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Abstract. We have performed constant temperature two-dimensional molecular dynamics
simulations of a binary Lennard-Jones material, representing an idealized metallic alloy or a
material containing a specified fraction of an additive atomic species. Differences in the interatomic
potentials between the atomic species can lead to clustering of the alloy atoms. An exponential
distribution of cluster size is obtained as time approaches infinity. For sufficiently strong attractions
the distribution of cluster sizes becomes nearly independent of the force and the attained maximum
cluster size reaches a saturation level.

1. Introduction

Aggregation and fragmentation are fundamental processes occurring in a variety of phenomena
in nature on a wide range of length and time scales [1]. A fundamental problem within
irreversible aggregation is to determine the final cluster size distribution and the dynamics of
the clustering process. Such processes may take place whenever a large number of particles
or elements are allowed to interact for a sufficient length of time. The time scale may be from
billions of years to femtoseconds or below, depending on which particular systems are being
studied.

In industry irreversible segregation and aggregation processes are often unwanted side
effects which need to be minimized or controlled. A particular example concerns the role of
such processes in casting, heat treatment and working of metallic alloys: the segregation of
alloy atoms may, for example, reduce to a significant degree the quality of the final product.
Therefore, there is a quest to model these phenomena to support process control. There are,
however, some serious difficulties when handling these phenomena in macroscopic models
based on classical continuum mechanics. Such models generally fail in handling the formation
of voids and shrinking effects which violate the simple continuum equation, ∇ · �u = 0.

With the development of supercomputers such processes may alternatively be studied
directly by molecular dynamics (MD) simulations with a large number of interacting particles.
Within this approach, aggregation occurs as a phase transition from an initial unstable
configuration towards a stable equilibrium configuration. Quite a few MD simulations of
non-equilibrium phase transitions have been reported for a variety of phenomena and for a few
recent examples we refer the reader to [2–4]. The technique has also proved to be feasible for
studies of diffusion and ion transport phenomena [5, 6].

In the present paper we report MD simulations of clustering in a dense binary Lennard-
Jones fluid. This model is the simplest representation of a material doped by a second atomic

0965-0393/00/050665+12$30.00 © 2000 IOP Publishing Ltd 665



666 I Skauvik et al

species. The paper is organized as follows. The next section presents the simulation model
and discusses the basic reaction dynamics. In section 3 the simulation results are analysed
and in section 4 conclusions are drawn. Unless explicitly mentioned, units of mass, energy
and length are given by atomic mass units (AMU), electron volts and ångströms which gives
a time unit equal to 1.02 × 10−14 s.

2. Simulation model and dynamics

The simulation is initiated by positioning bulk particles with a given radius in a close-packed,
two-dimensional lattice. A certain defined fraction of the bulk particles is randomly replaced
by a new particle type which constitutes an alloy particle. A constant temperature Tc = 100 K
is simulated by assigning a random Gaussian distributed velocity to each particle. A given
fraction of the particles is defined as alloy atoms. The system then evolves in time according
to Newton’s law,

mi

d2

dt2
�ri =

(

∑

j

�Fj,i

)

− ξ(〈T (t)〉 − Tc)
d

dt
�ri . (1)

The last term acts as a thermostat which adds (extracts) energy to (from) the system in
proportion to the velocity and with the sign determined by the instantaneous value of the
temperature (kinetic energy), 〈T (t)〉. The constant parameter ξ is set to 1.0 and has been
found to have no influence on the simulation results for an order of magnitude range around
this value. This equation is discretized and integrated in constant time steps based on the
standard leap-frog [7] numerical scheme.

The two-body forces included in this model are derived from a Lennard-Jones potential,

Vij (rij ) = Fk
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where rij = |�ri− �rj |. More advanced metal potentials [8, 9] or other realistic types of interaction
would certainly represent a better description of real metals. The simplified force calculation
as well as the easy implementation of a computational grid do, however, favour the Lennard-
Jones interaction, in particular, in this phenomenological study. For the bulk particles the
parameters are given as Fk = 0.3 eV, r1 = 2.78 Å and r2 = 3.05 Å, as previously used in a
phase equilibrium study of Ti–Al [10]. The parameters for the alloy atoms were kept constant,
except for the parameter controlling the force between the reactive particles, Fk , which was
varied.

In addition to the intra-species pair potentials, there is also a need to handle the interaction
between the alloy atoms and the bulk atoms. In the present study we focus on the dynamics
of the alloy particles, so the inter-species force is first kept equal to the force between the bulk
particles. Test calculations with varying forces between the alloy and bulk particles, from
purely repulsive, i.e. r2 = 0, to a twice as strong force constant, Fk = 0.6 eV, showed that this
interaction has a small influence on the general cluster distribution. At one point, however, if
the inter-species force becomes strong enough, it will inhibit aggregation to some degree since
the bulk particles in that situation will stick very hard to the alloy particles, and thus lower the
mobility.

The general n-body problem involves n(n − 1)/2 calculations to compute the forces for
each particle, which leads to a quadratic relationship between the number of particles and
the computation time. By introducing a finite interaction range, (rcut-off ), the computational
amount is considerably reduced. For large systems each particle’s position and its neighbours’
need to be traced in some way. Instead of using a neighbour list the simulation space is divided
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Figure 1. Partition in quadratic cells, where cell 5 is the reference and 1–4, 6–9 are the neighbouring
cells.

into quadratic cells, cf figure 1, of size at least rcut-off , as in [11]. We assign each particle to
its corresponding (spatial) cell by an index/pointer. For computation of the interactions for a
given particle we have to consider all other particles of the same cell and the particles of the
eight adjacent cells. Thus, we achieve a linear relation between particle number and computing
time.

After each computational step, the index/pointers of the particles moving from one cell
to another need to be updated. In our implementation we use the path 5–6–3–2–1 [11], where
cell 5 is the reference cell and 1, 2, 3 and 6 are the adjacent cells. Using Newton’s third law
and paying special attention to the interactions inside the reference cell, the sum of all paths
covers all possible interactions with the given rcut-off . To increase the performance we apply
OpenMP [12] to parallelize the computation where each process/thread can compute the forces
independently due to local spatial properties of the cell algorithm.

Figure 2 shows a snapshot of a part of an initial arrangement of a two-dimensional close-
packed structure with 92 000 matrix atoms. In this example 10% of the atoms have been
assigned the properties of the alloy species and are highlighted in the figure. The initial
temperature was set to 100 K. Other temperatures were also simulated, but only small effects
were observed in the temperature range from 10–500 K. This is explained partly by the fact
that a two-dimensional system is highly constrained. Open boundary conditions were used,
but test calculations with periodic boundaries showed no structural change in the final state.
The breakup temperature of the sample was around 1500 K and depends slightly on alloy
concentration.

The initial state is modelled by exchanging a pre-defined fraction of the matrix atoms with
the alloy atoms using a random number generator. Therefore, there is a certain probability of
n-atomic (n > 1) molecules being present initially. There will be a spontaneous formation
of heavier molecules whenever the attractive forces between the constituent atoms exceed
the local forces that try to maintain the close-packed matrix structure. In these simulations
only the formation of heavier molecules from smaller molecules is observed, and never the
opposite. Therefore, a state of chemical equilibrium is not expected to occur, but rather a state
of saturation or pseudo-equilibrium. As will become clear, the non-equilibrium dynamics
will depend on having enough local energy to rearrange the atomic structure. This energy is
induced by a series of collisions initially from a migrating alloy particle. We are therefore
unable to predict the final distribution of cluster configurations from standard thermodynamic
theories of binary solutions.
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Figure 2. Sample of a part of a configuration with 92 000 particles after a few time steps. Each
particle is represented by a circle and the alloy particles are highlighted.

In figure 3 the structure of figure 2 is shown in the final configuration. A range of cluster
sizes and shapes can be seen. The structure of the matrix also varies from close-packed stable
structures to those strained or which are completely amorphous. The void fraction has also
increased and these ‘nano-pores’ tend to be formed around, or close to, the clusters. In the
vicinity of some clusters an amorphous phase of the matrix particles is formed, very likely due
to locally-induced stresses by moving reactants. The closed-packed structure is present in the
clustered groups of the alloy atoms, but there the cell constant is different from the matrix cell
constant. A fraction of the alloy atoms is also seen to remain in a non-clustered state.

In order to study the dynamics of the cluster formation, a smaller model has been made.
This facilitates the study of the steps of cluster formation in detail. In a small system the energy
release connected with the formation of a single cluster is large enough to give a significant
increase of the average temperature of the system. The built-in thermostat of the model will
rapidly pull down the temperature again. A plot of system temperature versus time will
therefore show peaks at the times of cluster formation. Without the thermostat, the released
energy would rapidly cause the system to evaporate. For a large system the temperature peaks
will be elusive, but for smaller systems the peaks are conspicuous, and it is possible to identify
the process steps that give rise to the energy outbursts.

Figure 4 shows an example of the temperature development with time for a small system.
It should be noted that the energy outbursts occur most frequently in the beginning, but that
peaks can also be observed after long periods of time at pseudo-stability. Three temperature
peaks at selected time regions are indicated with arrows. These peaks result from the formation
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Figure 3. The same sample as shown in figure 2 at equilibrium (T = 2.2 × 10−11 s).
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Figure 4. Temperature versus time in a model containing 900 particles, cf figure 5. The arrows
indicate three aggregation events shown in figure 5.

of a specific cluster containing four atoms asymptotically. The sample is shown in figure 5.
The interesting region is marked with a circle and the four clustering particles are shown as
full circles. The upper panels show snapshots of the configuration before and after the first two
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Figure 5. Snapshots of the time development of the spatial distribution of a small sample containing
900 particles. Four aggregating particles are followed and they are marked as full circles. The
snapshots are taken before and after each sequence shown by arrows in figure 4. The left panels
show the configuration before each transition and the right panels show the configuration after the
transition.

particles have formed a diatomic molecule. The left and right panels in the middle show the
configuration before and after the third particle has entered the cluster and the lowest panels
show the similar situation before and after all four atoms have grouped together.

It is also illustrative to view this particular aggregation process in terms of the time
development of the average interatomic distance, cf figure 6. Here the average distance
between these four particles is shown as a function of time. It is interesting to note that
the ‘clustering times’ are very short and characterized with a sharp decrease of the average
distance. The clustering times are separated by much longer ‘waiting times’ with much lower
particle velocities. An aggregating particle typically undergoes an avalanche-like motion
towards a larger molecule at a point when it has enough energy to break the first barrier of the
separating row of atoms. By visual monitoring of moderate-sized systems tendencies to form
chain reactions can be observed. The energy release of a reaction between two atoms may
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Figure 6. The time dependence of the average distance between the four particles followed in
figure 5.

trigger the formation of other clusters in the neighbourhood because the increased amplitude
of lattice vibrations increases the probability of two atoms exchanging their position in the
structure.

3. Analysis

A quantitative characterization of the atomic arrangement is given in terms of the size
distribution of the clusters. For a given initial state and a set of constants this distribution
will be time dependent. The number of single atoms and small clusters will decrease with
time.

Figure 7 shows examples of the size distribution at the end of the simulation interval. For all
simulated cases a near exponential size distribution is observed, i.e. log[ai] = k0 + k1 × log(i),
where [ai] denotes the concentration of i-atomic clusters. The magnitude of the negative
constant k1 depends on the force constant and the initial concentration of the alloy atoms. At
very low concentrations the uncertainty of the size distribution becomes elusive due to the fact
that only a few clusters are present in the simulated sample, and thus the statistics become
poor.

Analysis of these results shows that there is a threshold value of the constants at which
clustering sets on. When the force constant between alloy particles is only slightly larger than
the force between the bulk atoms, the bulk particles effectively block the alloy particles’ ability
to move. For extremely large force constants between the alloy particles the maximum cluster
size formed is independent of the force constant. This is readily seen if the maximum cluster
size (or the magnitude of k1) is plotted versus the force constant Fk , cf figure 8.

The saturation in maximal cluster size is related to the short-range nature of the two-body
forces. For N particles to coalesce into one cluster, the asymptotic force from (N − 1) atoms
assumed to be clustered has to exceed the critical magnitude, Fc, for the last atom to move,

(N − 1)Fkα

r7
N

> Fc ⇒ rN <

(

(N − 1)Fkα

Fc

)1/7

. (3)
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Figure 7. Cluster size distributions for two different force constants between the alloy particles;
crosses, Fk = 8 eV; circles, Fk = 20 eV. The straight lines are linear fits to the simulation results.
The size distribution is simulated at the end of the computation interval.
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Figure 8. Number of atoms in the largest cluster as a function of the force constant Fk ,
cf equation (2), between the reactive particles for a 10% alloy density. The stars show simulation
results, and the full curve is a fitted function.

Thus rN increases very slowly with both N and Fk . The probability of having N alloy particles
initially present inside a disc with radius rN will, on the other hand, decay fast for large N and
at some point the probability for fulfilment of equation (3) vanishes.

The ability that the single atoms have to react depends on their relative distance. For a
given concentration of the alloy particles there will be an expected distribution of the distances
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Figure 9. The unreacted fraction of single alloy atoms for five different cases with different initial
concentrations of the alloy species. The concentrations are 2% (×), 5% (+), 8% (◦), 10% (�),
14% (*). All curves are scaled with respect to the number of single atoms at the initiation of the
simulations. This number is smaller than the total number of alloy atoms due to the fact that some
clusters are present initially.

between these atoms. When there is a low concentration of alloy atoms, there will be a high
fraction of atoms where the distance to the nearest neighbour is too large for the formation of
clusters. Such atoms can be denoted as ‘non-reactive alloy atoms’ (NRAA). They are locked
in the close-packed matrix structure, and are expected to stay within the matrix corresponding
to a solid solution state. The fraction of NRAA will drop as the initial concentration increases.
Therefore, a larger fraction of the initial atoms will form clusters when the concentration of
the alloy atoms is higher. This is clearly seen from the simulation results shown in figure 9
where the unreacted fraction of single alloy atoms is plotted versus time for different initial
concentrations.

For a low concentration alloy (2%), slightly above 10% of the single constituent atoms
react, and saturation is reached within a short period of time. Figure 9 shows that there is a near
linear relationship between the initial concentration and the reacted fraction. Some allowance
most be made for the fact that the saturation state is not reached for the higher concentrations.
The initial concentration used for a reference in figure 9 is the initial concentration of single
alloy atoms. This is not necessarily equal to the total alloy concentration, since some of the
additive may initially be present as diatomic and larger clusters. One conspicuous feature of
the graphs in figure 9 is the initial time interval when no reaction takes place. The explanation
is simply the fact that some time is needed to transport a non-clustered atom to a position in
the cluster.

The gross features of the clustering dynamics may be modelled based on the theory of
irreversible aggregation [14]. The assumptions that only binary collisions between n-atomic
and m-atomic cluster sizes occur and that such a collision leads to a (n + m)-sized atomic
cluster with a collision rate Kn,m leads to the kinetic rate equations for the number of k-sized
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clusters Nk ,

dNk

dt
=

1

2

k−1
∑

i=1

Ki,k−iNi, Nk−i − Nk

Nmax
∑

i=1

Ki,kNi . (4)

For finite Nmax, this system may be solved numerically with initial conditions
[N1(t0), N2(t0), . . . , Nmax(t0)] = [N1, 0, . . . , 0]. An extensive literature [13] exists on
analytical solutions of these equations, which depend very strongly on the structure of the
collision rates. In particular, for matrices which scale with the indices as

Kai,aj = aλiµj ν (5)

several analytic properties are known. The best known case is when all matrix elements are
equal, i.e. λ = 1, µ = ν = 0. In this case the solution of equation (3) is given by [14]

Nk(t) =
N( 1

2aNt)k−1

(1 + 1
2KNt)k+1

(6)

which shows that all atoms coalesce into one large N -atomic cluster as t → ∞. For
other scaling properties it has been shown that a exponential tail of the cluster distribution
is asymptotically obtained [15], i.e.

Nk(t) = c1k
c2 e−c3k (7)

with ci some positive constants. This is the same asymptotic solution as obtained in the present
simulations.

In a situation when the reactive atoms are embedded in a material, a different form of the
reactance matrix, Ki,j , is suggested. It is first noted that the avalanche-like motion of the single
atoms separated by long stationary waiting times suggests that single atoms constitute the most
active movers, i.e. Ki,j = ai(δi,1 + δ1,j ) to a first approximation. The constant ai is essentially
the probability for a single particle to be located inside the reaction area of a pre-existing
(i − 1)-sized molecule, cf equation (3). We therefore suggest a scaling function similar to
equation (5), ai = a0i

2/7, which identifies the aggregation rate constants with an effective
reaction area. To model the time-dependent isolation of the NRAA atoms we introduce an
effective number N∗

1 of reacting single atoms as

N∗
1 = N1 tan−1

(

α

(

N

N1(t0)
− β

)

+
π

2

)

. (8)

Here N =
∑

k Nk(t) is the total number of particles and α, β are two free parameters
controlling the transition from N∗

1 (t0) = N1(t0) to N∗
1 (t) = 0 for t → ∞. In figure 10 the

cluster size distributions following on from these rate equations with α = 5000 and β = 0.5
are compared with MD simulations. In the upper panel, the scaling constant is taken directly
from equation (3), i.e. ai = a0i

2/7. In the middle panel the scaling constant is doubled allowing
for an increased mobility around large clusters, since the matrix atoms may contain areas of
locally melted regions, cf figure 3. The lowest panel shows the cluster size distribution from the
MD simulation with Fk = 25 eV. A good agreement between the aggregation theory and the
MD simulations is obtained with respect to the cluster size distribution. The MD simulations
do, however, show a tendency to form larger clusters than the aggregation results. The overall
similarity between the distributions allows us to conclude that the present aggregation model
captures the essential dynamics of the MD simulations: single particle motion towards an
exponential cluster size distribution and a concentration-dependent fraction of atoms which is
prevented from reacting.
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Figure 10. Cluster size distributions at t → ∞ for the modified aggregation theory (upper and
middle) and the MD simulations (bottom) (with Fk = 25 eV). In the upper figure the reactance
matrix scales with an exponent equal to 2/7, whereas the middle figure has a scaling exponent
equal to 4/7. The number distribution of the aggregation theory is normalized to the number of
non-reacting particles of the MD simulations.
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4. Conclusion

In the present paper we have reported results from a series of two-dimensional MD simulations
of 92 000 particles consisting of bulk-type, aluminium-like Lennard-Jones particles and a small
fraction of strongly interacting alloy particles. The simulations have shown that nanoscale
clustering in a initially dense material is strongly sensitive to the strength and range of the
attraction of the alloy particles with reference to the binding forces between the bulk particles.
Clustering only starts as the force between the reactive particles exceeds a threshold value.
This value depends on the activation energy for atomic rearrangement in the close-packed
matrix structure.

The dynamics of the clustering is characterized by a short density-independent
initialization period followed by a long clustering period which increases with alloy density.
During the aggregation period only a certain fraction of the smallest molecules move. The
single particle motion is characterized by fast rearrangements and long periods without
significant mobility. The cluster size distribution has been found to be exponential and nearly
independent of the interaction force between the alloy particles in the strong attraction regime.
A modified aggregation model based only on single particle motion has verified a cluster size
distribution in good agreement with the MD simulations.

Acknowledgments

This research has been sponsored by Norges Forskningsråd through a grant from
‘Mobilitetsprogrammet’. The calculations were performed at the Norwegian super-computing
facilities through a TRU grant.

References
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