 + σO(1)) . (2.6.22)

This implies that σ = O(1). Then L(n, θ, τ) = O(1). Using (2.6.17), thus the

total number of iterations is bounded above by

K

θ
log

n

ε
≤ 192

θ
O(1) log

n

ε
= O

(√
n log

n

ε

)
.



Chapter 3

Primal-Dual IPMs for SDO based on
kernel functions

3.1 Introduction

A semidefinite optimization problem (SDO) is a convex optimization problem in

the space of symmetric matrices. We consider the standard semidefinite program-

ming problem

(SDP ) p∗ = inf
X
{Tr(CX) : Tr(AiX) = bi(1 ≤ i ≤ m), X º 0} ,

and its dual problem (SDD)

(SDD) d∗ = sup
y,S

{
bT y :

m∑

i=1

yiAi + S = C,S º 0

}
,

where C and Ai are symmetric n×n matrices, b, y ∈ Rm, and X º 0 means that

X is symmetric positive semidefinite and Tr(A) denotes the trace of A (i.e., the

sum of its diagonal elements). The matrices Ai are further assumed to be linearly

independent (without loss of generality). Recall that for any two n× n matrices,

A and B

Tr(ATB) =

n∑

i=1

n∑

j=1

AijBij .

Interior point methods (IPMs) provide a powerful approach for solving SDO

problems. A comprehensive list of publications on this topic can be found in

69
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the SDO homepage maintained by Alizadeh [Ali91]. The pioneering works in

this direction are due to Alizadeh [Ali91; Ali95] and Nesterov and Nemirovskii

[Nes93]. Most IPMs for SDO can be viewed as natural extensions of IPMs for

LO, and have similar polynomial complexity results. However, to obtain valid

search directions is much more difficult than in the LO case. Below we describe

how the usual search directions are obtained for primal-dual methods for solving

SDO problems. Our aim is to show in this section that the kernel-function-based

approach that we presented for LO in Chapter 2, can be applied also to SDO

problems, then yielding a wide class of new methods. For self-regular kernel

functions this has been earlier in [Pen02a; Pen02b]. Just as in the LO case, the

new methods have the same iteration complexity when small-updates are used,

but the iteration complexity is better for large-updates methods.

3.1.1 Classical search direction

We assume that a strictly feasible pair (X Â 0, S Â 0) exists, which is the interior-

point condition (IPC) for SDO. This ensures the existence of an optimal primal-

dual pair (X∗, S∗) with zero duality gap. Hence one can write the optimality

conditions for the primal-dual pair of problems as follows.

Tr(AiX) = bi, i = 1, . . . ,m
m∑

i=1

yiAi + S = C (3.1.1)

XS = 0

X,S º 0.

The basic idea of primal-dual IPMs is to replace the above complementarity

condition XS = 0 by the parameterized equation

XS = µE; X,S Â 0,

where E denotes the n×n identity matrix and µ > 0. The resulting system has a

unique solution for each µ > 0. This solution is denoted by (X(µ), y(µ), S(µ)) for

each µ > 0; X(µ) is called the µ-center of (SDP ) and (y(µ), S(µ)) is the µ-center

of (SDD). The set of µ-centers (with µ > 0) defines a homotopy path, which

is called the central path of (SDP ) and (SDD) [Kle97; Pen02a; Pen02b]. The

principal idea of IPMs is to follow this central path and approach the optimal

set of SDP as µ goes to zero. Newton’s method amounts to linearizing the system
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(3.1.1), thus yielding the following system of equations.

Tr(Ai∆X) = bi, i = 1, . . . ,m.
m∑

i=1

∆yiAi +∆S = 0 (3.1.2)

X∆S +∆XS = µE −XS.

This so-called Newton system has a unique solution (∆X,∆y,∆S). Note that ∆S

is symmetric, due to the second equation in (3.1.2). However, a crucial point is

that ∆X may be not symmetric. Many researchers have proposed various ways of

‘symmetrizing’ the third equation in the Newton system so that the new system

has a unique symmetric solution. All these proposals can be described by using a

symmetric nonsingular scaling matrix P and by replacing (3.1.2) by the system

Tr(Ai∆X) = bi, i = 1, . . . ,m
m∑

i=1

∆yiAi +∆S = 0 (3.1.3)

∆X + P∆SPT = µS−1 −X

Now ∆X is automatically a symmetric matrix. Some popular choices for the

matrix P are listed in Table 3.1.

P References

X
1
2

(
X
1
2 SX

1
2

)− 1
2
X
1
2 [Nes97]

X−1 [Koj94; Mon97]

S [Koj94; Mon97]

I [Ali96]

Table 3.1: Choices for the scaling matrix P .
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3.1.2 Nesterov-Todd direction

In this thesis we consider the symmetrization schema of Nesterov-Todd. So we

use

P = X
1
2

(
X
1
2SX

1
2

)− 12
X
1
2 = S−

1
2

(
S
1
2XS

1
2

) 1
2

S−
1
2 , (3.1.4)

where the last equality can be easily verified. Let D = P
1
2 , where P

1
2 denotes the

symmetric square root of P . Now, the matrix D can be used to scale X and S to

the same matrix V , defined by [Stu99; Kle02]:

V :=
1√
µ
D−1XD−1 =

1√
µ
DSD. (3.1.5)

Obviously the matrices D and V are symmetric, and positive definite. Let us

further define

Āi := DAiD, i = 1, 2, . . . ,m;

and

DX :=
1

µ
D−1∆XD−1; DS :=

1

µ
D∆SD (3.1.6)

Then it follows from (3.1.3)

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑

i=1

∆yiĀi +DS = 0 (3.1.7)

DX +DS = V −1 − V.

In the sequel, we use the following notational conventions. Throughout this

chapter, ‖·‖ denotes the 2-norm of a vector. The nonnegative and the positive

orthants are denoted as Rn
+ and Rn

++, respectively, and S
n, Sn

+, and S
n

++ denote

the cone of symmetric, symmetric positive semidefinite and symmetric positive

definite n × n matrices, respectively. For any V ∈ Sn

++, we denote by λ(V ) the

vector of eigenvalues of V arranged in increasing order, that is, λ1(V ) ≤ λ2(V ) ≤
, . . . , λn(V ). For any matrix A, we denote by η1(A) ≤ η2(A) ≤, . . . ,≤ ηn(A)

the singular values of A; if A is symmetric, then one has ηi(A) = |λi(A)| , i =
1, 2, . . . , n. Finally, if z ∈ Rn

+ and f : R+ → R+, then f (z) denotes the vector

in Rn
+ whose i-th component is f (zi), with 1 ≤ i ≤ n.
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3.2 New search direction

In this section we introduce the definition of a matrix function [Hor85; Rud78].

Definition 3.2.1. Let X be a symmetric matrix, and let

X = Q−1
X diag(λ1(X), λ2(X), . . . , λn(X))QX , (3.2.1)

be an eigenvalue decomposition of X, where λi(X), 1 ≤ i ≤ n denote the eigen-

values of X, and QX is orthogonal. If ψ(t) is any univariante function whose

domain contains {λi(X); 1 ≤ i ≤ n} then the matrix function ψ(X) is defined by

ψ(X) = Q−1
X diag(ψ(λ1(X)), ψ(λ2(X)), . . . , ψ(λn(X)))QX . (3.2.2)

Define the barrier function Ψ(X) as follows [Pen02b].

Ψ(X) :=
n∑

i=1

ψ(λi(X)) = Tr(ψ(X)). (3.2.3)

In this chapter, when we use the function ψ(.) and its first three derivatives

ψ′(.), ψ′′(.), and ψ′′′(.) without any specification, it denotes a matrix function if

the argument is a matrix and a univariate function (from R to R) if the argument

is in R.

Following [Pen02a; Pen02b] we describe the kernel-function-based approach

to SDO. Given the kernel function ψ(t) and the associated ψ(V ) and ψ′(V ) as

defined in Definition (3.2.1), we replace the right-hand side V − V −1 in the third

equation in (3.1.7) by −ψ′(V ). Thus we consider the following system.

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑

i=1

∆yiĀi +DS = 0 (3.2.4)

DX +DS = −ψ′(V ).

Having DX and DS , 4X and 4S can be calculated from (3.1.6). Due to the

orthogonality of 4X and 4S, it is trivial to see that DX⊥DS , and so

Tr(DXDS) = Tr(DSDX) = 0. (3.2.5)

The algorithm considered in this chapter is described in Figure 3.1.

Just as in the LO case, the parameters τ, θ, and the step size α should be

chosen in such a way that the algorithm is ‘optimized’ in the sense that the
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Generic Primal-Dual Algorithm for SDO

Input:

a kernel function ψ(t);

a threshold parameter τ > 0;

an accuracy parameter ε > 0;

a barrier update parameter θ, 0 < θ < 1;

begin
X := X0; S := S0; µ := µ0;

while nµ ≥ ε do

begin
µ := (1− θ)µ;
while Φ(X,S, µ) ≥ τ do

begin
Solve system (3.1.3) for 4X, 4y, 4S;
Determine a step size α;

X := X + α4X;

S := S + α4S;
y := y + α∆y;

end
end

end

Figure 3.1: Generic primal-dual interior-point algorithm for SDO.

number of iterations required by the algorithm is as small as possible. Obviously,

the resulting iteration bound will depend on the kernel function underlying the

algorithm, and our main task becomes to find a kernel function that minimizes

the iteration bound.

The chapter is organized as follows. In Section 3.3 we start by deriving some

properties of the barrier function Ψ(V ). The estimate of the step size and the

decrease behavior of the barrier function are discussed in Section 3.4. Finally, the

total iteration bound of the algorithm and the complexity results are derived in

Section 3.5.
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3.3 Properties ofΨ(V ) and δ(V )

In this section we extend two theorems from Chapter 2. The first theorem follows

from (2.2.3-e) and the second theorem is a consequence of (2.2.3-c). The proofs

of the following theorems are based on Theorems 2.3.1 and 2.3.11 in Chapter 2.

Lemma 3.3.1. Let ψ(t) be a kernel function. Let the matrix functions ψ(X),

Ψ(X) be defined by (3.2.2) and (3.2.3) respectively. Then Ψ(X) is strictly convex

with respect to X Â 0, and ψ(E) = ψ′(E) = 0n×n.

Proof. See [Pen02a; Pen02b].

Theorem 3.3.2. With % as defined in (2.3.1), as the inverse function of ψ on

[1,∞), we have for any positive definite matrix V , and any β > 1,

Ψ(βV ) ≤ nψ

(
β%

(
Ψ(V )

n

))
.

Proof. We consider the following maximization problem:

max
V

{
Ψ(βV ) =

n∑

i=1

ψ(βλi(V )) : Ψ(V ) =
n∑

i=1

ψ(λi(V )) = r

}
,

where r is any nonnegative number. Let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

Ψ(βV ) =

n∑

i=1

ψ(βλi(V )) =

n∑

i=1

ψ(βvi) = Ψ(βv).

Using Theorem 2.3.1 we get

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)

n

))
= nψ

(
β%

(∑n
i=1 ψ(vi)

n

))

= nψ

(
β%

(∑n
i=1 ψ(λi(V ))

n

))

= nψ

(
β%

(
Ψ(V )

n

))
.

This proves the theorem. 2

The next theorem gives a lower bound on the norm-based proximity measure

δ(V ), defined by

δ(V ) = 1
2‖ψ

′(V )‖ = 1

2

√√√√
n∑

i=1

ψ′(λi(V ))2 =
1

2
‖DX +DS‖ , (3.3.1)
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in terms of Ψ(V ). Since Ψ(V ) is strictly convex and attains its minimal value

zero at V = E, we have

Ψ (V ) = 0 ⇔ δ (V ) = 0 ⇔ V = E.

Theorem 3.3.3. Let % be as defined in (2.3.1). Then

δ(V ) ≥ 1
2ψ

′ (% (Ψ(V ))) .

Proof. The statement in the lemma is obvious if V = E since then δ(V ) = Ψ(V ) =

0. Otherwise we have δ(V ) > 0 and Ψ(V ) > 0. To deal with the nontrivial case

we consider, for γ > 0, the problem

zγ = min
V

{
δ(V )2 = 1

4

n∑

i=1

ψ′(λi(V ))2 : Ψ(V ) = γ

}
.

Again, let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

1
4

n∑

i=1

ψ′(λi(V ))2 = 1
4

n∑

i=1

ψ′(vi)
2 = δ(v)2.

Using Theorem 2.3.11 we get

δ(v) ≥ 1
2ψ

′ (% (Ψ(v))) = 1
2ψ

′

(
%

(
n∑

i=1

ψ(vi)

))

= 1
2ψ

′

(
%

(
n∑

i=1

ψ(λi(V ))

))

= 1
2ψ

′ (% (Ψ(V ))) .

This completes the proof of the theorem. 2

3.4 Analysis of the algorithm

In the analysis of the algorithm the concept of exponential convexity is again a

crucial ingredient. We start with two technical lemmas.

Lemma 3.4.1 (Lemma 3.3.14 (c) in [Hor85]). Let A,B ∈ Sn be two nonsin-

gular matrices and f(t) a real-valued function such that f(et) is a convex function.

One has
n∑

i=1

f(ηi(AB)) ≤
n∑

i=1

f(ηi(A)ηi(B)), (3.4.1)
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where ηi(A) and ηi(B), i = 1, 2, . . . , n denote the singular values of A and B,

respectively.

Lemma 3.4.2 (Lemma 5.1 in [Wan04]). Let A, A+B ∈ Sn

+. Then one has

λi(A+B) ≥ λ1(A)− |λn(B)| , i = 1, 2, . . . , n. (3.4.2)

Lemma 3.4.3. Let V1 and V2 are two symmetric positive definite. Then

Ψ
(
(V

1
2
1 V2V

1
2
1 )

1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)) . (3.4.3)

Proof. For any nonsingular matrix U ∈ Sn, we have

ηi(U) =
(
λi(U

TU)
) 1
2 =

(
λi(UU

T )
) 1
2 , i = 1, 2, . . . , n.

From this, we can write

ηi(V
1
2
1 V

1
2
2 ) =

(
λi(V

1
2
1 V2V

1
2
1 )
) 1
2

= λi

(
(V

1
2
1 V2V

1
2
1 )

1
2

)
, i = 1, 2, . . . , n.

Since V1 and V2 are symmetric positive definite, using Lemma 3.4.1 one has

Ψ
(
(V

1
2
1 V2V

1
2
1 )

1
2

)
=

n∑

i=1

ψ
(
ηi(V

1
2
1 V

1
2
2 )
)
≤

n∑

i=1

ψ
(
ηi(V

1
2
1 )ηi(V

1
2
2 )
)

≤ 1

2

n∑

i=1

(
ψ
(
η2i (V

1
2
1 )
)
+ ψ

(
η2i (V

1
2
2 )
))

=
1

2

n∑

i=1

(ψ (ηi(V1)) + ψ (ηi(V2))) =
1

2
(Ψ(V1) + Ψ(V2)) .

The second inequality follows from the exponential convexity of ψ(t). This com-

pletes the proof of lemma. 2

3.4.1 Decrease of the barrier function during a (damped) Newton step

In this section we start to compute the step size. After a damped step, with step

size α, using (3.1.6) we have

X+ = X + α4X = X + α
√
µDDXD =

√
µD (V + αDX)D,

y+ = y + α∆y,

S+ = S + α4S = X + α
√
µD−1DSD

1 =
√
µD−1 (V + αDS)D

−1.
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One has [Pen02b]

V+ =
1√
µ

(
D−1X+S+D

) 1
2 . (3.4.4)

Note that V 2+ is unitarily similar to the matrix X
1
2
+S+X

1
2
+ and thus to

(V + αDX)
1
2 (V + αDS) (V + αDX)

1
2 .

This implies that the eigenvalues of V+ are the same as those of the matrix

Ṽ+ :=
(
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2

. (3.4.5)

By the definition of Ψ(V ), we have Ψ (V+) = Ψ
(
Ṽ+

)
.

Our aim is to find an upper bound for

f(α) := Ψ (V+)−Ψ(V ) = Ψ
(
Ṽ+

)
−Ψ(V ) .

To do this we will use Lemma 3.4.3, so

Ψ
(
Ṽ+

)
= Ψ

((
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2

)

≤ 1
2 [Ψ (V + αDX) + Ψ (V + αDS)] .

Thus we have f(α) ≤ f1(α), where

f1(α) :=
1
2 [Ψ (V + αDX) + Ψ (V + αDS)]−Ψ(V )

is convex in α, since Ψ is convex. Obviously, f(0) = f1(0) = 0. Taking the

derivative to α, we get

f ′1(α) =
1
2Tr (ψ

′ (V + αDX)DX + ψ′ (V + αDS)DS) .

This gives, using the last equalities in (3.2.4) and (3.3.1),

f ′1(0) =
1
2Trψ

′(V ) (DX +DS) = − 12Tr
(
ψ′(V )2

)
= −2δ(V )2. (3.4.6)

Differentiating once more, we obtain

f ′′1 (α) =
1
2Tr

(
ψ′′ (V + αDX)D2X + ψ′′ (V + αDS)D

2
S

)
. (3.4.7)

Below we use the following notation:

δ := δ(V ).
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Lemma 3.4.4. One has

f ′′1 (α) ≤ 2δ2 ψ′′ (λ1(V )− 2αδ) .

Proof. The last equality in (3.2.4) and (3.3.1) imply that ‖DX +DS‖2 = ‖DX‖2+
‖DS‖2 = 4δ2. Thus we have |λn(DX)| ≤ 2δ and |λn(DS)| ≤ 2δ. Using Lemma

3.4.2 and V + αDX º 0, therefore,

λi(V + αDX) ≥ λ1(V )− α |λn(DX)| ≥ λ1(V )− 2αδ, 1 ≤ i ≤ n, (3.4.8)

λi(V + αDS) ≥ λ1(V )− α |λn(DS)| ≥ λ1(V )− 2αδ, 1 ≤ i ≤ n. (3.4.9)

Since ψ′′ is monotonically decreasing, using the above inequalities, we get

ψ′′(λi(V + αDX)) ≤ ψ′′(λ1(V )− 2αδ), (3.4.10)

and

ψ′′(λi(V + αDS)) ≤ ψ′′(λ1(V )− 2αδ). (3.4.11)

This implies that

ψ′′(V + αDX) ¹ ψ′′(λ1(V )− 2αδ)E, (3.4.12)

ψ′′(V + αDS) ¹ ψ′′(λ1(V )− 2αδ)E. (3.4.13)

Now, using (3.2.5), and ‖DX‖2 + ‖DS‖2 = 4δ2, by (3.4.7) we obtain

f ′′1 (α) ≤ 1
2 ψ

′′ (λ1(V )− 2αδ)

n∑

i=1

(
λi(D

2
X) + λi(D

2
X)
)

= 2δ2 ψ′′ (λ1(V )− 2αδ) .

This proves the lemma. 2

Putting vi = λi(X), 1 ≤ i ≤ n, we have

f ′′1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ) ,

which is the same inequality as in Lemma 2.3.4. From this stage on we can apply

exactly the same argument as in the LO case to obtain the following results which

require no further proof.

Lemma 3.4.5. One has f ′1(α) ≤ 0 if α satisfies the inequality

−ψ′ (λ1(V )− 2αδ) + ψ′ (λ1(V )) ≤ 2δ. (3.4.14)
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Lemma 3.4.6. With ρ as defined in (2.3.2), as the inverse function of − 12ψ′(t)

for t ∈ (0, 1], the step size

ᾱ :=
1

2δ
[ρ (δ)− ρ (2δ)] (3.4.15)

is the largest possible solution of inequality (3.4.14).

Lemma 3.4.7. Let ρ and ᾱ be as defined in Lemma 3.4.6. Then

1

ψ′′ (ρ (2δ))
≤ ᾱ ≤ 1

ψ′′ (ρ (δ))
.

As in the LO case, we use

α̃ =
1

ψ′′ (%(2δ))
, (3.4.16)

as the default step size. By Lemma 3.4.7 we have α̃ ≤ ᾱ.

Lemma 3.4.8. If the step size α is such that α ≤ ᾱ then

f(α) ≤ −α δ2. (3.4.17)

Theorem 3.4.9. Let ρ be as defined in (2.3.2) and α̃ as in (3.4.16). Then

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
. (3.4.18)

The right-hand side expression in (3.4.18) is monotonically decreasing in δ,

due to (2.2.3-d).

Using the results of Theorems 3.4.9, 3.3.3 we obtain

f(α̃) ≤ − (ψ′ (% (Ψ(V )))
2

4ψ′′ (ρ (ψ′ (% (Ψ(V ))))
. (3.4.19)

This expresses the decrease in Ψ(V ) during an inner iteration completely in terms

of ψ(t), its first and second derivatives and the inverse functions ρ and %.

3.5 Iteration bounds

In this section we derive the complexity bounds for large-update methods and

small-update methods. Similarly to linear case in Chapter 2, we obtain the fol-

lowing upper bound on the total number of iterations.

Ψγ0
θκγ

log
n

ε
≤ 1

θκγ

(
nψ

(
%
(
τ
n

)
√
1− θ

))γ
log

n

ε
. (3.5.1)
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3.5.1 Application to the ten kernel functions

It may be clear that just as in the LO case we can use the scheme of Figure 2.2

to analyze the behavior of our algorithm for SDO, as given in Figure 3.1. For any

given kernel function ψ(t), this will yield exactly the same complexity results as

in the LO case. For the sake of completeness we summarize these results in Table

3.2, both for small-update and for large-update methods.

i kernel functions ψi Large-update Small-update

1 t2−1
2
− log t O

(
n log n

ε

)
O
(√
n log n

ε

)

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1), q > 1 O
(
qn

q+1
2q log n

ε

)
O
(
q
√
n log n

ε

)

3 t2−1
2

+ (e−1)2

e

1
et−1

− e−1
e

O
(
n
3
4 log n

ε

)
O
(√
n log n

ε

)

4 1
2

(
t− 1

t

)2
O
(
n
2
3 log n

ε

)
O
(√
n log n

ε

)

5 t2−1
2

+ e
1
t
−1 − 1 O

(√
n log2 n log n

ε

)
O
(√
n log n

ε

)

6 t2−1
2
−
∫ t
1
e
1
ξ
−1
dξ O

(√
n log2 n log n

ε

)
O
(√
n log n

ε

)

7 t2−1
2

+ t1−q−1
q−1

, q > 1 O
(
qn

q+1
2q log n

ε

)
O
(
q2
√
n log n

ε

)

8 t− 1 + t1−q−1
q−1

, q > 1 O
(
qn log n

ε

)
O
(
q2
√
n log n

ε

)

9 t1+p−1
1+p

− log t, p ∈ [0, 1] O
(
n log n

ε

)
O
(√
n log n

ε

)

10 tp+1−1
p+1

+ t1−q−1
q−1

, p ∈ [0, 1], q > 1 O
(
qn

p+q
q(1+p) log n

ε

)
O
(√
n log n

ε

)

Table 3.2: Complexity results for large- and small-update methods for SDO.
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Chapter 4

Numerical results

The aim of this chapter is to investigate the influence of the choice of the kernel

function ψ(t) on the computational behavior of the generic primal-dual algorithm

for LO, as given in Figure 1.1.

The kernel functions that we used in our experiments are the ten kernel func-

tions ψi, i ∈ {1, . . . , 10}, as presented in Table 2.2, and the kernel function ψp,σ

with finite barrier term that was considered in Section 2.6. When there are pa-

rameters involved in the definition of a kernel function we used several values

of these parameters as indicated in Table 4.1 below. These values were chosen

after some preliminary experiments that showed that these values gave the most

promising iteration counts for the respective kernel functions. This left us with

26 different kernel functions. For the test problems we used problems from the

well-known library Netlib.1 To limit the number of test problems we used only

the problems in this library that are known to have optimal solutions. This left

us with 95 test problems. More information on these problems can be found in

Appendix B.

To get a first impression of the iteration bounds for the several kernel functions

we applied the algorithm to a selection of ten of these problems. After this first

round of experiments we run all the mentioned 95 problems from the Netlib library

with the kernel functions that gave the best performance on the aforementioned

set of ten problems.

We used a straightforward implementation of our algorithm in MATLAB.2

1http://www-fp.mcs.anl.gov/otc/Guide/TestProblems/index.html
2http://www.matlab.com
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Kernel function Parameter values

ψ2 q ∈ {1.5, 2, 2.5}
ψ7 q ∈ {1.5, 2, 2.5}
ψ8 q ∈ {1.5, 2}
ψ9 p ∈ {0.5, 0.8}
ψ10 p ∈ {0.5, 0.8} , q ∈ {1.5, 2}
ψp,σ (p, σ) ∈ {(0, 1), (0.5, 1), (0.8, 1), (1, 1), (1, 1.5), (1, 2), (1, 2.5)}

Table 4.1: Choice of parameters.

We employed the self-dual embedding model [Roo05] to enable us to start the

algorithm as indicated in Figure 1.1, namely with x = s = 1 and µ = 1. Our

experiments were performed on a standard PC with a Pentium 4 processor and

with 1 GB internal memory. Since we wanted to compare iteration numbers for

several kernel functions, and since these numbers depend on the parameters τ , θ

and the accuracy parameter ε, we fixed these parameters in our experiments to

τ = 1, θ = 0.99 and ε = 10−8. In this way the iteration numbers depend only on

the kernel function and the problem instance.

The results of the first round of experiments are given in five tables (Table 4.2

to Table 4.6). For each of the ten problems we used bold font to highlight the best,

i.e., the smallest, iteration number. This information is summarized in Table 4.7,

which gives for each of the ten problems the smallest iteration number, and for

which kernel function(s) this was achieved. From Table 4.7 we conclude that the

smallest iteration numbers were realized by five kernel functions. For these five

kernel functions we solved in the second round the mentioned 95 problems in the

Netlib library. The results of the second round are listed in two tables (Table 4.8

to Table 4.10).

In the first round we encountered a problem with kernel function ψ5, indicated

by question marks in the corresponding column of Table 4.3. The reason is the

occurrence of the expression e
1
t in the definition of this kernel function. For values

of t smaller than ≈ 0.0014 the value of this expression goes beyond the size of

numbers that can be handled by MATLAB. Since such small values occur in the

vector v during the execution of the algorithm for some of the test problems, the

programme failed to run for nine of the ten problems in the first round. Only for
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LP

Problem

Number of iterations for ψ1, ψ2, and ψ3

ψ1 ψ2 (q = 1.5) ψ2 (q = 2) ψ2 (q = 2.5) ψ3

ADLITTLE 23 23 24 24 39

AFIRO 16 16 17 17 28

DEGEN2 24 26 26 26 46

DEGEN3 30 31 33 37 71

Grow15 37 39 38 40 77

MAROS 74 76 82 85 90

SC105 18 19 19 19 36

SC205 22 22 23 25 36

SCTAP2 26 28 30 31 41

SHELL 46 49 50 54 81

Total of N.It 316 329 342 358 545

Table 4.2: Iteration numbers for ψ1, ψ2, and ψ3.

SC205 it found the solution, but when comparing the number of iterations with

the iteration count for the other kernel functions, the result is not very promising.

LP

Problem

Number of iterations for ψ4, ψ5, ψ6 and ψ7

ψ4 ψ5 ψ6 ψ7 (q = 1.5) ψ7 (q = 2) ψ7 (q = 2.5)

ADLITTLE 25 ? 24 23 25 26

AFIRO 17 ? 18 16 17 18

DEGEN2 25 ? 27 25 25 25

DEGEN3 34 ? 37 30 34 34

Grow15 41 ? 43 39 41 46

MAROS 87 ? 92 69 87 87

SC105 21 ? 19 19 21 24

SC205 24 45 23 23 24 25

SCTAP2 31 ? 32 27 31 32

SHELL 52 ? 55 49 52 55

Total of N.It 357 ? 370 320 357 372

Table 4.3: Iteration numbers for ψ4, ψ5, ψ6 and ψ7.

From the first four tables we may draw a few conclusions. First, the numbers

of iterations obtained by using ψ8, which has a linear growth term, are almost

among the worst. For ψ9, it becomes clear that smaller values of the parameter

p influence the iteration count negatively. Hence, p = 1 seems to be the best

possible choice, which gives ψ1, the kernel function of the logarithmic barrier

function. Furthermore, the kernel functions ψ3, ψ4, ψ5, ψ6, ψ8 ψ9 and ψ10 never
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LP

Problem

Number of iterations for ψ8 and ψ9

ψ8 (q = 1.5) ψ8 (q = 2) ψ9 (p = 0.5) ψ9 (p = 0.8)

ADLITTLE 67 82 30 25

AFIRO 63 71 25 19

DEGEN2 69 85 34 27

DEGEN3 101 193 37 32

Grow15 97 116 45 39

MAROS 107 126 74 71

SC105 70 81 28 22

SC205 72 84 30 23

SCTAP2 97 97 34 30

SHELL 101 96 55 51

Total of N.It 844 905 392 339

Table 4.4: Iteration numbers for ψ8 and ψ9.

LP

Problem

Number of iterations for ψ10

(p = 0.5, q = 1.5) (p = 0.5, q = 2) (p = 0.8, q = 1.5) (p = 0.8, q = 2)

ADLITTLE 34 35 27 29

AFIRO 29 29 20 21

DEGEN2 29 42 29 31

DEGEN3 42 47 33 37

GROW15 49 55 43 46

MAROS 77 95 80 80

SC105 30 33 22 25

SC205 34 38 26 28

SCTAP2 38 46 31 34

SHELL 61 67 52 56

Total of N.It 423 487 363 387

Table 4.5: Iteration numbers for ψ10.

give the smallest iteration number.

Special attention deserves the finite barrier kernel function ψp,σ. In Chapter

2 we mentioned that it differs from the other kernel functions in the sense that

it has a finite value at the boundary of the feasible region. The results in Table

4.6 show that for ψ1,1 the iteration numbers in all ten cases are the same (or

almost the same) as for the kernel function ψ1 of the classical logarithmic barrier

function.

In the second round we used only the kernel functions that appear in the

second column of Table 4.7, namely ψ1, ψ2 and ψ7, both with q = 1.5, and ψ1,1

and ψ1,1.5. The iteration counts for the 95 problems are listed in Table 4.8, Table
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LP

Problem

Number of iterations for ψp.σ

ψ0,1 ψ0.5,1 ψ0.8,1 ψ1,1 ψ1,1.5 ψ1,2 ψ1,2.5

ADLITTLE 60 29 26 24 24 25 25

AFIRO 43 24 20 16 17 17 18

DEGEN2 56 34 28 24 26 26 26

DEGEN3 66 39 36 32 31 31 31

GROW15 70 47 40 37 38 38 38

MAROS 94 77 77 62 64 68 65

SC105 51 28 22 18 19 20 21

SC205 54 31 24 22 22 23 24

SCTAP2 61 35 31 26 27 27 27

SHELL 78 57 53 50 52 51 49

Total of N.It 633 401 355 311 320 326 324

Table 4.6: Iteration numbers for some finite barrier functions.

Problem Best result Kernel functions

ADLITTLE 23 ψ1, ψ2(q = 1.5), ψ7(q = 1.5)

AFIRO 16 ψ1, ψ2(q = 1.5), ψ7(q = 1.5), ψ1,1

DEGEN2 24 ψ1, ψ1,1

DEGEN3 30 ψ1, ψ7(q = 1.5)

GROW15 37 ψ1, ψ1,1

MAROS 62 ψ1,1

SC105 18 ψ1, ψ1,1

SC205 22 ψ1, ψ2(q = 1.5), ψ1,1, ψ1,1.5

SCTAP2 26 ψ1, ψ1,1

SHELL 46 ψ1

Table 4.7: Smallest iteration numbers and corresponding kernel function(s)

4.9 and Table 4.10. The results in these three tables justify the conclusion that

the kernel functions ψp,σ deserve further investigation. Their performance seems

quite promising. These kernel functions are new and have not yet been optimized

for practical use.3

3To get a method that is useful from a practical point of view, one has to embed the generic

algorithm of Figure 1.1 in a predictor-corrector scheme as proposed by Mehrotra. A nice example

of this is a recent paper of Zhu et al. [Zhu03]. They propose a Mehrotra-type predictor-corrector
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LP

Problem

Number of iterations

ψ1 ψ2 (q = 1.5) ψ7 (q = 1.5) ψ1,1 ψ1,1.5

25FV47 71 75 75 71 72

80BAU3B 100 104 104 103 104

ADLITTLE 23 23 23 24 24

AFIRO 16 16 16 16 17

AGG 43 44 44 42 43

AGG2 36 37 37 39 38

AGG3 39 45 41 43 41

BANDM 39 39 40 38 40

BEACONFD 23 23 24 25 25

BLEND 19 20 19 19 20

BNL1 69 70 69 68 68

BNL2 76 76 79 76 75

BOEING1 42 44 45 44 44

BOEING2 35 35 36 36 36

BORE3D 39 39 39 36 38

BRANDY 40 41 42 39 38

CAPRI 42 44 44 42 42

CYCLE 86 93 90 77 86

CZPROB 78 84 86 77 76

D2Q06C 107 112 112 110 109

D6CUBE 38 39 40 39 40

DEGEN2 24 26 25 24 26

DEGEN3 30 31 30 32 31

DFL001 81 85 85 83 83

E226 41 43 44 42 43

ETAMACRO 66 66 67 64 64

FFFFF800 64 66 65 64 64

FINNIS 60 60 61 56 56

FIT1D 32 33 32 33 33

FIT1P 33 33 35 34 34

FIT2D 42 43 42 41 42

FIT2P 40 42 43 40 40

FORPLAN 40 43 43 48 46

Table 4.8: Iteration numbers for the five best kernel functions (I).

algorithm, in which the search direction determined by the kernel function ψ7 plays a role. The

algorithm starts with a predictor step based on the so-called primal-dual affine scaling direction.

If the maximum step size in this direction is sufficiently large, then the algorithm performs after

the predictor step a Mehrotra corrector step, based on the classical primal-dual Newton direction,

followed by a backtracking line search technique to keep the iterates in a certain neighborhood

of the central path. If the maximum feasible step size in the predictor step is not large enough,
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LP

Problem

Number of iterations

ψ1 ψ2 (q = 1.5) ψ7 (q = 1.5) ψ1,1 ψ1,1.5

GANGES 43 43 42 44 44

GFRD-PNC 32 35 38 34 36

GREENBEA 119 125 130 123 125

GREENBEB 121 124 126 123 121

GROW15 37 39 39 37 38

GROW22 41 39 41 40 38

GROW7 35 36 37 35 35

ISRAEL 36 37 39 37 37

KB2 30 30 30 30 30

LOTFI 29 30 32 31 32

MAROS 74 76 69 62 64

MAROS-R7 37 37 38 37 39

MODSZK1 49 50 51 51 51

NESM 75 74 75 75 75

PEROLD 73 72 75 73 71

PILOT 102 102 104 100 99

PILOT.JA 74 76 76 76 76

PILOT.WE 137 133 132 125 131

PILOT4 71 76 76 70 70

PILOT87 145 149 150 147 144

PILOTNOV 56 58 59 55 56

RECIPE 19 21 21 21 21

SC105 18 19 19 18 19

SC205 22 22 23 22 22

SC50A 18 17 18 17 18

SC50B 17 17 17 16 17

SCAGR25 32 33 36 33 33

SCAGR7 25 26 26 26 26

SCFXM1 42 44 44 43 43

SCFXM2 52 52 54 52 53

SCFXM3 57 51 54 57 56

Table 4.9: Iteration numbers for the five best kernel functions (II).

then the algorithm uses the search direction determined by the kernel function ψ7 to bring

the iterate closer to the central path. From their paper it is clear that the iteration numbers

presented in the last three tables for the Netlib set of problems can be reduced by about 50%.
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LP

Problem

Number of iterations

ψ1 ψ2 (q = 1.5) ψ7 (q = 1.5) ψ1,1 ψ1,1.5

SCORPION 33 34 36 35 35

SCRS8 51 51 53 50 52

SCSD1 32 41 46 39 33

SCSD6 50 45 54 67 61

SCSD8 45 36 50 39 41

SCTAP1 36 42 42 36 36

SCTAP2 26 28 27 26 27

SCTAP3 28 31 29 28 29

SEBA 54 56 57 53 54

SHARE1B 48 50 50 47 48

SHARE2B 22 22 23 24 23

SHELL 46 49 49 50 52

SHIP04L 30 30 30 30 31

SHIP04S 28 29 31 30 30

SHIP08L 36 34 34 32 33

SHIP08S 27 30 30 28 28

SHIP12L 48 53 55 50 48

SHIP12S 41 44 44 42 43

SIERRA 40 44 45 42 44

STAIR 33 33 35 34 34

STANDATA 29 31 30 30 30

STANDGUB 29 31 30 30 30

STANDMPS 35 39 38 38 38

STOCFOR1 27 27 27 25 25

STOCFOR2 65 64 66 68 68

STOCFOR3 120 121 121 122 123

TRUSS 61 62 65 63 64

TUFF 40 41 42 41 41

VTP-BASE 28 29 28 29 28

WOOD1P 37 35 40 33 34

WOODW 60 74 78 62 63

Table 4.10: Iteration numbers for the five best kernel functions (III).



Chapter 5

Conclusions

5.1 Conclusions and Remarks

This thesis was inspired by recent work on so-called self-regular barrier functions

for primal-dual interior-point methods for linear optimization, second order cone

and semidefinite optimization [Pen02a; Pen02b]. Each such barrier function is

determined by its (univariate) self-regular kernel function. We introduce a new

class of kernel functions which differs from the class of self-regular kernel func-

tions. The class is defined by some simple conditions on the kernel function which

concern the growth and the barrier behavior of the kernel function. These prop-

erties enable us to derive many new and tight estimates that greatly simplify the

analysis of IPMs based on these kernel functions. An important conclusion from

the analysis is that inverse functions of suitable restrictions of the kernel function

and its first derivative more or less determine the behavior of the corresponding

IPMs .

In Chapter 2 we consider ten specific (classes of) kernel functions belonging to

the new class, and using the new estimates present a complete complexity analysis

for each of these functions. Some of these functions are self-regular and others

are not. Three of the functions are special in the sense that there growth term is

not quadratic. We also present the analysis of a kernel function with finite barrier

term. Iterations bounds both for large- and small-update methods are derived. It

is shown that small-update methods based on the new kernel functions all have

the same complexity as the classical primal-dual IPM, namely O(
√
n log n

ε
). For
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large-update methods the best obtained bound is O(
√
n (log n) log n

ε
), which is

up till now the best known bound for such methods.

The results of Chapter 2 for LO can be easily extended to other conic op-

timization problem classes like second order cone and semidefinite optimization.

We show this in Chapter 3, where we deal with semidefinite optimization and

show that at some point the analysis boils down to exactly the same analysis as

for the LO case.

Similar results hold for the case of SOCO, but this is not considered in this

thesis.

In Chapter 4 some numerical results are presented. These results show that by

using a kernel functions ψp,σ, with finite barrier term, the best iteration complex-

ity was achieved in most of the test problems, especially for the kernel functions

ψ1,1 and ψ1,1.5. Their practical performance seems quite promising for LO.

5.2 Directions for further research

Future research might focuss on one of the following questions.

• Does there exist a kernel function for which the complexity of large-update

methods is the same as for small-update methods?1

• How do the methods for SDO perform in practice?

• Is it possible to design dual (or primal) IPMs for LO based on the new class

of kernel functions? If the result is positive, how to extend these results to

SOCO and SDO problems?

• Can we design primal-dual IPMs for SDO based on scaling techniques other

than the Nesterov-Todd scaling?

• It is possible to extend the present work to more general nonlinear opti-

mization problems?

• In [Sal03; Sal05b] the authors presented a new complexity analysis of In-

feasible IPMs for linear optimization based on a specific self-regular kernel

1It might be mentioned that a large-update method with such complexity was obtained

recently in [Ai04] for monotone linear complementarity problems by using search directions that

are different from the usual Newton direction.
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function (namely, ψ7 with q = log(n)). Can we design Infeasible IPMs

based on different kernel functions, as presented in this thesis, for linear

and nonlinear optimization?

• Recently, Peng et al. [Pen05] and Salahi et al. [Sal04b; Sal05a] studied

intensively the so-called self-regular predictor-corrector IPMs for LO. Can

we design predictor-corrector IPMs for LO and nonlinear optimization based

on non-self-regular kernel functions, as presented in this thesis?



94 CONCLUSIONS



Appendix A

Technical Lemmas

A.1 Three technical lemmas

We need three simple technical results. For completeness’ sake we include their

(short) proofs. The first lemma is needed only in the proof of the second lemma,

which is interesting in itself.

Lemma A.1.1 (Lemma 2.1 in [Pen02a]). If α ∈ [0, 1], then

(1 + t)α ≤ 1 + αt, ∀ t ≥ −1. (A.1.1)

Proof. Consider the function f(t) = (1 + t)α − 1 − αt for t ≥ −1. One has

f ′(t) = α(1 + t)α−1 − α and f ′′(t) = α(α − 1)(1 + t)α−2. Since f ′′(t) ≤ 0, f(t)

is concave. Since f ′(0) = 0, the function f is maximal at t = 0. Finally, since

f(0) = 0, the lemma follows. 2

Lemma A.1.2 (Proposition 2.2 in [Pen02a]). Let t0, t1, · · · , tK be a sequence

of positive numbers such that

tk+1 ≤ tk − κt1−γk , k = 0, 1, · · · ,K − 1, (A.1.2)
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where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
t
γ
0

κγ

⌋
.

Proof. Using (A.1.2), we may write

0 < tγk+1 ≤
(
tk − κt1−γk

)γ
= tγk

(
1− κt−γk

)γ ≤ tγk
(
1− κγt−γk

)
= tγk − κγ,

where the second inequality follows from (A.1.1). Hence, for each k, tγk ≤ tγ0−kγκ.

Taking k = K we obtain 0 < tγ0 −Kγκ, which implies the lemma. 2

Lemma A.1.3 (Lemma 3.12 in [Pen02a]). Let h(t) be a twice differentiable

convex function with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum

at t∗ > 0. If h′′(t) is increasing for t ∈ [0, t∗] then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Proof. Using the hypothesis of the lemma we may write

h(t) =

∫ t

0

h′(ξ)dξ = h′(0)t+

∫ t

0

∫ ξ

0

h′′(ζ)dζdξ ≤ h′(0)t+

∫ t

0

ξh′′(ξ)dξ

= h′(0)t+

∫ t

0

ξdh′(ξ) = h′(0)t+ (ξh′(ξ))|t0 −
∫ t

0

h′(ξ)dξ

≤ h′(0)t−
∫ t

0

dh′(ξ) = h′(0)t− h(t).

This implies the lemma. 2
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Name Rows Columns Nonzeros Optimal value

25FV47 822 1571 11127 4.5018458883E + 03

80BAU3B 2263 9799 29063 9.8723216072E + 05

ADLITTLE 57 97 465 2.2549496316E + 05

AFIRO 28 32 88 −4.6475314286E + 02

AGG 489 163 2541 −3.5991767287E + 07

AGG2 517 302 4515 −2.0239252356E + 07

AGG3 517 302 4531 1.0312115935E + 07

BANDM 306 472 2659 −1.5862801845E + 02

BEACONFD 174 262 3476 3.3592485807E + 04

BLEND 75 83 521 −3.0812149846E + 01

BNL1 644 1175 6129 1.9776292856E + 03

BNL2 2325 3489 16124 1.8112365404E + 03

BORE3D 234 315 1525 1.3730803942E + 03

BRANDY 221 249 2150 1.5185098965E + 03

CAPRI 272 353 1786 2.6900129138E + 03

CYCLE 1904 2857 21322 −5.2263930249E + 00

CZPROB 930 3523 14173 2.1851966989E + 06

D2Q06C 2172 5167 35674 1.2278423615E + 05

D6CUBE 416 6184 43888 3.1549166667E + 02

DEGEN2 445 534 4449 −1.4351780000E + 03

DEGEN3 1504 1818 26230 −9.8729400000E + 02

DFL001 6072 12230 41873 1.12664E + 07?

E226 224 282 2767 −1.8751929066E + 01

ETAMACRO 401 688 2489 −7.5571521774E + 02

FFFFF800 525 854 6235 5.5567961165E + 05

FINNIS 498 614 2714 1.7279096547E + 05

FIT1D 25 1026 14430 −9.1463780924E + 03

FIT1P 628 1677 10894 9.1463780924E + 03

FIT2D 26 10500 138018 −6.8464293294E + 04

FIT2P 3001 13525 60784 6.8464293232E + 04

FORPLAN 162 421 4916 −6.6421873953E + 02

Table B.1: The Netlib-Standard Problems (I).
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Name Rows Columns Nonzeros Optimal value

GANGES 1310 1681 7021 −1.0958636356E + 05

GFRD-PNC 617 1092 3467 6.9022359995E + 06

GREENBEA 2393 5405 31499 −7.2462405908E + 07

GREENBEB 2393 5405 31499 −4.3021476065E + 06

GROW15 301 645 5665 −1.0687094129E + 08

GROW22 441 946 8318 −1.6083433648E + 08

GROW7 141 301 2633 −4.7787811815E + 07

ISRAEL 175 142 2358 −8.9664482186E + 05

KB2 44 41 291 −1.7499001299E + 03

LOTFI 154 308 1086 −2.5264706062E + 01

MAROS 847 1443 10006 −5.8063743701E + 04

MAROS-R7 3137 9408 151120 1.4971851665E + 06

MODSZK1 688 1620 4158 3.2061972906E + 02

NESM 663 2923 13988 1.4076073035E + 07

PEROLD 626 1376 6026 −9.3807580773E + 03

PILOT 1442 3652 43220 −5.5740430007E + 02

PILOT.JA 941 1988 14706 −6.1131344111E + 03

PILOT.WE 723 2789 9218 −2.7201027439E + 06

PILOT4 411 1000 5145 −2.5811392641E + 03

PILOT87 2031 4883 7304 3.0171072827E + 02

PILOTNOV 976 2172 13129 −4.4972761882E + 03

RECIPE 92 180 758 −2.6661600000E + 02

SC105 106 103 281 −5.2202061212E + 01

SC205 206 203 552 −5.2202061212E + 01

SC50A 51 48 131 −6.4575077059E + 01

SC50B 51 48 119 −7.00000000000E + 01

SCAGR25 452 500 2029 −1.4753433061E + 07

SCAGR7 130 140 553 −2.3313892548E + 08

SCFXM1 331 457 2612 1.8416759028E + 04

SCFXM2 661 914 5229 3.6660261565E + 04

SCFXM3 991 1371 7846 5.4901254550E + 04

Table B.2: The Netlib-Standard Problems (II).
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Name Rows Columns Nonzeros Optimal value

SCORPION 389 358 1708 1.871248227E + 03

SCRS8 491 1169 4029 9.0429998619E + 02

SCSD1 78 760 3148 8.6666666743E + 00

SCSD6 148 1350 5666 5.0500000078E + 01

SCSD8 398 2750 11334 9.0499999993E + 02

SCTAP1 301 480 2052 1.4122500000E + 03

SCTAP2 1091 1880 8124 1.7248071429E + 03

SCTAP3 118 225 1182 1.4240000000E + 03

SEBA 516 1028 4874 1.5711600000E + 04

SHARE1B 118 225 1182 −7.6589318579E + 04

SHARE2B 97 79 730 −4.1573224074E + 02

SHELL 537 1775 4900 1.2088253460E + 09

SHIP04L 403 2118 8450 1.7933245380E + 06

SHIP04S 403 1458 5810 1.7987147004E + 06

SHIP08L 779 4283 17085 1.9090552114E + 06

SHIP08S 779 2387 9501 1.9200982105E + 06

SHIP12L 1152 5427 21597 1.4701879193E + 06

SHIP12S 1152 1763 10941 1.4892361344E + 04

SIERRA 1228 2036 9252 1.5394362184E + 07

STAIR 357 467 3857 −2.5126695119E + 02

STANDATA 360 1075 3038 1.2576995000E + 03

STANDGUB 362 1184 3147 1.2576995000E + 03

STANDMPS 468 1075 3686 1.4060175000E + 03

STOCFOR1 118 111 474 −4.1131976219E + 04

STOCFOR2 2158 2031 9492 −3.9024408538E + 04

STOCFOR3 16676 15695 74004 −3.9976661576E + 04

TRUSS 1001 8806 36642 4.5881584719E + 05

TUFF 334 587 4523 2.9214776509E + 01

VTP-BASE 199 203 914 1.2983146246E + 05

WOOD1P 245 2594 70216 1.4429024116E + 00

WOODW 1099 8405 37478 1.3044763331E + 00

Table B.3: The Netlib-Standard Problems (III).
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J. Szelezsán, and B. Strazicky, editors, System Modelling and Optimization :
Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, Septem-
ber 1985, vol. 84 of Lecture Notes in Control and Information Sciences, pp.
866–876. Springer Verlag, Berlin, West–Germany, 1986.

[Stu99] J. Sturm and S. Zhang. Symmetric primal-dual path following algorithms
for semidefinite programming. Applied Numirical Mathematics, vol. 29:pp.
301–315, 1999.

[Tod89] M. Todd. Recent developments and new directions in linear programming. In
M. Iri and K. Tanabe, editors, Mathematical Programming : Recent Devel-
opments and Applications, pp. 109–157. Kluwer Academic Press, Dordrecht,
The Netherlands, 1989.

[Tod96] M. Todd and Y. Ye. A lower bound on the number of iterations of long-
step and polynomial interior-point linear programming algorithms. Annals of
Operations Research, vol. 62:pp. 233–252, 1996.

[Wan04] G. Wang, Y. Bai, and C. Roos. Primal-dual interior-point algorithms for
semidefinite optimization based on a simple kernel function, 2004. To appear
in International Journal of Mathematical Algorithms.

[Ye97] Y. Ye. Interior Point Algorithms, Theory and Analysis. John Wiley & Sons,
Chichester, UK, 1997.

[Zhu03] X. Zhu, J. Peng, T. Terlaky, and G. Zhang. On implementing self-regular
proximity based feasible IPMs. Technical Report 2, Advanced Optimization
Lab. Department of Computing and Software, Mc Master University, 2003.
Http://www.cas.mcmaster.ca/ oplab/publication.



Summary

New Primal-dual Interior-point Methods Based on Kernel Functions
by Mohamed El Ghami

Two important classes of polynomial-time interior-point method (IPMs) are small-

and large-update methods, respectively. The theoretical complexity bound for large-

update methods is a factor
√
n worse than the bound for small-update methods, where

n denotes the number of (linear) inequalities in the problem. In practice the situation is

opposite: implementations of large-update methods are much more efficient than those

of small-update methods. This so-called irony of IPMs motivated the present work.

Recently J. Peng C. Roos and T. Terlaky were able to design new IPMs with large-

updates whose complexity is only a factor logn worse than for small-update methods.

This means that the factor
√
n was reduced to logn, thus significantly reducing the gap

between the theoretical behavior of large- and small-update methods. They made use

of so-called self-regular barrier (or proximity) functions. Each such barrier function is

determined by its (univariate) self-regular kernel function.

In these thesis we introduce a new class of kernel functions which differs from the

class of self-regular kernel functions. The class is defined by some simple conditions

on the kernel function which concern the growth and the barrier behavior of the kernel

function. These properties enable us to derive many new and tight estimates that greatly

simplify the analysis of IPMs based on these kernel functions.

In Chapter 2 we consider ten specific (classes of) kernel functions belonging to the

new class, and using the new estimates present a complete complexity analysis for each

of these functions. Some of these functions are self-regular and others are not. Iterations

bounds both for large- and small-update methods are derived. It is shown that small-

update methods based on the new kernel functions all have the same complexity as

the classical primal-dual IPM, namely O(
√
n log n

ε
). For large-update methods the best

obtained bound is O(
√
n (log n) log n

ε
), which is up till now the best known bound for
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such methods.

The results of Chapter 2 for LO are extended to semidefinite optimization in Chapter

3, where we it is shown that at some point the analysis boils down to exactly the same

analysis as for the LO case.

In Chapter 4 some numerical results are presented. These results show that one of

the new kernel functions, with finite barrier term and with the best possible theoretical

complexity, performs surprisingly well in our experiments.

Mohamed El Ghami



Samenvatting

Nieuwe Primaal-duale Methoden gebaseerd op Kernfuncties
van Mohamed El Ghami

Twee belangrijke klassen van polynomiale inwendige punt methoden (IPMn) zijn

small- en large-update methoden, respectievelijk. De theoretische complexiteitsgrens

voor large-update methoden is een factor
√
n slechter dan de grens voor small-update

methoden, waar n staat voor het aantal (lineaire) ongelijkheden in het probleem. In de

praktijk is de situatie juist omgekeerd: implementaties van large-update methoden zijn

veel efficiënter dan die van small-update methoden. Deze zogenaamde irony of IPMs

motiveerde het voorliggende onderzoek.

Recentelijk waren J. Peng C. Roos en T. Terlaky in staat om nieuwe IPMn met

large-updates te ontwerpen waarvan de theoretische complexiteit slechts een factor logn

slechter is dan die voor small-update methoden. Dit betekent dat de factor
√
n werd

teruggebracht tot log n; aldus werd het verschil in theoretisch gedrag van large- en

small-update methoden aanzienlijk verkleind. Zij maakten gebruik van zogenaamde zelf-

reguliere barrière (of afstands-)functies. Iedere zodanige barrière functie wordt bepaald

door zijn zelf-reguliere kernfunctie.

In dit proefschrift introduceren wij een nieuwe klasse van kernfuncties die verschilt

van de klasse van zelf-reguliere kernfuncties. Deze klasse wordt gedefinieerd door middel

van enkele eenvoudige voorwaarden ten aanzien van het groei-gedrag en en het barrière-

gedrag van de kernfunctie. Deze voorwaarden stellen ons in staat om een groot aantal

nieuwe en scherpe schatttingen af te leiden die de analyse van IPMn gebaseerd op kern-

functies aanzienlijk vereenvoudigen.

In Hoofdstuk 2 beschouwen wij tien specifieke (klassen van) kernfuncties die behoren

tot de nieuwe klasse. Met behulp van de nieuwe afschattingen maken wij een volledige

complexiteitsanalyse voor ieder van deze tien kernfuncties. Sommige van de tien kern-

functies zijn zelf-regulier, en andere niet. Wij leiden iteratiegrenzen af voor zowel large-
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als small-update methoden. Het blijkt dat small-update methoden gebaseerd op de tien

kernfuncties allemaal dezelfde complexiteit hebben als de klassieke primaal-duale IPM,

namelijk O(
√
n log n

ε
). Voor large-update methoden is de best verkregen iteratiegrens

O(
√
n (log n) log n

ε
), wat tot op heden de best bekende grens is voor zulke methoden.

De resultaten van Hoofdstuk 2 voor LO worden gegeneraliseerd tot semidefiniete

optimalisering in Hoofdstuk 3, alwaar blijkt dat vanaf zeker moment in de analyse deze

samenvalt met die voor LO.

In Hoofdstuk 4 presenteren wij de resultaten van numerieke experimenten. Deze re-

sultaten maken duidelijk dat één van de nieuwe kernfuncties, met een begrensde barrière

term en met de best mogelijke theoretische complexiteit, verrassend goed presteert in

deze experimenten.

Mohamed El Ghami
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