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Abstract. In this paper we evaluate the possibilities of one-sided com-
munication, a new feature of the MPI-2 standard, on the Origin2000 for
relatively short-range molecular dynamics (MD) simulations. Our algo-
rithm is based on an asynchronous message-passing multi-cell approach
using MPI as message-passing layer and the Leap-Frog/Verlet algorithm
for the time integration. We compare one-sided with two different two-
sided communication approaches for typical production runs (105 − 109

atoms) where we discuss the communication vs. computation time for in-
creasing number of processes. We also show how the partitioning of the
problem affects the different communication approaches. Using one-sided
communication we achieved 10-70% better performance over two-sided.

1 Introduction

Molecular dynamics (MD) [1,2] has been known for several decades and success-
fully used in atomistic simulation models with a few thousands interacting par-
ticles. With the introduction of large scale parallel computers it became possible
to study more realistically sized systems[3,4] and nowadays MD is an apprecia-
ted tool for a whole range of scientists to study dynamic properties of micro- or
macro phenomena [5].
For computer scientists MD simulation is interesting in order to evaluate new
parallelization and communication approaches, since it includes several challeng-
ing parallelization problems. MD simulations may also be used in benchmarking,
to study the efficiency of different machines.
In this paper we evaluate the one-sided communication mechanism of MPI-2[6]
for relatively short-range MD simulations. For our evaluation we use a shared
memory machine, the Origin2000 with 128 CPU’s. Our system contains appro-
ximately 105 − 107 particles representing a general metal atom with a dense,
regular distribution. The implementation is well optimized[7] and in C++. For
testing and evaluation purposes we implemented the two-dimensional case, but

T. Sørevik et al. (Eds.): PARA 2000, LNCS 1947, pp. 356–365, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



One-Sided Communication for Short-Range MD 357

the design and the algorithms extend naturally to higher dimensions. MPI1 was
used as communication layer.
The paper is organized as follows: In Section 2 we review the basic physical
principles for MD simulations, in Section 3 we explain the parallelization, dis-
tribution and load balancing of the work. In Section 4 we describe our three
different communication approaches based on MPI and in Section 5 we give a
short overview of the one-sided communication mechanism of MPI-2. In Section
6 we discuss the timing results and in Section 7 we close with a conclusion and
prospects for future work.

2 Short-Range Molecular Dynamics

The MD method is based on the solution of Newton’s equation of motion for N
interacting particles. This general N -body problem first involves the calculation
of N(N − 1)/2 pairs of interactions to compute all forces. On a given particle at
position rj ,

mj r̈j = Fj =
N∑

i=1,i 6=j

−∇u(rij). (1)

Here mj is the mass of particle j and rij is the distance between particle i and
j. The complexity of the force calculation is governed by the potential function
u(rij). To simplify the potential we define a finite range of interaction, which is
a reasonable approximation of atomistic interactions. In our evaluation we use
the general Lennard-Jones 6-12 (LJ) potential,

u(rij) =




4ε

[(
α

rij

)12
−

(
β

rij

)6
]

: 0 < rij ≤ rcutoff

0 : rcutoff < rij

. (2)

Where ε, α and β are LJ parameters with α ≈ β, often is α = β, it is called σ.
The potential u(rij) is cut-off at rcutoff, i.e. no interactions are evaluated beyond
this distance.
The number of interacting neighbors for each particle is determined by the in-
teraction range rcutoff, and the particle density ρ. Considering that the repulsive
core of u(rij) limits the local density (the maximal number of particles inside the
range), we can conclude that the number of interactions has an upper constant
bound, i.e. does not depending on the number of particles, N . Once the forces
for each particle are computed, the positions and velocities have to be updated.
For our purpose we use the Leap-Frog/Verlet algorithm, which despite its low
order of accuracy has excellent energy conservation properties[2].

3 The Multi-cell Algorithm and Distribution

The multi-cell algorithm[3] provides a means of organizing the spatial informa-
tion for each particle into such a form that the particle’s neighbors can be quickly
1 MPT 1.4 from SGI.
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located for the force calculation. Thus the number of interactions evaluated is
minimized. We briefly outline the main features of the computation for the two-
dimensional case, which extends directly to three dimensions.
The region is divided into rectangular, equal cells (Fig. 1) with dimensions at
least the rcutoff distance. Particles are assigned to the cells geometrically accord-
ing their positions. The computation of the force on a single particle involves
only the particles of the same cell and the neighboring cells. The evaluation of
forces for all particles in a cell consists of two steps. First all interactions bet-
ween particles in the original cell (5) are computed. Then the forces between
neighboring cells (6,3,2,1) and the original cell are computed, by following an in-
teraction path that describes how the interactions with neighboring cells should
occur. Following the path the interactions for the original and the visited cells are

rcutoff

987

4 5 6

21
3

Fig. 1. Partition of cells, where cell nr. 5 is the origin and 1-4,6-9 the neighbor cells.
Cell nr. 6,3,2 and 1 describe the interaction path.

accumulated, e.g. using Newton’s third law. The original cell (5) will accumulate
the interactions from its lower neighbors when they calculate their interactions.
To calculate all forces, this procedure has to be carried out for each cell. Ho-
wever, the defined path and the assumption that the dimensions of cells are at
least rcutoff, guarantee that all interactions with a contribution will be taken into
acount and the total amount of computed interactions is of order O(N).
With the cell structure now in place, the particles can be distributed. Each cell
with its particles is assigned to a particular process by a given partitioning al-
gorithm. To study how partitioning affects the amount of communication and
communication conflicts (i.e. two or more processes request/need the same cell)
we introduced three different approaches to distribute the cells. The first parti-
tioning (Fig. 2, stripe) uses a one-dimensional array partitioning simply assigning
an approximately equal stripe to each process. Fig. 3 illustrates a partitioning
(metis) minimizing the interface between processes for large systems. Our imple-
mentation uses METIS[8] – a family of programs for partitioning unstructured
graphs and hypergraphs. The last partitioning (Fig. 4, rect) is a two-dimensional
block partitioning trying to minimize the interface. Additionally, for the purpose
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of testing the robustness of the communication approaches we used for some
smaller systems a partitioning where we scattered the cells, trying to assign
neighboring cells to as many as possible different processes.

Fig. 2. Stripe. Fig. 3. METIS. Fig. 4. Rectangle.

4 The Communication Approaches

Each process calculates the interactions in parallel, proceeding through all as-
signed (locally) – the owned – cells sequentially. As long as the neighboring cells
are owned, the cell is independent from other processes. Once a process needs
a neighboring cell owned by another process – a shared cell, we have to make
sure that this cell with its particles is made available. Note that the passing of a
cell may happen by either an explicit or implicit request. We have studied three
communication approaches where one is based on MPI’s one-sided communica-
tion mechanism and the other two on two-sided communication.
First we discuss the two-sided communication approaches which require a mat-
ching send for each posted receive. This criterion synchronize the involved pro-
cesses and can in the worst case lead to a dead-lock. The first approach (simple)
does an implicit passing depending strongly on the distribution algorithm, i.e. it
works only for the stripe partitioning. Each process starts with the cells, which
will be used (later) by another process. Once these cells are not needed any
more for further computations they are sent asynchronously to the appropriate
process. As soon as the receiver needs these cells it will receive them and con-
tinue to compute. The cells are sent back when the process has completed its
computations. To simplify we assume that each process will request cells from
only one process. stripe is the only approach which requests cells from at most
one process.
The second approach (dist) passes cells by explicit requests. The owner of the
cell will decide if it can give away the requested cell, i.e. the cell is not needed by
the owner itself. The requesting process will hold the cell as long as the owner
does not request it back, and the process has not finished all its computations.
Thus the cell may be used for further interactions and passed back only if it is
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really needed. Further requests may occur for a cell, which actually is held by
a third process. The owner has then to request back the cell and pass it to the
requesting process. All this leads to a more complicated communication policy,
but the method will handle all kind of partitionings including scattered distri-
bution. Additionally we can show that the cells are coherent at any time.
The last approach (one) is based on MPI’s one-sided communication mechanism.
Before any cell can be passed we have to define the (memory-)window’s for the
remote access (see next section) for shared cells, which will be needed by other
processes. We assume that the allocated storage in each cell is large enough for
the whole run, otherwise we have to redefine the window later. Before compu-
ting the forces each process will copy and make public the shared cells in its
own window. Whenever a process needs a cell it will grab the cell from the ac-
cording process window. Once the processes have computed all interactions they
write their contribution of the shared cells for each process in a separate window.
Then the owner of the shared cells will collect and accumulate all contributions
scattered among all (neighboring) processes. The approach has a simple policy
without any synchronization when passing or requesting cells. We elaborate on
this communication mechanism next.

5 MPI’s One-Sided Communication Mechanism

One-sided communication[6] or Remote Memory Access (RMA) extends the
communication mechanisms of MPI by allowing one process to specify all com-
munication parameters, both for the sending side and for the receiving side. This
mode of communication suits applications with dynamically changing data ac-
cess patterns, where the data distribution is fixed or slowly changing. For such
applications, each process can access or update data at other processes where
the remote process may not know which data in their memory need to be acces-
sed or updated. RMA communication mechanisms also avoid the need for global
communication or explicit polling.
Where regular send/receive communication requires matching operations by sen-
der and receiver, RMA requires once the definition of the window2 for the remote
memory access or update. The definition of the window – a collective operation
– specifies the memory that is made accessible to remote processes. Once the
window is not any more needed or obsolete, it should be freed3 and if necessary
redefined.
The access4 is similar to the execution of a send by the target process, and a
matching receive by the origin process with the obvious difference that the re-
ceiver does not depend on the sender. The update5 works similarly, except that
the direction of data transfer is reversed. For a more sophisticated update than

2 MPI WIN CREATE().
3 MPI WIN FREE().
4 MPI GET().
5 MPI PUT().
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copying data from the origin to the target process, a general accumulation func-
tion6 is provided. RMA synchronization fence7 – a collective operation – entails
the completion of RMA’s and the synchronization of RMA calls on the given
window. Beside fence, there are several functions to implement finer and more
subtle synchronization of RMA calls.

6 Results

To monitor the different communications approaches and distributions we per-
formed a variety of 190 test runs with different lattice sizes (Table 1) and
number of CPU’s. All test runs were performed for 200 timesteps representing
1.01805 × 10−4 [ns]. The lattices are two-dimensional and consist of 89.9% par-
ticles representing an idealized, optimal packed metallic alloy with 10% of an
additive atomic species and 0.1% holes. Table 1 shows the number of particles

Table 1. The three different test cases. L2-bound is the lower bound of CPU’s required
so that all particles fit into the L2-cache on each process.

Cases Particles Cells L2-bound Sequential [s]
small 91,800 82 × 82 1.93 193.4

medium 925,600 260 × 259 19.4 2300.0
large 9,218,300 820 × 819 193.4 24692.5

for each test case and the number of cells. L2-bound is the lower bound of CPU’s
required so that all particles fit into the L2-cache (4MB) on each process, assu-
ming an equal distribution. Note that each process will required some additional
memory for the communication buffers (window’s) containing the shared cells.
The last column is the time of a sequential run. Periodic boundaries were ap-
plied in all dimensions and rcutoff ≈ 3σ, where each particle has approximately
43 interacting neighbors and approximately 14 particles per cell. The test runs
for one to 32 CPU’s were performed on a normally loaded machine, where for
64 or more CPU’s the machine was empty.
The following tables and figures is a selection of the runs of interest. Tables 2-4
are a summary of the achieved speedups and the gain of one compared to dist.
The bold numbers represent the best achieved speedup for each approach. Fig.
13, 5 and 6 are the corresponding graphs for small, medium and large. Figs. 7, 9
and 11 show the time spent in [s] for the communication, which includes the re-
distribution of particles moving from one process to another and idle cycles when
a process have to wait to receive data. Figs. 8, 10 and 12 present the time spent
for the computation of forces and computation of new positions and velocities
(upper curves) relatively to the total run time. Additionally the update timings,
which is the amount spent for the update of the cell structure, are shown.

6 MPI ACCUMULATE().
7 MPI WIN FENCE().
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Table 2. Speedups for the test case small, 91,800 particles.

CPU’s dist one simple Cells/
stripe metis rect stripe metis rect Gain stripe CPU

1 1.00 – – – – – – – 6,724
2 1.45 1.49 1.62 1.63 2.00 1.80 23% 1.85 3,137
4 3.15 3.31 3.38 4.21 3.79 3.65 25% 3.67 1,569
8 4.21 5.64 5.60 5.80 7.71 6.86 37% 6.47 841
16 8.15 8.92 8.28 10.93 11.88 12.49 40% 11.70 421
32 13.83 14.58 14.44 17.19 21.09 20.16 45% 16.35 211
64 18.43 22.98 24.10 30.87 41.68 38.59 73% – 106
121 21.30 29.30 32.41 30.50 33.25 33.52 3% – 56

Table 3. Speedups for the test case medium, 925,600 particles.

CPU’s dist one simple Cells/
stripe metis rect stripe metis rect Gain stripe CPU

1 1.00 – – – – – – – 67’346
2 1.77 1.67 1.66 1.69 1.83 1.75 3% 1.61 33,673
4 3.08 3.31 2.83 3.43 3.14 3.15 4% 3.34 16,837
8 5.74 5.71 5.85 6.24 6.29 7.17 23% 6.92 8,419
12 7.23 8.01 8.09 9.06 9.27 7.87 15% – 5,613
16 10.39 8.50 9.66 10.79 11.74 12.56 21% 12.39 4,210
20 12.05 10.84 10.99 14.71 15.07 14.22 25% – 3,368
24 13.26 12.55 13.70 13.70 15.23 15.08 11% – 2,807
28 12.37 13.80 14.07 19.23 17.86 23.66 68% – 2,406
32 15.71 18.17 21.76 21.72 24.54 24.90 14% 23.11 2,105
64 – 42.42 – – 62.15 43.47 47% 44.50 1,053
121 – – 54.43 – – 102.73 89% 62.97 557

Table 4. Speedups for the test case large, 9,218,300 particles.

CPU’s dist one Cells/
stripe metis rect stripe metis rect Gain CPU

1 1.00 – – – – – – 671,580
2 1.73 1.70 1.76 1.93 1.84 1.89 10% 335,790
4 3.27 3.33 2.80 3.41 3.30 3.65 10% 167,895
8 6.17 6.69 5.40 7.05 7.37 6.95 10% 83,948
16 11.31 11.62 10.28 13.22 13.12 13.20 14% 41,974
32 17.82 19.96 – 23.83 24.84 23.93 24% 20,987
64 – 34.24 – – 36.09 – 5% 10,494
121 – – 60.25 – – 66.22 10% 5,551
128 – – – – – 91.31 – 5,247
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Fig. 5. Speedups, medium.
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Fig. 6. Speedups, large.
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Fig. 7. Communication [s], small.
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Fig. 8. Computation & update, small.
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Fig. 9. Communication [s], medium.
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Fig. 10. Computation & update, medium.
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Fig. 11. Communication [s], large.
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Fig. 12. Computation & update, large.
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Fig. 13. Speedups, small.

7 Discussion and Outlook

From the figures it can be concluded that the use of MPI’s one-sided com-
munication mechanism on the Origin2000 is not only feasible but it improves
performance as well. The gain of the one-sided communication approach – not
to have to wait for a process sending data – is about 10% (Table 4). As soon
as the domains get smaller and requesting conflicts occur more often, we get
20% up to 80% better performance. From Figs. 7, 9 and 11 we see clearly that
the time spent for communication depends linearly on the number of particles
regardless of the distribution approach: one compared with dist is more or less
unaffected by the amount of communicated data since it uses non-blocking com-
munication and does not need to wait when receiving data. Better performance,
however, requires more memory; one will request more then twice the memory
if the domains have less than 320 cells. Nevertheless we obtain a better perfor-
mance, even around the L2-bound when only dist completely benefits from the
L2-cache.
For the partitioning we did not find a clear ”best choice”: In some cases rect
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is slightly better than metis for large number of CPU’s. METIS may produce
a partitioning with non-connected domains and domains with irregular shape,
which introduces more communication. Furthermore we noticed that metis’s ir-
regular shape of domains reduces the conflicts (e.g. several processes requesting
the same cell at the same time), especially for dist. rect may not generate an op-
timal load balance for small number of cells or for large numbers of CPU’s with
few, unequal factors (e.g. prime numbers). stripe is a competitive partitioning
for small numbers of CPU’s and scales better for huge number of cells.
With the cell algorithm we get an excellent local memory access pattern since
the particles are stored in a dense array in each cell. This can be observed in
Fig. 8 where the time spent for the update of the cells drops down from 10% for
one CPU to 2% for four CPU’s; we even get a super linear speedup. For medium
(Fig. 10) we see that already for 16 CPU’s parts of L2-cache can be reused for
the next timestep, but it fits completely into L2-cache after 32 CPU’s. large
(Fig. 12) does not benefit from the L2-cache at all until 128 CPU’s as expected
(L2-bound in Table 1).
In future we will extend our systems to three dimensions and approve the ti-
ming number for this case. We here expect an even better improvement since
the three-dimensional case involves more communication, which has been shown
by [3]. The memory usage for one should be improved especially for the three-
dimensional case in order to avoid running out of memory. Furthermore, we will
consider dynamic load balancing to improve the performance for non-regular
systems or systems where the local density is changing heavily.
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