
Parallel multigrid summation for the N-body

problem

Jesús A. Izaguirre ∗, Scott S. Hampton

Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA

Thierry Matthey

Parallab, Bergen Center for Computational Science, University of Bergen, Norway

Abstract

An Θ(n) parallel multigrid summation method (MG) for the N -body problem is
presented. The method was originally devised for vacuum boundary conditions. Here
it is extended to periodic boundary conditions and implemented in parallel using
force decomposition and MPI. MG is based on a hierarchical decomposition of com-
putational kernels on multiple grids. For low accuracy calculations, appropriate for
molecular dynamics, a sequential implementation is as fast or faster than Parti-
cle Mesh Ewald (PME). Our parallel implementation is more scalable than PME.
The method can be combined with multiple time stepping integrators to produce a
powerful simulation protocol for simulation of biological molecules and other mate-
rials. The parallel implementation is tested on both a Linux cluster with Myrinet
interconnect and a shared memory computer. It is available as open-source at
http://protomol.sourceforge.net. An auxiliary tool allows the automatic selec-
tion of optimal parameters for MG, and is available at http://mdsimaid.cse.nd.edu.

Key words: parallel N -body solvers, multigrid summation, fast electrostatic
solvers, particle mesh-Ewald

∗ Corresponding author.
Email addresses: izaguirr@cse.nd.edu (Jesús A. Izaguirre),

shampton@cse.nd.edu (Scott S. Hampton), matthey@ii.uib.no (Thierry
Matthey).

Preprint submitted to Elsevier Science 25 March 2005

1 Introduction

We present a method for fast parallel evaluation of the N -body problem. The
core of this problem is the sum of slowly decaying pair-wise interactions of
N particles. The motion of planets and galaxies, the folding of proteins, and
the determination of the electronic structures of materials are examples of
applications that need to solve the N -body problem.

Often, the N -body problem is solved by using a cutoff at some distance from
the origin. However, in some cases the use of a cutoff affects the results of inter-
est significantly. For example, in gravitational problems, cutoffs may exclude
important gravitational effects of large bodies. The same is true of molecular
systems, particularly those of biological relevance such as DNA and proteins:
Simulations with cutoff lead to artifacts in simulations of peptides and pro-
teins, and fail for interfacial and membrane simulations [1].

We consider isolated and periodically replicated systems. For isolated systems,
a straightforward computation of all pairwise interactions leads to an Θ(N2)
algorithm. A hierarchical decomposition of space leads to the Barnes-Hut [2]
Θ(N log N) algorithm. A clever interpolation of harmonics leads to the Θ(N)
fast multipole method (FMM) [3]. For periodically replicated systems, a de-
composition into real and Fourier terms leads to the Θ(N3/2) Ewald algorithm.
The solution of the Fourier part on a grid using FFT leads to the Θ(N log N)
Particle Mesh Ewald (PME) [4, 5] algorithm. Extensions of the Θ(N) FMM
exist for periodic systems.

We extend an Θ(N) multigrid summation technique (MG) [6–9] to periodic
boundary conditions and present a scalable and portable parallelization of
the method. We have implemented and tested MG in the software framework
ProtoMol [10], which is available as an open source project 1 . Tests on atomic
and molecular systems ranging from 1,000 to 1,000,000 atoms show that MG
scales linearly with system size and compares favorably to a highly optimized
PME implementation in NAMD 2.5 [11]. Parallel tests on a benchmark apoA-
I solvated protein of roughly 92,000 atoms show the superior scalability of MG
vs. PME. Parallel tests on ionic systems of up to 1,000,000 atoms [12] show
the potential for massive simulations enabled by the multigrid summation
technique.

MG is highly parallelizable. Our implementation uses MPI, and is efficient
when tested in both shared and distributed memory computers. Concretely, on
an IBM p690 Regatta turbo, MG exhibits a parallel efficiency of over 90% when
using 16 processors, whereas PME using the highly optimized parallel library

1 http://protomol.sourceforge.net

2

FFTW 2 has a parallel efficiency of only a little over 60%. Similarly, on a
Beowulf cluster using Myrinet, a force decomposition version of MG has a 50%
parallel efficiency when using 66 processors, whereas a force decomposition
version of PME has about 10% using 55 processors. The method is not as
scalable for smaller number of processors as the spatial decomposition version
of PME in NAMD 2.5, but in our tests it continues to scale, whereas NAMD
2.5 shows a slow down using 66 processors.

To make MG easier to use, a recommender system called MDSimAid, chooses
optimal parameters, based on governing rules and run-time fine tuning 3 [13].

The rest of the paper is organized as follows: Sections 1.1 and 1.2 give a
mathematical description of the N -body problem; Section 2 describes the MG
method; Section 3 gives the parallel implementation of MG; Section 4 reports
computational experiments on MG and other fast electrostatic solvers; Section
5 discusses related work; and Section 6 contains a discussion of the results.

1.1 N-body problem for isolated systems

The N -body problem for an isolated molecular system with N particles con-
sists of computing the electrostatic energy

U electrostatic(~r1, ~r2, . . . , ~rN) =
1

2

N∑
i=1

∑
j /∈χ(i)

qiqj

4πε0 |~rj − ~ri| , (1)

where the position and partial charge of the ith atom are ~ri and qi, and the
dielectric coefficient is ε0. χ(i) is a set of pairwise interactions that are excluded
for the ith atom.

The gradient of this potential energy is the force. This is used to compute the
molecular dynamics using Newton’s equations of motion, ~F = m~a. The core
of the computation is spent in evaluating the long-range electrostatic forces
for many time steps.

1.2 N-body problem for replicated systems

When modeling molecular systems it is common to consider the system to
be infinitely replicated in space (periodic boundary conditions, or PBC). One
advantage of PBC is that the system size can be reduced, when compared to

2 http://fftw.org
3 http://mdsimaid.cse.nd.edu

3

systems with other boundary conditions. Periodicity may introduce spurious
results and requires some careful study. In liquid simulations, periodicity ef-
fects are minimal. Charged or polar systems in high dielectric medium show
minimal periodicity effects as well. More careful studies of low dielectric and
biomolecular systems are still needed.

In the case of a replicated system under periodic boundary conditions, the
problem to be solved is

U electrostatic(~r1, ~r2, . . . , ~rN) =
1

2

N∑
i=1

∑
j /∈χ(i)

′∑
~m∈Z3

qiqj

4πε0 |~rj − ~ri + ~mL| , (2)

where the sum is over all periodic cells with index ~m, with self-interactions
excluded, and L is the length of a periodic box cell with dimensions L×L×L.
This is a conditionally convergent sum; a physical interpretation of the process
is given in [14].

Ewald [15] splits this sum into two rapidly convergent sums, cf. Eq. (8). There
are real and reciprocal space parts, the latter in the Fourier domain. Ewald
chooses a softening function

g(rij,m ≡ ||~rj − ~ri + ~m||) =
erf(αrij,m)

rij,m
=

2√
πrij,m

∫ αrij,m

0
exp(−s2)ds. (3)

The real part is short-ranged,

1

2

N∑
i=1

N∑
j=1

qiqj

′∑
~n

(
1

rij,n

− erf(αrij,n)

rij,n

)
, (4)

and is solved directly, whereas the reciprocal space part is solved by a Fourier
series:

1

2πε0L3

∑
~m 6=0

1

~m2
exp

(−π2 ~m2

α2

)
ρ̂(~m)ρ̂(−~m), (5)

where

ρ̂(~m) =
∑
j

qj exp(2πi~m · ~rj). (6)

The parameter α controls how much computation is done in the real space
part. The optimal value for Ewald summation is obtained by varying the cutoff
with the square root of the periodic cell length. In this case, the complexity
of the Ewald sum is Θ(N3/2) [16, 17].

There are two approaches to solving the Ewald summation: as the solution of

4

Poisson’s equations in PBC, and as a large but finite array of copies of the
simulation cell immersed in a dielectric medium.

The particle-mesh (PM) method of Hockney and Eastwood [18] evaluates the
Coulombic potential at particles by interpolating the charges to a regular grid.
Then the FFT is used to obtain a solution to a discretized Poisson’s equation.
In PM the interactions between nearby particles are poorly represented. The
particle-particle particle-mesh (P3M) improves upon PM by splitting the con-
tributions into short-range and long-range, and solving the short-range part
directly.

The particle mesh Ewald (PME) method [4] chooses the splitting parameter
α such that the short-ranged part is Θ(N), and interpolates the Fourier series
onto a mesh, thus allowing the use of Θ(N log N) FFT for approximating the
smooth part, Eq. (6):

ρ̂(~m) ≈∑
n

exp(2πi~m · ~rh
n)
∑
j

φn(~rj)qj , (7)

where ~rh
n are grid positions, and φ(~r)q does an adjoint interpolation (also called

anterpolation) of the particle charges to the grid.

2 Multilevel summation methods

Multilevel methods recursively separate the length scales present in the prob-
lem and approximate the slower or longer-range scales with a coarser represen-
tation to achieve fast computation. There are two kinds of multilevel methods:
(i) cell methods, such as the fast multipole algorithm [3], based on an oct-tree
decomposition of space, and (ii) grid methods, such as the Brandt-Lubrecht
fast summation method [6,9], which is based on a multiple grid hierarchy. The
steps of these methods are as follows:

(1) Separation of length scales into short-range and smooth. The short range
calculations are computed directly. In cell (or tree) methods, two cells
are considered to be smooth or slowly-varying if they are well separated
according to some mathematical criterion. A multiple grid method splits
the computational kernel into short-range and smooth parts at a cutoff
rc using switching functions, for example:

1

r
=
(

1

r
− g0

smooth(r)
)

︸ ︷︷ ︸
g0
local

, short-ranged

+ g0
smooth(r)︸ ︷︷ ︸
smooth

, (8)

where g0
local ≡

(
1
r
− g0

smooth(r)
)

vanishes for r > rc.

5

(2) Coarsening. This involves approximating the smooth part with a coarser
grid. Among cell-methods, Barnes-Hut [2], which is an Θ(N log N) algo-
rithm, approximates at the source only, while the multipole Θ(N) algo-
rithms approximate at both the source and destination. The source is the
atom that we are calculating the interactions for, while the destination
refers to each interacting atom, cf. Eq. (9). Coarsening normally involves
interpolation: multipole algorithms use a truncated Taylor interpolation
that exploits harmonicity of the 1/r potential to permit the use of an
inexpensive basis of spherical harmonic potentials. Coarsening for multi-
grid algorithms involves interpolation using basis functions on the grids.
With the latter approach, it is easy to produce forces and energies that
are continuous as a function of positions, as in [9], whereas it is more
difficult for multipole methods, cf. [19]. Continuous forces (derivatives of
the potential energy) are necessary for stability of molecular dynamics
(MD) integrators.

(3) Hierarchical decomposition, which involves a recursive separation of the
length scales and coarsening of the problem at each scale.

In what follows, each one of these steps is described in more detail for the MG
method. Henceforth it is assumed that vacuum boundary conditions are being
used. Our presentation of MG follows [20, pp. 6-31] and [9] using the notation
of [21]. Our changes to make the algorithm work with PBC are summarized
in Section 2.5.

2.1 Separation of length scales

The separation of the length scales is done with a switching function that
brings the computational kernel smoothly to zero at a cutoff distance rc. These
switching functions have varying degrees of smoothness and computational
cost, cf. Figure 1 for examples.

2.2 Coarsening

The softened kernel g0
smooth is approximated at the source ~r′ :

g0
smooth(||~r − ~r′||) ≈∑

k

g0
smooth(||~r − ~rh,k||)φk(~r

′), (9)

where ~rh,k are points on a 3-d grid with grid point separation h, and φk are
piecewise polynomials with local support on a few grid cells. The coefficients
of the basis functions g0

smooth(||~r − ~rh,k||) are approximated at the destination
~r :

6

g0
smooth(||~r − ~rh,k||) ≈

∑
m

g0
smooth(‖~rh,m − ~rh,k‖)φm(~r), (10)

resulting in a double sum over the grid cells necessary for the interpolation
using φm and φk.

g0
smooth(||~r − ~r′||) ≈∑

k

∑
m

φm(~r)g0
smooth(‖~rh,m − ~rh,k‖)φk(~r

′). (11)

The charges at the grid point are defined as

qh,k =
N∑

i=1

qiφk(~ri). (12)

Using these definitions, the smooth part of the electrostatic energy can be
written simply as ∑

k

∑
m

qh,mqh,k ‖~rh,m − ~rh,k‖ . (13)

The sum over particle pairs has been reduced to a sum over grid point pairs.

2.3 Hierarchical decomposition

The smoothed kernel at the particle level, g0
smooth(r), is approximated on a fine

level-1 grid, as g1
smooth(r). The superscript indicates the grid level. We redo the

splitting of Eq. (8) for g1
smooth(r) :

g1
smooth(r) = (g1

smooth(r) − g2
smooth(r))︸ ︷︷ ︸

g1
local

+ g2
smooth(r), (14)

where g1
local ≡ g1

smooth(r) − g2
smooth(r) is zero for r > 2rc. This process can be

applied recursively: in general, for grid level k ∈ {1, 2, . . . , l}, the smoothed
kernels are defined as

gk
smooth(~ri, ~rj) =




gsk
(||~rj − ~ri||) : ||~rj − ~ri|| 6 sk

1/||~rj − ~ri|| : otherwise.
. (15)

gsk
(||~rj − ~ri||) is a softening function, a polynomial parameterized by sk, such

that gsk
(sk) = 1/sk. The softening distance at level k is given by sk = 2k−1rc,

cf. Figure 1. gk
smooth(||~rj − ~ri||) is a piecewise polynomial with continuity Cn,

e.g., a piecewise cubic or a quintic.

7

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Original Kernel
Smoothed Kernel, s=1
Smoothed Kernel, s=2

Fig. 1. A plot of the original kernel r−1 and two smoothed kernels Gk
smooth(~ri, ~rj)

with softening distances s = 1 and s = 2. Gs(r) = 1
s

(
15
8 − 5

4

(
r
s

)2 + 3
8

(
r
s

)4), Gs(r)

is C2-continuous.

The local part of the smoothed kernels is defined as follows:

g0
local(~ri, ~rj) =




1/||~rj − ~ri|| − g1
smooth(||~rj − ~ri||) : ||~rj − ~ri|| 6 rc

0 : otherwise
(16)

gk
local(~ri, ~rj) =




gk
smooth(||~rj − ~ri||) − gsk

(||~rj − ~ri||) : ||~rj − ~ri|| 6 sk

0 : otherwise
. (17)

Note that gk
local(~ri, ~rj), k > 1, can be pre-computed and represented by a single

table with the corresponding pre-factor 2−(k−1) imposing a constant coarsening
ratio 1 : 2.

2.4 Linear algebra view

It is informative to cast Eq. (1) as the vector-matrix-vector product

1

8πε0
qTGq, (18)

8

where q is a vector of particle partial charges, and G is the electrostatic po-
tential kernel defined by Gij = ||~rj − ~ri||−1, for included i, j interactions.
G(r) is not bounded for small r. The multigrid formulation consists in the
approximation of the matrix G as a sum of sparse matrices.

MG approximates G as (G−G0
smooth)+G0

smooth, where G−G0
smooth is a sparse

matrix with a number of nonzeros proportional to r3
cN. The matrix G0

smooth

has slowly varying elements, G0
smooth,ij = g0

smooth(||~rj − ~ri||), and thus one can
further approximate it as a sparse matrix G1

smooth in the level 1 grid (finest
grid). The particles are considered as the level 0 “grid” in our notation. MG
uses a sparse interpolation matrix Ik+1

k , such that Ik
k+1V

k+1 : V k+1 → V k,
and a sparse adjoint interpolation or anterpolation matrix Ak+1

k , such that
QkAk+1

k : Qk → Qk+1. Using these operators,

G ≈ (G − G0
smooth) + I0

1G
1
smoothA

1
0. (19)

Note that we choose A1
0 = (I0

1)
T

, and Gk
smooth,rm = gk

smooth(||~rh,m − ~rh,k||).

Let Qk be the charges at grid level k and Q0 the particle charges. Similarly,
V k = GkQk represents the electrostatic energy values at grid level k, and V 0

the values at the particles. Finally, Rk are the lattice or particle positions
(R0 = {~ri}). The recursive MG scheme with l levels is given by

Qk+1 = Ak+1
k (Qk), k = 1, 2, . . . , l − 1, (20)

V l = Gk
smooth(R

k, Rk) · Q(Rk), (21)

V k = Gk
local(R

k, Rk) · Q(Rk) + Ik
k+1(V

k+1), k = l − 1, l − 2, . . . , 1, (22)

U =
1

2
V 1 · Q1, (23)

~Fi =
∑

R1
j∈X (~ri)

qi∇jV
1(R1

j). (24)

X (~ri) denotes the lattice points where ~ri has local support from I1.

By reformulating (20-24), the MG scheme can be described as in Algorithm 1,
defining a V-cycle. The V-cycle reflects the order in which the grids are used;
the algorithm telescopes down to the coarsest grid, and then works its way
back to the finest grid, describing a V. The pseudo-code for main handles
the aggregation of charges from particles to the coarsest grid, and the inter-
polation of the kernel values from the coarsest grid to the particles. Lastly, it
computes the force contributions and the total energy. multiscale recursively
performs the aggregation of charges, the interpolation of potential values and
the local correction as depicted in Figure 2. Due to the uniformity of the grids,
the interpolation coefficients can be pre-calculated and represented by one 1-
dimensional set of coefficients. The same holds for the local correction, since
the softening distance is proportional to its corresponding mesh size.

9

(1)

(1) (3)

(4)

(2)

(1) (3)

(4)

(4)

(3)

l

1

0

Force values Point charges

−1l

Fig. 2. The multilevel scheme of the multi-grid algorithm. (1) Aggregate to coarser
grids; (2) Compute potential induced by the coarsest grid; (3) Interpolate potential
values from coarser grids; (4) Local corrections.

2.5 Multigrid Summation for Periodic Boundary Conditions

We present our extension of MG to periodic boundary conditions. Eq. (2) can
be cast as

1

8πε0

∑
~m

qTG~mq, (25)

where G~m,ij = ||~rj −~ri + ~mL||−1, for included i, j interactions and lattice cells
~m. This summation is approximated with a finite number of terms correspond-
ing to ~m in the neighborhood of the periodic cell. In this case, the algorithm
handles PBC by doing the following:

• Coordinates are wrapped around in each dimension that is periodically
extended. Thus, the interpolation and adjoint interpolation always have
enough grid points (or support). An exception is Gl

local for the coarsest grid,
which does not wrap around.

• Multiple copies of the periodic cell are included in the summations. At the
very least, in 3-d, the support includes the closest copy for a boundary grid
point. Running over all grid points in 3-d, boundary grid points from 26
neighbor copies are considered.

• As a consequence of the above, for PBC the grids cover the same area at

10

each level, but for vacuum the area covered increases for increasing level,
i.e., the coarsest grid covers all other grids: Points of a finer grid will have
points outside its area of support when doing adjoint interpolation to the
coarser grid.

In our implementation of MG, the order of the interpolation schemes can
be chosen from among several generic interpolation routines, which operate
from particles to grid, grid to particles, and from grid to grid. Internally, the
algorithm keeps a multi-grid structure that contains a hierarchy of grids. The
interpolation from particles to grid and the grid data structures are reused
by PME. MG is very competitive and has already enabled material science
simulations with millions of atoms that would be otherwise intractable, cf. [21,
pp. 49 ff.], [12].

2.6 Time Complexity and Error Estimation

Assuming uniform grids, a constant coarsening ratio of 1 : 2, a p-order inter-
polation, h the grid point separation for the finest grid and an average particle
density ρ3 = N

V
bounded by some constant, the total work of MG is given by

O
(
N

((
s

h

)3

+ p3

))
. (26)

Accuracy is governed by the size of the interpolation error of the smooth part.
A detailed error estimation of MG is given in [9]. Assuming a Cp-continuous
kernel G and at least p-order accurate interpolation, the relative force error of
the smooth part is O

(
hp

sp

)
and the total relative force error is

O
(

hp

ρ2sp+2

)
. (27)

In [20, pp. 6-31], MG’s performance for vacuum systems is compared with the
direct method for a 2-dimensional system of charges and dipoles. In [9], MG
is compared against the fast multi-pole method that is implemented in the
parallel program DPMTA [22] for water systems. As expected, experiments
from [9] show that for s → ∞, MG converges to the direct method and the
error drops to zero monotonously. The work increases monotonously with s,
until s is large enough to encompass all pairs and remains constant. Further-
more, it was indicated in [9] that MG produces stable simulations when used
for molecular dynamics for much lower accuracy than multi-pole methods.

11

3 Parallel multigrid summation

The most scalable parallelization of the multigrid summation would use do-
main decomposition and spatial data distribution: each node works on its local
domain and propagates its results in a tree fashion way. Each local domain
consists of the assigned domain and some overlap or ghost points to ensure
correct interpolation. The overlap depends on the interpolation order and also
on the softening distance when computing the local corrections. In order to
achieve high scalability one needs to minimize the overlap and assign other
work to idle nodes, for example, computing the direct part.

We implemented instead both atom and force decompositions versions of the
algorithm (cf. [23]). For each step of the MG algorithm, in each grid, the work
is distributed among all nodes. The local contributions are propagated to the
next level, and then the MG algorithm proceeds. This involves synchronization
among nodes when going from one grid to the next.

3.1 Direct sum

The direct sum consists of all pair wise interactions within the softening dis-
tance and the intra-molecular correction, which adds the effects of covalent
bond interactions. The latter one can easily be distributed among the nodes
since the pairs are statically given by the topology of the whole system. The
pair-wise interactions can not be determined statically since the number and
location of interactions for a given softening distance vary as a function of
time. Nevertheless, using a cell-algorithm, also called geometric hashing, one
can split the sum of interactions into small parts and solve the problem in
Θ(N) time. Each part consists of all interactions of one cell and the neighbor-
ing cells within the softening distance.

For the atom decomposition, a simple distribution based on a modulo function
gives good load balancing. For the force decomposition, we need another cell
list, the transpose of the original cell list, to give us a force matrix view of the
system.

3.2 Interpolation

The parallelization of interpolation and adjoint interpolation is based on an
atom decomposition. Adjoint interpolation and interpolation require local sup-
port from the previous grid or particle level. For adjoint anterpolation of the
charges to the coarsest grid, it is more efficient to perform a global sum over

12

the grid values to proceed to the next step in the MG algorithm than to re-
compute values. For interpolation of the force contributions there is no global
summation, since the force and energy contributions are updated in a lazy
manner at the end of the time step, when they are needed.

3.3 Smooth part of the sum

The computation of the smooth part of MG consists of interpolation steps
between grids (Steps 1 and 3, Figure 2), local corrections between the potential
and charge grids (Step 4, Figure 2), and a direct part on the the coarsest grid
(Step 2, Figure 2).

For the atom decomposition, given the dimensions of the grids and the soft-
ening distance we can exactly predict the work for each single MG step. This
enables us to distribute the work evenly among all nodes without any com-
munication or scheduler. Our approach requires a global reduction after each
MG step, but we avoid idle nodes through the even work distribution. Also,
the total work over all nodes is the same as in a sequential run, which is not
the case for a distributed implementation requiring ghost grid points. In the
latter, for coarse grids, the amount of work increases significantly (since the
grid size is comparable to the number of ghost points).

For the force decomposition, the communication is O(N/
√

P), where P is the
number of processors at the end of the MG computation. This produces the
greatest savings in communication and makes this approach more scalable
than atom decomposition, and for the systems we tested, nearly as scalable as
the dynamically load balanced hybrid force-domain decomposition of NAMD
2.5.

4 Results

We implemented MG, plain Ewald summation, and PME in ProtoMol ver-
sion 2.0.2. All the methods have been parallelized using force decomposition
(FD) or atom decomposition (AD). Their sequential versions are reasonably
optimized, and commonalities among these algorithms are exploited. For ex-
ample, the interpolation routines are common to both MG and PME. The
algorithms for computing the direct sums using cell-lists are also common to
all the fast electrostatics methods. ProtoMol 2.0.2 has been ported to AIX,
IRIX, HP-UX, Solaris, Linux and Windows using vendor specific compilers if
possible or GNU’s g++.

13

We compare the running times of MG against a highly optimized parallel
MD program, NAMD 2.5 [11], which uses PME for fast electrostatics and a
hybrid spatial-force decomposition with dynamic load balancing. The results
are presented for two different computer systems:

(1) IBMp690 Regatta Turbo (http://tre.ii.uib.no) with 3 nodes of 32
Power4 1.3 GHz processors per node. There is a total of 320 Gigabytes of
memory. It runs AIX 5.1. ProtoMol 2.0.2 was compiled by configuring
using the option ‘‘configure --with-aix-xlc-mpi’’.

(2) Atipa Linux cluster (http://iss.cse.nd.edu) with 44 dual Xeon 2.4
GHz processors with Myrinet interconnect. There is a total of 90 Giga-
bytes of memory. This cluster runs Linux Red Hat Linux 8.0 3.2-7, kernel
2.4.18-18.8.0smp. ProtoMol 2.0.2 was configured using ‘‘configure

--with-gcc-mpich’’ and uses Myrinet MPI libraries. NAMD 2.5 was
configured using ‘‘config tcl fftw plugins Linux-i686-MPI’’. It uses
the parallel runtime system Charm++. This was built using ‘‘build charm++

mpi-linux gm2 -O -DCMK OPTIMIZE=1’’ to include Myrinet MPI libraries
and to optimize the library.

Our test cases consist of three types of systems. First, Coulomb crystals in
vacuum, only consisting of ions and an outer field holding them together.
Second, periodically-replicated flexible TIP3P water boxes of different sizes.
Finally, a periodically-replicated protein solvated in flexible TIP3P water.

Both time and accuracy are measured (e.g., relative average force error). The
Ewald method is assumed to be the standard for comparison when the exper-
iments are done using PBC while the direct method is used for comparison
when the experiments are done in vacuum. We give details of all the experi-
mental conditions in Section 4.5.

4.1 Coulomb Crystals

Coulomb crystal systems [12, 24] are defined by a computationally dominant
electrostatic part and an electric field with linear work complexity. We run
tests from 1,000 to 1,000,000 atoms using MG in vacuum. The simulations
were performed on the IBM p690 Regatta Turbo described above. Because
this is a shared memory machine, there is not much difference between the
atom decomposition and force decomposition versions of MG.

Figure 3 shows the parallel speedup of an atom-decomposition version of MG
in vacuum implemented in ProtoMol 2.0.2. MG exhibits excellent scaling,
even when the integration step (propagation of positions and velocities) is
redundantly performed on all nodes. The scaling is close to linear, with a
slight slow down due to cache and memory effects and the fact that accuracy

14

0 2 4 6 8 10 12 14 16
Number of Processors

0

2

4

6

8

10

12

14

16

S
pe

ed
up

N=1e3
N=1e4
N=1e5
N=1e6

Fig. 3. Parallel speedup of MG electrostatic solver applied on Coulomb Crystal
systems with relative error of order 10−5 or less; performed on an IBM p690 Regatta
Turbo. N is the number of atoms in the system.

increases slightly with the system size when distance between grid points is
kept the same for all systems. N is the number of atoms in the system. Note
that the sequential speedup for N = 106 is of order 102 or more compared to
the direct method, and for lower accuracy a speedup of order 103 was observed.

4.2 Different Size Water Boxes in Periodic Boundary Conditions

We run tests of different size water boxes. The experiments are based on a
flexible variant of the TIP3P water model (cf. [25]). The system sizes are varied
from 3,240 to 400,002 atoms. These systems use periodic boundary conditions.

Figure 4 compares the sequential run-time of MG and PME in ProtoMol
2.0.2 and PME implemented in NAMD 2.5. MG and PME are tested in
periodic boundary conditions. The relative error in the forces is ε = 10−3. The
same C2-continuous switching function is used for all tests. This illustrates the
linear scaling of MG. Note that MG is faster than PME in ProtoMol 2.0.2,
but PME is faster in NAMD 2.5. The latter has many levels of optimization
that are not present in ProtoMol 2.0.2.

15

10
4

10
5

10
0

10
1

System Size (atoms)

R
un

 T
im

e
(s

)

MultiGrid (ProtoMol)
PME (ProtoMol)
PME (NAMD)

Fig. 4. Single processor run time for 8 MD steps for N -body solvers implemented
in ProtoMol 2.0.2 and NAMD 2.5 with relative force error of order 10−3. Runs
performed on Linux cluster with 44 dual-processor Xeon 2.4GHz with Myrinet in-
terconnect.

4.3 Solvated Protein in Periodic Boundary Conditions

Apolipoprotein A-I (apoA-I) is the primary protein constituent of high density
lipoprotein (HDL), which circulates in the bloodstream, extracts cholesterol
from body tissues and transports it to the liver for excretion or recycling
[26, 27]. NAMD 2.5 uses a solvated structure of apoA-I with 92,224 atoms
as a performance benchmark. We use the same benchmark to measure the
efficiency of MG.

Figures 5 and 6 show the parallel speedup and run time of the benchmark
MD simulations in ProtoMol 2.0.2, using atom (AD) and force (FD) de-
composition versions of MG and PME. Also shown is the run time of NAMD
2.5 using spatial decomposition (SD) PME. Method parameters are chosen to
give roughly the same accuracy and run time in 1 processor.

Both AD and FD versions of MG scale up to 64 processors. As expected, the
FD version scales better, and indeed for 66 processors is more than 2 times
faster than the best time for the AD version of MG, with 64 processors. The
best run time of FD MG, 2.53 ± 0.01 seconds with 66 processors, is 5.6 times
faster than the best run time of FD PME, which is 14.12 ± 0.02 seconds with

16

0 10 20 30 40 50 60 70
Number of Processors

0

10

20

30

40

50

S
pe

ed
up

MG-AD (PM)
MG-FD (PM)
PME-AD (PM)
PME-FD (PM)
PME-SD (NAMD)

Fig. 5. Speedup comparison of MG using atom (AD) or force decomposition (FD)
vs. PME using either decomposition in ProtoMol 2.0.2 and spatial decomposition
(SD) in NAMD 2.5. Data is for apoA-I, 92,224 atoms. PME uses the parallel FFT
library FFTW 2.1.5; performed on a Linux cluster of Xeon 2.4 GHz with Myrinet
interconnection network.

15 processors. The best run time of FD MG is slightly faster than the best
run time of PME in NAMD 2.5. More interestingly, the FD MG continues to
scale for more than 64 processors, whereas NAMD 2.5 starts to slow down
at that point.

NAMD 2.5 has a much more sophisticated parallel implementation of PME
for molecular dynamics than ProtoMol 2.0.2. It performs a hybrid spa-
tial data decomposition and force decomposition of the computation. It also
performs dynamic load balancing. To improve scaling when using PME, they
restrict the number of processors that run FFT. Thus, it shows better scal-
ing than either version of MG in ProtoMol 2.0.2. For simulations on
larger number of processors, the FFT becomes the bottleneck to scalability
in NAMD 2.5, as starts to be seen in our tests for 64 or more processors.
MG would scale much better than PME if implemented within NAMD 2.5
or implemented in ProtoMol 2.0.2 using spatial distribution and dynamic
load balancing.

17

0 10 20 30 40 50 60 70
Number of Processors

1

10

100

C
P

U
 T

im
e

(s
)

MG-AD (PM)
MG-FD (PM)
PME-AD (PM)
PME-FD (PM)
PME-SD (NAMD)

Fig. 6. CPU time MG using atom (AD) or force decomposition (FD) vs. PME
using either decomposition in ProtoMol 2.0.2 and spatial decomposition (SD)
in NAMD 2.5.. Data is for apoA-I, 92,224 atoms. PME uses the FFT library
FFTW; performed on a Linux cluster of Xeon 2.4 GHz with Myrinet interconnection
network.

4.4 Conservation Properties

Neither linear momentum nor angular momentum are theoretically preserved
by MG. The introduction of a gridding of space perturbs the value of the
potential energy function so that it is not invariant to rigid body rotation
or translation. The momenta fluctuate around a constant value and do not
suffer from overheating or freezing. Note that for MD simulations using PBC,
angular momentum is not conserved anyway.

To validate that the momentum oscillates around a constant value with MG,
we ran a simulation using crambin, a small protein with PDB id 1EJG. We
solvated it in flexible TIP3P water for a total of 2,277 atoms. We minimized
and equilibrated it using NAMD 2.5 using an identical procedure to the
apoA-I. Then, we performed a simulation for 500 ps using a triple time stepping
r-RESPA, with innermost time step of 0.75 fs for bonds, angles, Lennard–
Jones and direct part of MG; 1.5 fs time step for impropers, dihedrals, and
the correction for MG; and 3 fs time step for the smooth part of MG. We
remove every few steps the linear and angular momentum of the center of
mass of the system. This is necessary in vacuum simulations in general to
prevent movement of the molecule. We confirmed this is necessary by running
simulations using plain cutoffs.

18

1.5 2 2.5 3 3.5 4 4.5

x 10
5

−2575

−2574.5

−2574

−2573.5

−2573

−2572.5

−2572

−2571.5

−2571

−2570.5

Time (fs)

T
ot

al
 E

ne
rg

y
(k

ca
l/m

ol
)

(a)

1 1.5 2 2.5 3 3.5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time (fs)

Li
ne

ar
 M

om
en

tu
m

 (
A

M
U

 n
m

 /
fs

)

(b)

Fig. 7. (a). Total energy for solvated crambin in vacuum with spherical boundary
conditions using MultiGrid summation. (b). Linear momentum for solvated crambin
in vacuum with spherical boundary conditions using MultiGrid summation.

Figures 7(a) and 7(b) show the total energy and linear momentum of the
system. We discard the first 150 ps of simulation and plot the next 350 ps. It
can be seen that despite the long time steps, the energy and momentum are
conserved in practice.

4.5 Methods and Simulations

The Coulomb crystals were generated using the Ion Crystal generator tool
of ProtoMol 1.8.3. For example, for 1000 atoms the command used was
ioncrystalGenerator -3d -nvt -temp 1e-3 -d 1e5 -w 2.5e-9 1000 CA 40.08

1.0 1000 A 80.16 2.0. The simulations use a single time stepping Nosé-
Hoover NVT integrator. The forces used include a multigrid Coulomb force
with quintic interpolation, 2 levels, a C3 kernel, and a Paul Trap force with
ωr = ωz = 2.5e−9. Simulation data and configuration files are available upon
request.

The water boxes were generated using VMD [28]. For each water box, 1000
minimization steps were run with NAMD 2.5. Then, starting from a temper-
ature of 0K, 1000 steps were run between increments of 25K until a temper-
ature of 300K was reached. For equilibration, additional 8000 steps were run
at 300K. All these equilibration runs used a Verlet/leapfrog integrator with
time step of 1 fs, and cutoff for Lennard–Jones and Coulomb of 12 Å. The
switching distance for a C2 switching function for Lennard–Jones was 8 Å.
To run the experiments comparing MG and PME in ProtoMol 2.0.2 and
PME in NAMD 2.5, a short cutoff of Lennard–Jones of 6 Å and a switching
distance of 3 Åwas used for all methods. The reason is that NAMD 2.5 only

19

reports run time for all the MD integration and force calculation. Thus, we
tried to minimize the time spent in non-Coulomb calculations. For PME, the
separation between grid points was set to 1 Å, a standard practice. MG was
run with 2 grid levels, a C2 kernel, cubic interpolation, a smoothing distance
of 12 Å in the finest grid, and between 1000 and 3000 grid points in the finest
grid. These tests use a multiple time stepping r-RESPA scheme where every
1 fs all bonded forces and the direct and correction parts of MG or PME are
evaluated, and every 4 fs the smooth or reciprocal parts of MG or PME are
evaluated. Both ProtoMol 2.0.2 and NAMD 2.5 are compiled without
MPI for these uni-processor runs.

For the apoA-I simulations, the same parameters used by the NAMD 2.5 per-
formance benchmark were used: a switching distance of 8 Å, a cutoff of 10.5 Å
for the Lennard–Jones and direct part of MG, and r-RESPA with all bonded
forces and short range Lennard–Jones and Coulomb evaluated every 1 fs, and
the smooth or reciprocal part of MG or PME evaluated additionally every
4 fs. Three runs were performed for each data point in the results. The error
bars were smaller than the symbols. Both ProtoMol 2.0.2 and NAMD 2.5
are compiled for using the MPI library with Myrinet support. We noted that
the Myrinet MPI version of NAMD 2.5 consumes significantly more memory
than the uni-processor version, and also than ProtoMol 2.0.2.

5 Related Work

5.1 Multigrid summation techniques

The earliest reference that uses multilevel matrix multiplication in the context
of the fast solution of integral equations is [6]. There, an Θ(Np3) method,
where p is the order of the interpolation, is applied to the kernel G(x, y) =
ln |x − y| . An early vectorized version of MG summation for this kernel is
in [29]. The method is extended to oscillatory kernels in [30] at a cost of
Θ(p3N log N).

A low accuracy adaptive multigrid summation is developed in [8]. For low accu-
racy computations this method competes favorably against the fast multipole
implementation of Board and collaborators [31], but not for high accuracy.
Speaking about parallelism, the authors of Ref. [8] note that

The structure of the adaptive multigrid algorithm (...) is highly parallel, i.e.,
many levels of parallelism can be exploited. These include calculation of the
force field at the different points in the scheme in tandem, parallel evaluation
of the summation for each point and at each level using parallel reduction,

20

evaluation of the sum at different levels (atomic level and sequence of grids)
in parallel using the additive property of the sum and, finally, instruction-
level parallelism. (p. 249)

A more recent implementation of the MG method in the context of MD is
that of Skeel and collaborators [9]. Using smooth interpolation they show that
MG is better than the fast multipole when used in MD, since it has better
smoothness properties that make the numerical integrator of the equations
of motion stable. They achieve a considerably faster implementation of MG
than [8].

Our version of MG summation extends the work of [8, 9] to also work in pe-
riodic boundary conditions. We have also parallelized it using both a simple
master/slave decomposition and a force decomposition. MG’s advantage over
PME is clearly seen in its scalability. For MD codes that do not have the so-
phisticated dynamic load balancing of NAMD 2, MG will scale better because
of its lower communication costs.

The iterative multigrid method of [32] uses the particle-mesh (PM) approach,
but then transforms the problem in the mesh to the solution of an elliptic
PDE, and uses an Θ(N) iterative multigrid solver, achieving an Θ(N) solver.
This is a high-accuracy scheme, unlike our algorithm and those of [8, 9]. This
method is expected to be more expensive and less scalable in parallel due
to the iterative solver, and to the fewer levels of parallelism available in the
method. It is slower than PME for a single processor, whereas our method is
faster than PME for a single processor.

5.2 Ewald and multipole methods

An important comparison of FMM, particle-particle particle-mesh (P3M), and
Ewald is [33]. They empirically test reasonably efficient implementations of
these methods. P3M is a method similar in spirit to PME. Their conclusion is
that P3M is both faster than the FMM and easier to implement efficiently as
it relies on commonly available software (FFT subroutines). Both the Ewald
and P3M method are easily implemented on parallel architectures with the
P3M method the clear choice for large systems.

The similarities between P3M, PME, and smooth PME, as well as the influence
of methods parameters on accuracy are described in [34]. They conclude that
P3M is the most flexible approach, capable of achieving the largest accuracy
by using a force interpolation variant of the method.

Similar conclusions are reached by [35]. They point out that in cases in which it
is less expensive to use a higher-order interpolation than to perform two extra

21

FFT’s, the smooth PME is preferable. In particular, this holds for parallel
implementations, for which FFT is not scalable. They also discuss another
variant on PM methods, the fast Fourier Poisson method of York and Yang
[36]. This avoids errors on the interpolation by sampling Gaussian sources
directly at the grid point, using clever mathematical identities. It has much
higher accuracy than PME or P3M, but it is also more costly.

The advantages of multipole methods, particularly in the context of parallel
processing, are reviewed in [37]. Other reviews of fast summation techniques
are in [38–40]. Cell methods have continued to improve: multipole has been
extended to PBC [41]; a hierarchical O(N) cell method has been developed
that conserves momentum through the use of symmetric Cartesian Taylor ap-
proximations [42]; the Tree Particle-Mesh algorithm has been experimentally
shown to be faster than P3M [43]; and an elegant adaptive treecode has been
implemented in vacuum and PBC, and shown to be easier to implement than
multipole [44, 45].

5.3 Parallel N-body solvers

One of the most influential parallel N -body solvers is the parallel cell code
of [46, 47]. The work of Board and collaborators has produced robust paral-
lel software using the multipole method [22, 48, 49]. The book [50] has early
references of work in this area. Recent work by [51] exploits the hierarchical
decomposition in space of cell methods to provide high compression ratios
(about 6:1 larger than gzipped raw data), which enables faster storage and
retrieval of simulation data.

Force-decomposition, which is the basis of this implementation of parallel MG,
is described in [23]. It has also been adopted by the IBM Bluegene project for
their petaflop computer. Its advantage is that it can be simply load-balanced
and performs well for irregular geometries. It improves the scaling due to
replicated data techniques, and is simpler than full spatial-decomposition.

Comparisons of static and dynamic decomposition techniques appear in [52,
53]. For more adaptive applications than molecular dynamics, such as as-
trophysics simulations, combinations of static and dynamic load balance have
proven useful: For example, a combination of static decomposition for the grid
and dynamic balance for particles in a P3M parallel code scales to thousands
of processors [54]. Similar ideas appear in [55].

Parallel iterative multigrid PDE solvers are presented in [56–58]. These solvers
are different than the MG summation presented here, but share the multiple
grid structure and similar parallelization issues. The latter two papers deal
with clever partitionings for adaptive grids. A comparison of techniques that

22

try to compensate deficiency of parallelism on coarser grids in multigrid solvers
is in [59]. They evaluate a multiple coarse grid technique advocated by [60], and
additive MG that allows computation on all grids simultaneously [61]. Their
analysis suggests that standard algorithms are substantially more efficient
than either method, except for highly impractical number of processors.

6 Discussion

We have shown that the MG method in periodic boundary conditions is com-
petitive with PME, being slightly faster in most of our tests. More importantly,
it is more scalable than the FFT that is part of PME, and thus can scale to
larger number of processors. We have shown this through a force decompo-
sition implementation of MG that is faster than a spatial decomposition of
PME in NAMD 2.5. A spatial decomposition of MG would scale even better.
For scaling to more nodes, one might benefit from dynamic balancing for the
direct summation on particle space, such as NAMD 2.5 does.

One of the major advantages of MG is that it produces stable dynamics with
much lower accuracy than other methods [9] and converges to the correct solu-
tion if the softening distance goes to infinity. Furthermore, MG is an excellent
candidate for multiple time stepping, since each grid level can be associated
with its own time step.

A limitation of MG is that there are more parameters to determine than in
simpler methods such as Ewald. We have developed a tool called MDSimAid
that assists potential users in the determination of optimal parameters for
PME and MG for a given system size and accuracy [13].

Besides doing a spatial decomposition for MG, other areas for improvement to
the method include the following: Development of a higher accuracy version:
this requires a more careful analysis of the interpolation errors and use of
better interpolation functions, cf. [62]; optimization in the context of multiple
time stepping algorithms such as r-RESPA [63], cf. work on optimization of
PME coupled to r-RESPA in [17]; formulas for computing the virial using MG;
and most importantly, a rigorous justification of MG summation in PBC.

Acknowledgments

Special thanks to David Hardy and Robert D. Skeel for sharing details of their
vacuum multigrid summation implementation, which allowed cross-verification
of our implementation. Chengbang Huang generated many of the plots in this

23

paper. This research was partially funded by National Science Foundation
grants ACI-0135195 and IBN-0083653; an Equipment Renovation Grant to JI
by the University of Notre Dame, Indiana; the Research Council of Norway
and the Norwegian High Performance Computing Consortium (NOTUR). SH
was partially supported by an Arthur J. Schmitt fellowship.

References

[1] T. E. Cheatham, J. L. Miller, T. I. Spector, P. Cieplak, P. A. Kollman, Molecular
dynamics simulations on nucleic acid systems using the Cornell et al force field
and particle mesh Ewald electrostatics, in: ACS Symposium Series: Molecular
Modeling and Structure Determination of Nucleic Acids, Am. Chem. Soc., 1997.

[2] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm,
Nature 324 (1986) 446–449.

[3] L. Greengard, V. Rokhlin, A fast algorithm for particle simulation, J. Comput.
Phys. 73 (1987) 325–348.

[4] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N log(N) method
for Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089–10092.

[5] U. Essmann, L. Perera, M. L. Berkowitz, A smooth particle mesh Ewald
method, J. Chem. Phys. 103 (19) (1995) 8577–8593.

[6] A. Brandt, A. A. Lubrecht, Multilevel matrix multiplication and fast solution
of integral equations, J. Comput. Phys. 90 (1990) 348–370.

[7] B. Sandak, Multiscale fast summation of long-range charge and dipolar
interactions, J. Comp. Chem. 22 (7) (2001) 717–731.

[8] L. Y. Zaslavsky, T. Schlick, An adaptive multigrid technique for evaluating
long-range forces in biomolecular simulations, Appl. Math. Comput. 97 (1998)
237–250.

[9] R. D. Skeel, I. Tezcan, D. J. Hardy, Multiple grid methods for classical molecular
dynamics, J. Comp. Chem. 23 (6) (2002) 673–684.

[10] T. Matthey, T. Cickovski, S. S. Hampton, A. Ko, Q. Ma, M. Nyerges, T. Raeder,
T. Slabach, J. A. Izaguirre, ProtoMol: An object-oriented framework for
prototyping novel algorithms for molecular dynamics, ACM Trans. Math. Softw.
30 (3) (2004) 237–265.

[11] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater
scalability for parallel molecular dynamics, J. Comput. Phys. 151 (1999) 283–
312.

[12] T. Matthey, J. P. Hansen, M. Drewsen, Coulomb bi-crystals of species with
identical charge-to-mass ratios, Phys. Rev. Lett. 91 (16) (2003) 165001.

24

[13] M. S. Crocker, S. S. Hampton, T. Matthey, J. A. Izaguirre, MDSimAid:
Automatic parameter optimization in fast electrostatic algorithms, J. Comp.
Chem.In press. Manuscript available at http://www.nd.edu/~izaguirr/
papers/CHMI05.pdf.

[14] S. W. de Leeuw, J. W. Perram, E. R. Smith, Simulation of electrostatic systems
in periodic boundary conditions. I. Lattice sums and dielectric constants, Proc.
R. Soc. Lond. A 373 (1980) 27–56.

[15] P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale,
Ann. Phys. 64 (1921) 253–287.

[16] D. Fincham, Optimisation of the Ewald sum for large systems, Mol. Sim. 13
(1994) 1–9.

[17] P. F. Batcho, D. A. Case, T. Schlick, Optimized particle-mesh Ewald/multiple-
time step integration for molecular dynamics simulations, J. Chem. Phys.
115 (9) (2001) 4003–4018.

[18] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles,
McGraw-Hill, New York, 1981.

[19] T. Bishop, R. D. Skeel, K. Schulten, Difficulties with multiple timestepping and
the fast multipole algorithm in molecular dynamics, J. Comp. Chem. 18 (14)
(1997) 1785–1791.

[20] A. Brandt, J. Bernholc, K. Binder (Eds.), Multiscale Computational Methods
in Chemistry and Physics, Vol. 177 of NATO Science Series: Series III Computer
and Systems Sciences, IOS Press, Amsterdam, Netherlands, 2001.

[21] T. Matthey, Framework design, parallelization and force computation in
molecular dynamics, Ph.D. thesis, University of Bergen, Bergen, Norway (2002).

[22] W. Rankin, J. Board, A portable distributed implementation of the parallel
multipole tree algorithm, IEEE Symposium on High Performance Distributed
Computing[Duke University Technical Report 95-002].

[23] S. Plimpton, B. Hendrickson, A new parallel method for molecular dynamics
simulation of macromolecular systems, J. Comp. Chem. 17 (3) (1996) 326.

[24] R. H. Hasse, V. V. Avilov, Structure and Mandelung energy of spherical
Coulomb crystals, Phys. Rev. A 44 (7) (1991) 4506–4515.

[25] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein,
Comparison of simple potential functions for simulating liquid water, J. Chem.
Phys. 79 (1983) 926–935.

[26] J. H. Wald, E. S. Krul, A. Jonas, Structure of apolipoprotein A-I in three
homogeneous reconstituted high density lipoprotein particles, J. Biol. Chem.
265 (1990) 20037–20043.

[27] A. Jonas, K. E. Kezdy, J. H. Wald, Defined apolipoprotein A-I conformations
in reconstituted high density lipoprotein discs, J. Biol. Chem. 264 (1989) 4818–
4824.

25

[28] W. F. Humphrey, A. Dalke, K. Schulten, VMD – Visual Molecular Dynamics,
J. Mol. Graphics 14 (1996) 33–38.

[29] D. S. Balsara, A. Brandt, Multilevel methods for fast solution of N-body and
hybrid systems, in: International Series of Numerical Mathematics, Vol. 98,
Birkhäuser Verlag, Basel, 1991, pp. 131–142.

[30] A. Brandt, Multilevel computations of integral transforms and particle
interactions with oscillatory kernels, Comput. Phys. Commun. 65 (1-3) (1991)
24–38.

[31] J. A. Board, Jr., J. W. Causey, J. F. Leathrum, Jr., A. Windemuth, K. Schulten,
Accelerated molecular dynamics simulation with the parallel fast multipole
algorithm, Chem. Phys. Lett. 198 (1992) 89–94.

[32] C. Sagui, T. Darden, Multigrid methods for classical molecular dynamics
simulations of biomolecules, J. Chem. Phys. 114 (15) (2001) 6578–6591.

[33] E. L. Pollock, J. Glosli, Comments on PPPM, FMM, and the Ewald method for
large periodic Coulombic systems, Comput. Phys. Commun. 95 (1996) 93–110.

[34] M. Deserno, C. Holm, How to mesh up Ewald sums. I. A theoretical and
numerical comparison of various particle mesh routines, J. Chem. Phys. 109 (18)
(1998) 7678–7693.

[35] C. Sagui, T. A. Darden, Molecular dynamics simulations of biomolecules: Long-
range electrostatic effects, Ann. Rev. Biophys. Biomol. Struct. 28 (1999) 155–
179.

[36] D. York, W. T. Yang, The fast Fourier–Poisson method for calculating Ewald
sums, J. Chem. Phys. 101 (1994) 3298–3300.

[37] A. Y. Toukmaji, J. A. Board, Ewald summation techniques in perspective: A
survey, Comput. Phys. Commun. 95 (1996) 73–92.

[38] L. Greengard, Science 265 (1994) 903–914.

[39] C. L. Berman, Grid-multipole calculations, SIAM J. Sci. Comput. 16 (1995)
1082–1091.

[40] T. Darden, A. Toukmaji, L. Pedersen, J. Chem. Phys. 94 (1997) 1346.

[41] C. G. Lambert, T. A. Darden, J. A. Board, A multipole-based algorithm for
efficient calculation of forces and potentials in macroscopic periodic assemblies
of particles, J. Comput. Phys. 126 (2) (1996) 274–287.

[42] W. Dehnen, A hierarchical O(N) force calculation algorithm, J. Chem. Phys.
179 (1) (2002) 27–42.

[43] P. Bode, J. P. Ostriker, Tree-Particle Mesh: An adaptive, efficient, and parallel
code for collisionless cosmological simulation, Astrophysical J. Supplement
Series 145 (1) (2003) 1–13.

26

[44] Z. H. Duan, R. Krasny, An adaptive treecode for computing nonbonded
potential energy in classical molecular systems, J. Comp. Chem. 22 (2) (2001)
184–195.

[45] Z. H. Duan, R. Krasny, An Ewald summation based multipole method, J. Chem.
Phys. 113 (9) (2000) 3492–3495.

[46] M. S. Warren, J. K. Salmon, Astrophysical N-body simulations using
hierarchical tree data structures, in: Supercomputing ’92, IEEE Computer
Society Press, 1992, pp. 570–576.

[47] M. S. Warren, J. K. Salmon, A portable parallel particle program, Comput.
Phys. Commun. 87 (1-2) (1995) 266–290.

[48] A. Toukmaji, C. Sagui, J. Board, T. Darden, Efficient particle-mesh Ewald
based approach to fixed and induced dipolar interactions, J. Chem. Phys.
113 (24) (2000) 10913–10927.

[49] J. Board, K. Schulten, The fast multipole algorithm, IEEE Comp. Sci. & Eng.
2 (2000) 56–59.

[50] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, D. W.
Walker, Solving Problems on Concurrent Processors, Vol. 1, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[51] D. Y. Yang, A. Grama, V. Sarin, K. Ramakrishnan, Compression of particle
data from hierarchical approximate methods, ACM Trans. Math. Softw. 27 (3)
(2001) 317–339.

[52] J. P. Singh, C. Holta, T. Totsuka, A. Gupta, J. Hennessy, Load balancing
and data locality in adaptive hierarchical N-body methods - Barnes-Hut, Fast
Multipole and Radiosity, J. Paral. Distrib. Comp. 27 (2) (1995) 118–141.

[53] A. Grama, V. Kumar, A. Sameh, Scalable parallel formulations of the Barnes-
Hut method for N-body simulations, J. of Parallel Computation 24 (5-6) (1998)
797–822.

[54] S. J. Plimpton, D. B. Seidel, M. F. Pasik, R. S. Coats, G. R. Montry, A load-
balancing algorithm for a parallel electromagnetic particle-in-cell code, Comput.
Phys. Commun. 152 (2) (2003) 227–241.

[55] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, D. Gardner,
Parallel transient dynamics simulations: Algorithms for contact detection and
smoothed particle hydrodynamics, J. Paral. Distrib. Comp. 50 (1-2) (1998)
104–122.

[56] P. N. Brown, R. D. Falgout, J. E. Jones, Semicoarsening multigrid on distributed
memory machines, SIAM J. Sci. Comput. 21 (5) (2000) 1823–1834.

[57] W. F. Mitchell, The full domain partition approach to distributing adaptive
grids, Applied Numerical Mathematics 26 (8) (1998) 265–275.

27

[58] M. Griebel, G. Zumbusch, Parallel multigrid in an adaptive PDE solver based
on hashing and space-filled curves, J. of Parallel Computation 25 (7) (1999)
827–843.

[59] L. R. Matheson, R. E. Tarjan, Parallelism in multigrid methods: How much is
too much?, International J. of Parallel Programming 24 (5) (1996) 397–432.

[60] P. O. Frederickson, O. A. McBryan, Normalized convergence rates for the PSMG
method, SIAM J. Sci. Stat. Comput. 12 (1) (1991) 221–229.

[61] D. Gannon, J. Vanrosendale, On the structure of parallelism in a highly
concurrent PDE solver, J. Paral. Distrib. Comp. 3 (1) (1986) 106–135.

[62] A. Grama, V. Sarin, A. Sameh, Improving error bounds for multipole-based
treecodes, SIAM J. Sci. Comput. 21 (5) (2000) 1790–1803.

[63] D. D. Humphreys, R. A. Friesner, B. J. Berne, A multiple-time-step molecular
dynamics algorithm for macromolecules, J. Phys. Chem. 98 (27) (1994) 6885–
6892.

28

Algorithm 1 Pseudo-code of a recursive multi-grid scheme with V-cycle.

Code is shown for one processor. N is the number of particles, i the ith ∈
{0, . . . , p − 1} processors, the grid dimensions nx × ny × nz, and M denotes
the size of the spatial hashing.
main:

(1) anterpolate charges from particles
[
bNi

p c, bN(i+1)
p c

]
to the finest charge grid(1),

and do local sum over the grid(1) values – step (1);

(2) call multiscale(maxLevel, level 1);

(3) interpolate forces in finest grid(1) to particles number
[
bNi

p c, bN(i+1)
p c

]
– step

(3), Eq. (24);

(4) correct kernel in particles
[
bMi

p c, bM(i+1)
p c

]
– step (4), Eq. (16);

(5) compute total energy due to grid points number
[
bnxnynzi

p c, bnxnynz(i+1)
p c

]
–

Eq. (23);

multiscale(maxLevel, level k):

(1) if maxLevel = k then

(a) compute kernel on coarsest grid(maxLevel) points[
bnxnynzi

p c, bnxnynz(i+1)
p c

]
, and do local sum over the grid(maxLevel)

values – step (2), Eq. (15);

(2) otherwise

(a) anterpolate charge grid(k)
[
bnxnynzi

p c, bnxnynz(i+1)
p c

]
to coarser charge

grid(k+1), and do local sum over the grid(k+1) values – step (1);
(b) call multiscale(maxLevel, k+1);
(c) interpolate coarser kernel grid(k+1)

[
bnxnynzi

p c, bnxnynz(i+1)
p c

]
to kernel

grid(k) – step (3);
(d) correct kernel grid(k)

[
bnxnynzi

p c, bnxnynz(i+1)
p c

]
, and do global sum over

the grid(k) values – step (4), Eq. (17);

29

