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Abstract

The name ‘graph state’ is used to describe a certain class of pure quantum state which models a

physical structure on which one can perform measurement-based quantum computing, and which has a

natural graphical description. We present the two-graph state, this being a generalisation of the graph state

and a two-graph representation of a stabilizer state. Mathematically, the two-graph state can be viewed

as a simultaneous generalisation of a binary linear code and quadratic Boolean function. It describes

precisely the coefficients of the pure quantum state vector resulting from the action of a member of the

local Clifford group on a graph state, and comprises a graph which encodes the magnitude properties of the

state, and a graph encoding its phase properties. This description facilitates a computationally efficient

spectral analysis of the graph state with respect to operations from the local Clifford group on the state,

as all operations can be realised graphically. By focusing on the so-called local transform group, which is

a size 3 cyclic subgroup of the local Clifford group over one qubit, and over n qubits is of size 3n, we can

efficiently compute spectral properties of the graph state.

1 Introduction

1.1 Codes with phase

Consider a binary linear code, C, of length n and dimension k. We can represent C by its indicator vector in

(Z2
2)

⊗n, Im = (m(0 . . . 0),m(0 . . . 1), . . . ,m(1 . . . 1)) = (m(x)), where m, the indicator function, is a mapping

from Zn
2 → Z2 such that m(x) = 1 iff x ∈ C, otherwise m(x) = 0. The indicator vector is, therefore, the

truth-table of m. For example, the n = 3, k = 2 binary linear code, with codewords C = {000, 011, 110, 101},
can be represented by the indicator vector Im = (1, 0, 0, 1, 0, 1, 1, 0). The indicator function is a Boolean

function and respects a non-unique factorization, m(x) =
∏n−k−1

i=0 mi(x), where the Boolean functions, mi,

are affine functions, i.e. of algebraic degree ≤ 1 if C is linear, in which case each function, mi, represents the

row of a parity-check matrix that defines C. For instance, for the above example, m(x) = (x0 +x1 +x2 +1).

As another example, if C = {010, 101}, then Im = (0, 0, 1, 0, 0, 1, 0, 0) and m can be written as m(x) =
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(x0 +x1)(x0 +x2 +1) = (x0 +x1)(x1 +x2) = (x0 +x2 +1)(x1 +x2) where, in this case, C is a coset code as it

is a binary linear code additively offset by the codeword 010. By placing the ‘ones’ in different positions in

Im, one can, more generally, represent any binary nonlinear code, where m is no longer the product of affine

factors. We do not consider such generalisations in this paper but we do consider another generalisation

where a ±1 phase can be applied to every entry of Im - thus we consider codes where every codeword

has an associated phase. In order to accomodate such a generalisation we introduce the indicator vector,

|ψ〉 = 1√
w(m)

(m(0 . . . 0)(−1)p(0...0),m(0 . . . 1)(−1)p(0...1), . . . ,m(1 . . . 1)(−1)p(1...1)) = ( 1√
w(m)

m(x)(−1)p(x)),

being a vector in (C2)⊗n, where w(m) is the support weight of m (i.e. the number of ‘ones’ in the truth-table

of m), and m and p are Boolean functions from Zn
2 → Z2, although we embed the Z2 output of m into

{0, 1} of the complex numbers. With such a definition, |ψ〉 is normalised such that
∑

x∈Z
n
2
| |ψ〉

x
|2 = 1 and

the codeword x can be considered to be sampled from the code, C, defined by |ψ〉, with probability | |ψ〉
x
|2.

In this paper we focus on the case where m is a product of affine Boolean functions and p is a quadratic

Boolean function. For example, the n = 3, k = 2 binary linear ‘code-with-phase’ comprising codewords

C = {+000,−011,−110,−101}, can be represented by the indicator vector |ψ〉 = 1
2 (1, 0, 0,−1, 0,−1,−1, 0) =

1
2m(−1)p = 1

2(x0 + x1 + x2 + 1)(−1)x0x1+x2 = 1
2(x0 + x1 + x2 + 1)(−1)x1x2+x1+x2 = 1

2(x0 + x1 + x2 +

1)(−1)x0x2+x0+x2 = 1
2(x0 + x1 + x2 + 1)(−1)x0x1+x0+x1. For a given m function, there will, in general,

be more than one choice of p function. The choice of letters, m and p, is to remind the reader that m

assigns ‘magnitude’ to the codewords in the code, and p assigns ‘phase’. Later in this paper we shall need

to generalise to indicators of the form |ψ〉 = ( 1√
w(m)

m(x)ip(x)) where m is, once again, a product of affine

Boolean functions, but now p is a generalised quadratic Boolean function from Zn
2 → Z4 of the ‘special form’

p(x) = (
∑

i<j aijxixj) + (
∑

j bjxj) + c, were aij ∈ {0, 2}, and bj, c ∈ {0, 1, 2, 3}.

1.2 Quantum states and the local Clifford group

The use of ‘bra-ket’ notation, |∗〉, to denote the code-with-phase indicator is because |ψ〉 can be interpreted

as the description for a pure quantum state vector of n qubits with the property that the n qubits described

by |ψ〉 are projected into state x with probability | |ψ〉
x
|2 by a joint measurement of |ψ〉 in the so-called

‘computational basis’ [20]. We shall show (corollary 2) that, by restricting m to a product of affine functions,

and p to a generalised quadratic Boolean function of the special form described previously, |ψ〉 describes,

exactly, the class of quantum stabilizer states for qubits [3, 13].

Two pure n-qubit states, |ψ′〉 and |ψ〉, are considered locally-equivalent if there exists a 2n × 2n unitary

matrix, U , with tensor factorisation U = U (0)⊗U (1)⊗ . . .⊗U (n−1), where each U (i) is a 2×2 unitary matrix,

such that |ψ′〉 = U |ψ〉. In the context of quantum information, local equivalence preserves the structure of

the n-partite quantum system, in particular the n-partite entanglement of the system [20]. An important

group of 2 × 2 unitary matrices is the (complex) local Clifford group, C1 which can be generated by the

Hadamard matrix, H = 1√
2

(

1 1

1 −1

)

, and the negahadamard matrix, N = 1√
2

(

1 i

1 −i

)

, where i =
√
−1.

The n-qubit local Clifford group is then given by Cn = C1
⊗n. A graph state is of the form |ψ〉 = 2

−n
2 (−1)p,

where p is a homogeneous quadratic Boolean function and, implicitly, m = 1. When m = 1, all |ψ〉
x

have the
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same magnitude, and we refer to such state vectors, |ψ〉, as flat [28]. The homogeneous quadratic, p, maps,

bijectively, to a simple graph [30]. It can be shown that every stabilizer state is locally equivalent to a set

of graph states, where each such graph state is obtained via the action of a specific unitary from Cn on the

stabilizer. In this paper we represent stabilizer states by the form |ψ〉 = 2
−n
2 mip, where p is quadratic of the

special form and m is a product of affine Boolean functions [22]. This form is a generalisation of that for a

graph state. As m is the indicator function for a binary linear coset code, it can be represented by a bipartite

graph with loops, as will be made clear later [22, 9]. As both m and p can, with minor embellishments,

be represented by graphs, we refer to |ψ〉 of this form as a two-graph state and the two-graph state is a

bi-graphical representation of a stabilizer state.

1.3 The Pauli group, stabilizer states, and graph states

The single-qubit Pauli group of matrices, P1, is generated by X =
(

0 1

1 0

)

, Z =
(

1 0

0 −1

)

, and i, and the

Pauli group for n qubits is Pn = P1
⊗n. Formally, a stabilizer state over a system of n qubits is defined to

be a joint eigenvector of a stabilizer generated by a certain subgroup of Pn [3, 13, 4]. A graph state is a

special case of a stabilizer state, being a joint eigenvector of a subgroup of Pn, and the graph state can be

described by the edges of a simple graph with n nodes [25, 32, 17]. The stabilizer generated by a subgroup

of the Pauli group came to prominence in the mid-90’s when it was used to describe a class of quantum

error-correcting codes [3, 13]. In this context the stabilizer state describes a quantum error-correcting code

of zero dimension which is robust to errors caused by a convex combination of members of the Pauli group.

It has been shown in [28, 35] that the graph state can always be represented by a homogeneous quadratic

Boolean function whose structure can be bijectively mapped to the associated graph in an obvious way.

Although the graph state has its origins in the theory of eigensystems, its re-interpretation as a quadratic

Boolean function allows one to consider new cryptographic criteria for the function, such as its generalised

bentness [28, 30], or aperiodic propagation criteria [6], and to justify applying such criteria to Boolean

functions of higher degree. In this paper we express the stabilizer state as a two-graph state, this being

a simultaneous generalisation of a binary linear coset code and a quadratic Boolean function. Such a

generalisation shall allow us, in future work, to propose and investigate new criteria for binary linear codes,

and also to establish unforeseen links between Boolean functions and coding theory. Stabilizer states also

have a natural interpretation as GF(4) additive codes [3] and the analysis of graph states relates naturally

to recent graph-theoretic results for the associated graphs [27].

1.4 The action of the local Clifford group

Apart from highlighting the two-graph, magnitude-phase form of the stabilizer state, the primary purpose

of this paper is to efficiently describe how the action of unitary matrices from the local Clifford group, Cn,

modify the form of the two-graph state. In particular, we focus on efficiently computing spectral metrics of

the form
∑

U∈Cn

∑

x
|U |ψ〉

x
|j for some integer j. In such cases one is only interested in the magnitudes of

the elements of U |ψ〉, not their phases, and this simplification allows us to further simplify as we only need
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to sum over all U in a size 3n subgroup, Tn, of the local Clifford group, as shall be explained later. It has

been shown in previous work [1, 4, 8, 9, 11, 28, 29, 30, 35, 36] how the action of matrices from the local

Clifford group on the graph state can be realised using only local graphical operations, where linear phase

offsets, generated by each matrix action, are repeatedly eliminated by invoking local equivalence. These

two graphical operations are called edge-local complementation (ELC) (sometimes called pivot), and local

complementation (LC), where ELC can be decomposed into a series of LCs. Whilst ELC acting on bipartite

graphs can be used to classify binary linear codes [9], LC acting on graphs can be used to classify additive

codes over GF(4) [4]. In this paper, ELC and LC are generalised so as to realise the action of matrices

from the local Clifford group on the two-graph state, without the requirement to repeatedly eliminate linear

phase offsets.

1.5 Example

Here is a small example that should clarify some of the ideas discussed so far:

Consider the n = 3-qubit graph state, |ψ〉, which is the joint eigenvector of the group of commuting

operators, 〈K0,K1,K2〉, where K0 = X⊗Z⊗ I, K1 = Z⊗X⊗Z, K2 = I⊗Z⊗X, and I is the 2×2 identity

matrix. Then |ψ〉 can be represented by the simple graph, P = (VP , EP ), with vertices VP = {0, 1, 2} and

edges EP = {01, 12}. The state |ψ〉 can be written explicitly in the computational basis as 1√
8
(|000〉+ |001〉+

|010〉 − |011〉 + |100〉 + |101〉 − |110〉 + |111〉), which we abbreviate to |ψ〉 = 1√
8
(1, 1, 1,−1, 1, 1,−1, 1), and

can alternatively be written, using algebraic normal form (ANF) for the phase, as |ψ〉 = ( 1√
8
(−1)p(x)) =

( 1√
8
(−1)x0x1+x1x2), where p : Z3

2 → Z2 , and |ψ〉
x

= 1√
8
(−1)p(x). The quadratic monomial xixj is a

term in p iff ij is an edge in P . Let |ψ′〉 = (I ⊗ N ⊗ I) |ψ〉 = ω√
8
(−1)x0x1+x0x2+x1x2i3(x0+x1+x2), where

i =
√
−1, and ω = eπi/4. Then |ψ′〉 is flat, and the quadratic part of |ψ′〉 represents the graph P ′ with

edge set EP ′ = {01, 02, 12} - the affine part of |ψ′〉 can be eliminated by subsequent action of the diagonal

unitary, D = ω7
(

1 0

0 i

)

⊗
(

1 0

0 i

)

⊗
(

1 0

0 i

)

, which is in Cn. The state, |ψ′〉 is, by construction, local

unitary equivalent, via unitaries from Cn, to the graph state |ψ〉, and therefore represents, to within local

equivalence, the same stabilizer state as |ψ〉. A graphical way of interpreting the action of D(I ⊗ N ⊗ I)
on |ψ〉 is to perform the action of local complementation on P at vertex 1 to produce graph P ′, that is to

complement all edges between the neighbours of vertex 1. This example shows how the action of a unitary

from the local Clifford group maps between two locally-equivalent graph states. But, let us now consider

|ψ′′〉 = (H⊗I⊗I) |ψ〉 = 1
2(1, 0, 0, 1, 1, 0, 0,−1), which, by construction, is the same stabilizer state as |ψ〉, to

within local equivalence, but not a graph state as we cannot represent |ψ′′〉 using only a quadratic Boolean

function for its phase part. But we can represent |ψ′′〉 using a two-ANF representation:

∣

∣ψ′′〉 =
1

2
m′′(x)(−1)p

′′(x) =
1

2
(x0 + x1 + 1)(−1)x1x2 ,

where |ψ′′〉
x

= m′′(x)(−1)p
′′(x), m′′ : Z2

2 → Z2, and p′′ : Z2
2 → Z2. As mentioned previously, throughout

this paper we perform a final embedding of the output of m, namely Z2, into the complex, {0, 1}, so as

to interpret the two-ANF state as a pure quantum state. To keep notation simple, we shall not formally
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indicate this embedding. We refer to this two-ANF representation as an algebraic polar form (APF) and

represent the two ANFs by two graphs, where the polynomials, m′′ and p′′, can be written as magnitude

and phase graphs, respectively. p′′ maps to the phase graph P ′′ with vertex and edge sets VP ′′ = {1, 2} and

EP ′′ = {12}, respectively, and m′′ maps to the magnitude graph M ′′ with vertex and edge sets VM ′′ = {0, 1}
and EM ′′ = {01}, respectively. The method of mapping a magnitude polynomial, m(x) to its associated

magnitude graph, M , is explained in definition 9. Although we are conceptually dealing with a two-graph

object, (M,P ), we prefer to act on an associated single graph, G, where the vertex and edge sets of G satisfy

V = VM ∪ VP , E = EM ∪ EP , respectively. If we further bipartition the vertex set V into L and R, where

V = L∪R, L∩R = ∅, and R = VP , then we can exactly recover the graph pair, (M,P ), from the graph-set

pair, (G,R), so the graph pair and graph-set pair definitions are equivalent.

1.6 Local equivalence and a subgroup of the local Clifford group

Measurement-based quantum computing using cluster states [26] or, more generally, graph states, considers

the action of unitary matrices on the graph state, along with measurement of its vertices and classical

communication between its vertices. Of particular importance are the action of those unitaries from Cn

on the graph state [26]. A classification of the equivalence classes of graph states, wrt unitaries from Cn,

has been undertaken [18, 16, 8, 5, 12], and, until very recently, it was an open problem to prove that such

equivalence classes remain the same even when one widens the class of unitaries considered to include local

unitaries outside the local Clifford group [33]. Recent results have, however, suggested that this so-called

‘LU=LC conjecture’ is false [15, 19]. Equivalence of graph states wrt the action of unitaries from Cn can be

realised on the associated graphs by means of local complementation [1, 2, 11, 35, 4]. In [28] it was shown

that successive local complementations on a graph can be realised by considering the action on the graph

state of only a small subgroup, Tn, of matrices from Cn, where Tn = T1
⊗n and T1 = {I, λ, λ2} is a cyclic

subgroup generated by λ = ω5√
2

(

1 i

1 −i

)

, where T1 ⊂ C1, and |T1| = 3. We call Tn the local transform

group over n qubits. Moreover C1 = T1 ×D1, where |C1| = 192 and |D1| = 64, and D1 is a subgroup of

diagonal and antidiagonal 2 × 2 matrices generated by ω,
(

1 0

0 i

)

, and
(

0 1

1 0

)

. In [28] we concentrate

only on the subset of transforms from Tn whose action on a graph state yield flat spectra, where these flat

spectra can be interpreted, to within a final multiplication ny a member of Dn, as a set of locally-equivalent

graph states. In this paper we, more generally, consider the action of all 3n transforms from Tn on a graph

state. We show that a graph state is always locally equivalent, wrt unitaries from Cn, to a two-graph object,

(M,P ), where M and P represent magnitude and phase graphs for the state, respectively, and the action of

any member of Tn on such a state can be expressed as a graphical operation on the combined graph formed

by M and P , to yield another graph which can, once again, be split into a two-graph, (M ′, P ′) object.

To compute the two-graph orbit and/or perform spectral analysis of a certain graph or stabilizer state,

neither [28] or this paper use T1 explicitly. Instead we use the set of three matrices, {I,H,N}. It is evident

that λ = ω5N , and λ2 = ω3
(

1 0

0 −i

)

H, so one can always obtain the action of any unitary from the

transform group, Tn, by first applying the appropriate unitary from {I,H,N}⊗n, then applying a suitable
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unitary from Dn, where {U0, U1, . . . , Ut−1}⊗n means the set of matrices formed by any n-fold tensor product

of matrices from the set {U0, U1, . . . , Ut−1}. But the application of any unitary from Dn to a state does not

change coefficient magnitudes. So, to perform spectral analysis based on magnitude computations, we can

use {I,H,N} instead of T1 = {I, λ, λ2}. We choose to do this because H is the 2-point periodic discrete

Fourier transform (DFT), and N is the 2-point negaperiodic DFT, and using this viewpoint facilitates a

‘Fourier’ approach to the analysis of graph states and stabilizer (two-graph) states. However, all results in

this paper wrt {I,H,N}⊗n are trivially translated into results wrt Tn, as shown in subsection 4.1.

1.7 Main aims of this paper

In previous work the use of graphs to represent graph states has simplified both theoretical and computational

analyses of graph states. Our primary aim, in this paper, is to use two-graph states to represent stabilizer

states, so as to simplify analysis of the stabilizer state, where the graph state is a special case of the two-graph

state. We obtain computationally efficient algorithms for the spectral analysis of the graph and two-graph

state wrt Cn, as the set of spectra computed via the action of {I,H,N}⊗n on a two-graph state acts as a

precise summary of the much larger set of spectra resulting from the action of any member of Cn on the

two-graph state, where the action of Dn has been factored out. A secondary aim of this paper is to provide

an efficient, localised, graphical method to realise the action of any member of Cn on the graph or two-graph

state. This is made possible because H and N are generators of C1 and, in this paper, we characterise the

actions of H and N on the two-graph state and, therefore, Cn is covered via repeated actions of H and

N . Moreover, as Cn = Dn × Tn, and Tn = D{I,H,N}⊗n, D ∈ Dn then, to within a final action by a

member of Dn, the graphical characterisation of the action of any unitary from {I,H,N}⊗n on a two-graph

object, (G,R) ≡ (M,P ) will, at the same time, graphically characterise the action of successive unitaries

from {I,H,N}⊗n on (G,R).

Section 2 onwards of this paper makes precise the discussion of this introduction. Let Uv = I⊗v ⊗ U ⊗
I⊗n−v−1. Then it is shown that

• Two-Graph State: The two-graph state comprises a graph with loops, G, and a set R or, equivalently,

two graphs M and P ((G,R) ≡ (M,P )), and is represented by m(−1)p, where m is a product of affine

Boolean functions, and p is a quadratic Boolean function, The transition between two representations

of the same two-graph state is characterised via the operation called ‘swp’ which operates on (G,R).

Then the action of a unitary, Hv, v ∈ V, on (G,R) is characterised via the conditional action of

‘swp’ on (G,R), and a set operation on R, to produce another two-graph state, (G′,R′) ≡ (M ′, P ′).

Consequently the action of any transform from {I,H}⊗n on a two-graph state can be computed

graphically plus a few set operations.

• Generalised Two-Graph State: The generalised two-graph state comprises a graph with loops, G, and

two sets R and Q or, alternatively, two graphs M and P and a set Q, ((G,R,Q) ≡ (M,P,Q)), and

is represented by mip, where m is a product of affine Boolean functions, and p is a quadratic function
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from Zn
2 → Z4 of the special form. The possible loops at vertices in R are weighted according to

elements in Q. The transition between two representations of the same generalised two-graph state is

characterised via the generalised operation called ‘swp’ which now operates on (G,R,Q). Then the

actions of unitaries, Hv and Nv, v ∈ V, on (G,R,Q) can be characterised via the conditional action

of ‘swp’ on (G,R,Q), and certain other conditional operations on G,R, and Q, to produce another

generalised two-graph state, (G′,R′,Q′) ≡ (M ′, P ′,Q′). Consequently the action of any transform from

{I,H,N}⊗n on a generalised two-graph state can be computed graphically plus a few set operations.

• Spectral Analysis of the Graph State: By considering Lj norms of the graph state wrt the local Clif-

ford group, we demonstrate the usefulness of the generalised two-graph representation to compute,

efficiently, these norms.

We also generalise the graph operations of edge-local complementation (ELC) [27, 36, 9] and local com-

plementation (LC) [1, 2, 11, 35, 4] to the two-graph operations, edge-local complementation⊙ (ELC⊙) and

local complementation⊙ (LC⊙) which now take into account graph loops.

A recent paper [10], independent to ours, also extends the graphical notation to deal with the action

of the local Clifford group on stabilizer states. [10] also implicitly utilises a bipartite splitting of the graph

(via ‘hollow’ and ‘filled-in’ nodes), and also requires graph loops. [10] describes the action of H, S and Z

on their graph, whereas we describe the action of H and N . Their model and our model must be equivalent

in terms of characterising the action of the local Clifford group on stabilizer states. However one can list

some differences in approach between the papers as follows. Firstly, [10] focusses, primarily, on modelling

the action of the local Clifford group. In contrast, we focus, primarily, on modelling the action of the

local transform group, Tn, and/or {I,H,N}⊗n as we are more interested in evaluating spectral metrics for

the graph state as efficiently as possible, up to as many qubits as possible, although a secondary result of

our work is that the action of the complete local Clifford group is also modelled. Secondly, [10] implicitly

considers the stabilizer state as a joint eigenstate, and does not therefore have to consider an explicit basis

for the state. In contrast, in our paper we consider an explicit computational basis for the state, and this

allows us to distinguish between magnitude and phase properties of the stabilizer state. This, in turn, allows

us to evaluate spectral metrics, associated with the graph state, with small effort. Thirdly, by distinguishing

between magnitude and phase, we highlight the stabilizer state as a simultaneous generalisation of both the

usual classical cryptographic representation of Boolean functions (the phase part), and the usual parity-

check graph (factor graph) representation of classical binary linear codes (the magnitude part). The link to

parity-check graphs was investigated in [21] and the interaction between magnitude and phase graphs was

investigated in [22] and has since been exploited in [23, 28, 29, 4, 6, 7, 8]. A preliminary version of this

paper was presented at [31].

For the rest of this paper we only consider connected graph states as, otherwise, the system is degenerate.

We also ignore the global multiplicative constants in front of the state vector. In particular our method

strictly only distinguishes between the action on the two-graph state of matrices from the size 24n subgroup

of the local Clifford group, as the supplementary multiplication of the state by a power of ω is ignored, i.e
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we remove the centre of the local Clifford group. For most scenarios this global multiplicative constant can

be ignored, however a trivial refinement of our method would be necessary if one was to relate the action of

the same sequence of matrices from the local Clifford group on two or more two-graph states.

2 Formal Definitions

Define Uv = I⊗v ⊗ U ⊗ I⊗n−v−1.

Definition 1 Let I =
(

1 0

0 1

)

, H = 1√
2

(

1 1

1 −1

)

, and N = 1√
2

(

1 i

1 −i

)

be the 2 × 2 identity, Walsh-

Hadamard, and negahadamard [23] matrices, respectively. The set of 3n transforms, {I,H,N}⊗n, is defined

as the set of all n-fold tensor product combinations of matrices I, H and N .

Definition 2 [22] A pure n-qubit state, |ψ〉 = (|ψ〉0...00 , |ψ〉0...01 , . . . , |ψ〉1...11), with vector entries satisfying

|ψ〉
x
∈ c{0, 1,−1}, for some complex constant, c, can always be written in the form

|ψ〉 = cm(x)(−1)p(x),

where |ψ〉
x

= cm(x)(−1)p(x), ∀x ∈ Zn
2 , and m,p : Zn

2 → Z2 are both Boolean functions. The output of m is

embedded in the complex numbers. We separate, thus, magnitude, m, and phase, p, of |ψ〉, and call such a

representation the algebraic polar form (APF) of |ψ〉.

Remark: In order to simplify notation we henceforth omit the normalisation constant, c, from any

expression of the form |ψ〉 = cm(x)(−1)p(x) or similar.

Definition 3 Let G = (V, E) be a graph with vertex set, V, and edge set, E, where G may contain loops.

Let ΓG be the binary adjacency matrix of G. Then, for two graphs, G and G′, both defined over the same

n vertices, G′′ = G ±G′ means that the adjacency matrix, ΓG′′, of G′′, satisfies ΓG′′ = ΓG ± ΓG′. Let NG
v

be the set of vertices other than v which are neighbours of vertex v in G. Let BG
v = NG

v ∪ {v} be the set of

vertices less than or equal to one edge distance from vertex v in G. For a vertex set, V, let GV be the induced

subgraph of G on V, comprising all edges from G whose endpoints are both in V. For vertex sets, V and V ′,
define KV ,V ′ to be the graph with binary adjacency matrix, ΓK , where ΓKij

= ΓKji
= 1 iff i ∈ V \ V ′, j ∈ V ′

or i = j ∈ V ∩ V ′. GV and KV ,V ′ may contain loops. Let Gv = K{v},NG
v

. Let ∆V be the graph with diagonal

binary adjacency matrix, Γ∆, where Γ∆ij
= 1 iff i = j ∈ V. The complete graph, CV , is the simple graph

whose edge set comprises the set of edges {vw, ∀v,w ∈ V, v < w}.

Definition 4 [1, 2, 11, 35, 4] The action of local complementation (LC) on a simple graph G at vertex v

is the graph transformation obtained by replacing the subgraph GNG
v

by its complement.

Example: The action of LC on a graph at vertex v = 0, is shown in figure 1.

Definition 5 [27, 36, 9] The action of edge local complementation (ELC) on a simple graph G at edge vw

is the graph transformation obtained by performing LC at vertex v, then vertex w, then vertex v again (or,

equivalently, at w, then v, then w again).
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Figure 1: The action of LC at vertex 0

In this paper we generalise both LC and ELC so as to operate on a two-graph object.

Definition 6 Let G be a graph with possible loops, containing an edge vw, v 6= w. Then Gvw is the graph

resulting from the action of edge local complementation⊙ (ELC⊙) on edge vw of G, where

Gvw = G+KBGv ,BGw + ∆{v,w} + ΓGvv∆BGw + ΓGww∆BGv .

Example: The action of ELC⊙ on the following graph at edge vw = 31, is shown in figure 2.

0 2

1
3

4

G31
G

0

4

2

3
1

Figure 2: The action of ELC⊙ at edge 31

Remark: From definition 6, even when G is a simple graph, ΓGvv = ΓGww = 0, we see that possible

loops can still be produced from term KBGv ,BGw . The ELC operation, which acts only on simple graphs, can

be recovered from ELC⊙ by applying ELC⊙ to a simple graph, then deleting any resultant loops from the

output.

The Pauli matrix group is generated by X =
(

0 1

1 0

)

, Z =
(

1 0

0 −1

)

, and i. Let S =
(

1 0

0 i

)

.

Definition 7 The local Clifford matrix group, C1, is the group of 192 2 × 2 matrices that normalise the

Pauli group, and can be decomposed as C1 = D1 × T1 where we call D1 the diagonal group and T1 the

transform group. T1 = {I, λ, λ2} is a cyclic subgroup generated by λ = ω5N , where i =
√
−1 and ω =

√
i,

D1 = C1/T1 = 〈S,X, ω〉, and comprises only diagonal or antidiagonal 2 × 2 matrices, and |C1| = 192,

|T1| = 3, and |D1| = 64. We call Cn, Tn, and Dn, the groups formed by n-fold tensor products of matrices

from C1, T1, and D1, respectively, where |Cn| = 8× 24n and |Dn| = 8× 8n.
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Observe that λ = ω5N and λ2 = ω3S−1H so, for any U ∈ Tn, and any V ∈ {I,H,N}⊗n, we have

U = ωDV for some D ∈ Dn. For the rest of the paper we focus on the action of {I,H,N}⊗n on the graph

state and, more generally, on the two-graph state, where the alternative action of Tn on the state can be

derived easily (see section 4.1).

Definition 8 [25] Given a graph, P , on n vertices with adjacency matrix, ΓP , define n commuting Pauli

operators

KPj = Xj

∏

k∈Nj
Zk = Xj

n−1
∏

k=0

Z
ΓPjk
k ,

where Nj is the set of vertices in P that are neighbours of vertex j. The stabilizer, KP , is generated by

〈KP0 ,KP1 , . . . ,KPn−1〉, and |ψ〉 is a graph state iff KP |ψ〉 = |ψ〉, for some simple graph, P . Explicitly, in

the computational basis, [28, 35],

|ψ〉
x

= (−1)
P

i<j ΓPijxixj .

Any state |ψ〉′ = U |ψ〉, U ∈ Cn, is a stabilizer state locally equivalent to |ψ〉.

3 The Two-Graph State

Definition 9 A two-graph state is a pure quantum state, |ψ〉, of n qubits that can be defined by a graph,

G = (V, E), and a bipartition, (L,R), where V = L∪R and L∩R = ∅, and where GL is the empty graph apart

from possible loops. The pair, (G,R), explicitly encodes a two-graph object, (M,P ), where P = GR, and

M = G−P is a bipartite graph. The state, |ψ〉, is defined by its algebraic polar form, |ψ〉 = cm(x)(−1)p(x),

where c ∈ C, m(x) : Zn
2 → Z2 is a product of affine functions of the form,

m(x) =
∏

i∈L
(ΓMii

+ 1 + xi +
∑

j∈R
ΓMij

xj),

such that m = 1 when L = ∅, and where p(x) : Zn
2 → Z2 is a quadratic function of the form,

p(x) =
∑

i,j∈R,i<j

ΓPijxixj +
∑

j∈R
ΓPjjxj.

Remark: For (G,R) ≡ (M,P ) a two-graph state, M and P cannot contain loops at vertices in R
and L, respectively. Also, although at first it seems that we don’t distinguish between for instance m =

(x0 +x1 +x2 +1) and m = (x0 +x1 +1)(x0 +x2 +1), we do: by definition 9, the form m = (x0 +x1 +x2 +1)

can be represented, non-uniquely, by L = {0} and R = {1, 2}, while the form m = (x0 +x1 +1)(x0 +x2 +1)

can be represented, non-uniquely, by L = {1, 2} and R = {0}. The factorization of m into a product of

affine terms of the form shown in definition 9 reflects the fact that m represents a binary linear coset code,

C, where each affine factor of m represents a row of a systematic parity check matrix, H, for C, where L is an

information set for C. For instance, with R = {0, 1, 4}, m = (x2 +x0 +x1 +1)(x3 +x1 +x4)(x5 +x0 +x4 +1)
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represents the systematic parity check matrix, H =

(

1 1 1 0 0 0

0 1 0 1 1 0

1 0 0 0 1 1

)

, for the binary linear coset code,

C, with coset leader 000100.

We first describe the action of ‘swp’ on the two-graph state at edge vw.

Definition 10 Let |ψ〉 = m(−1)p be a two-graph state over n qubits, represented by the graph-set (G,R) ≡
(M,P ). Let v ∈ L and w ∈ NG

v . Then the action of swp at edge vw is the operation that interchanges the

roles of v and w; i.e. the operation that takes R to R′ = R ∪ {v} \ {w}, and results in a two-graph state,

m(−1)p
′
, where |ψ〉 = m(−1)p

′
= m(−1)p.

Remark: The action of ‘swp’ does not change |ψ〉 or m, but it changes the graphical representation

(G,R) ≡ (M,P ) to (G′,R′) ≡ (M ′, P ′). In coding-theoretic terms, ‘swp’ at vw updates the information set,

L, to L′, corresponding to an update of the systematic parity-check matrix for the code, C, represented by

M . The update in parity-check matrix induces a corresponding modification of P to P ′.

Lemma 1 Let |ψ〉 be a two-graph state over n qubits, represented by the graph-set (G,R) ≡ (M,P ). Let

v ∈ L and w ∈ NG
v . Then the action of swp at edge vw results in the two-graph state with associated

graph-set, (G′,R′) ≡ (M ′, P ′), which is obtained from (G,R) ≡ (M,P ) as follows:

(G′,R′) = swp(G,R, v, w):







R′ = R∪ {v} \ {w},
G′ = Gvw.

Proof: Section 7.

We now describe the action of Hv on a two-graph state.

Theorem 1 Let |ψ〉 be a two-graph state over n qubits, represented by the graph-set (G,R) ≡ (M,P ). Let

v ∈ {0, 1, . . . , n − 1}. Then |ψ′〉 = Hv |ψ〉 is also a two-graph state and can be described by the graph-set

(G′,R′) ≡ (M ′, P ′), where

(G′,R′) = Hv(G,R):
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R′ = R∪ {v},
G′ = G,

if v ∈ L,







R′ = R \ {v},
G′ = G,

if BG
v ⊆ R















assign w ∈ NM
v ,

(G′,R′′) = swp(G,R, w, v),
R′ = R′′ ∪ {v},

if v ∈ R,BG
v 6* R.

Proof: Section 7.

Example: Let |ψ〉 = m(−1)p be a two-graph state, with n = 5, m = (x0+x2+x3+1)(x1+x2+x3), p = x2x3+

x2x4 +x3x4 +x3, and graph (G,R) ≡ (M,P ), where G has edge set E = {02, 03, 12, 13, 23, 24, 34, 11, 33} and

R = {2, 3, 4}. Then the action of H3 on |ψ〉 can be detailed as follows. Observe that BG
3 = {0, 1, 2, 3, 4} 6⊂ R.

Therefore, from theorem 1, we can, arbitrarily, choose w = 1, as 1 ∈ NM
3 . Then (G′,R′′) = swp(G,R, 1, 3),

where G′ has edge set E = {01, 12, 13, 14, 23, 00, 11, 22, 33, 44} and R′′ = {1, 2, 4}. Finally we update

R′′ to obtain R′ = {1, 2, 3, 4}. The resulting graph, (G′,R′) ≡ (M ′, P ′), represents the two-graph state

|ψ′〉 = m′(−1)p
′
, where m′ = (x0 +x1) and p′ = x1x2 +x1x3 +x1x4 +x2x3 +x1 +x2 +x3 +x4. This example

is illustrated in figure 3.

Theorem 2 Let |ψ〉 = m(−1)p be a two-graph state over n qubits. Then there always exists a graph state,

|ψ〉′, such that |ψ〉′ = DU |ψ〉, where U ∈ {I,H}⊗n, and D ∈ Dn.

Proof: Select an arbitrary v ∈ L, and apply Hv to |ψ〉. Then, by applying the algorithm of theorem 1, we

obtain |ψ〉(1) = Hv |ψ〉, where L(1) = L \ {v}. Select an arbitrary v′ ∈ L(1) and repeat the above process by

applying Hv′ to |ψ〉(1) so as to obtain |ψ〉(2), and so on. After k = |L| such recursions one obtains L(k) = ∅,
which implies that |ψ〉(k) is a graph state to within loops in P , as m = 1. The loops in P can then be

eliminated via the action of matrices from Dn.

Corollary 1 (of theorem 2) The two-graph state is a stabilizer state.

Proof: It is known that a stabilizer state is locally-equivalent to a graph state [32, 14], and local-equivalence

is reversible.
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Figure 3: The action of H3 on a two-graph state

4 The Generalised Two-Graph State

For a set of integers, Q, let Qj = 1 iff j ∈ Q, otherwise Qj = 0.

Definition 11 A generalised two-graph state is a pure quantum state, |ψ〉, of n qubits that can be defined

by the graph-set-set, (G,R,Q), where G = (V, E) is an n-vertex graph, with bipartition, (L,R), where

V = L ∪R and L ∩R = ∅, where GL is the empty graph apart from possible loops, and where Q ⊂ R. The

triple, (G,R,Q), explicitly encodes a generalised two-graph, (M,P,Q), where P = GR,Q, and M = G − P
is bipartite. The state, |ψ〉, is defined by its algebraic polar form, |ψ〉 = cm(x)ip(x), where c ∈ C, m(x) :

Zn
2 → Z2 is a product of affine functions of the form,

m(x) =
∏

i∈L
(ΓMii

+ 1 + xi +
∑

j∈R
ΓMij

xj),

such that m = 1 when L = ∅, and where p(x) : Zn
2 → Z4 is a quadratic function of the form,

p(x) =
∑

i,j∈R,i<j

2ΓPijxixj +
∑

j∈R
(2ΓPjj +Qj)xj .

Remark: The generalised two-graph state can alternatively and, perhaps, more naturally, be viewed as

a graph with weighted Z4 loops and a set R. But we choose the equivalent (G,R,Q) representation for

notational convenience. When Q = ∅, then the generalised two-graph state, defined by (G,R,Q), reduces

to the two-graph state, defined by (G,R), and non-empty Q introduces linear terms over Z4 to the state.
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Let A⊖B be the symmetric difference of sets A and B, that is A⊖B = (A \B) ∪ (B \ A).

Definition 12 Let (G,Q) be the graph-set pair, extracted from the generalised two-graph state (G,R,Q),

with G an n-vertex graph with possible loops and Q ⊂ {0, 1, . . . , n− 1}. Then (G,Q)v = (Gv,Qv) is defined

to be the graph-set pair resulting from the action of local complementation⊙ (LC⊙) on vertex v of (G,Q),

where

Gv = G+ CNG
v

+ ΓGvv∆NG
v

+ ∆Q∩NG
v
,

Qv = Q⊖ BG
v .

Example: The action of LC⊙ on the following graph-set, (G,Q), at vertex v = 3, is shown in figure 4.

0

4

2

3
1

0 2

3

4

1

G
3

Q = {2,3} Q = {1}
3

G

Figure 4: The action of LC⊙ at vertex 3

Remark: From definition 12, even when G is a simple graph and Q = ∅, we see that possible loops can

still be produced at the output. The LC operation, which acts only on simple graphs, can be recovered from

LC⊙ by applying LC⊙ to a simple graph, then deleting any resultant loops from the output.

We now describe the action of ‘swp’ on the generalised two-graph state at edge vw, as a natural extension

of ‘swp’ on a two-graph state.

Definition 13 Let |ψ〉 = mip be a generalised two-graph state over n qubits, represented by the graph-set-set

(G,R,Q) ≡ (M,P,Q). Let v ∈ L and w ∈ NG
v . Then the action of swp at edge vw is the operation that

interchanges the roles of v and w; i.e. the operation that takes R to R′ = R ∪ {v} \ {w}, and results in a

generalised two-graph state, m′ip
′
, where |ψ〉 = m′ip

′
= mip.

Remark: ‘swp’ does not change |ψ〉.

Lemma 2 Let |ψ〉 be a generalised two-graph state over n qubits, represented by the graph-set-set (G,R,Q) ≡
(M,P,Q). Let v ∈ L and w ∈ NG

v . Then the action of swp at edge vw results in the generalised two-graph

state with associated graph-set-set, (G′,R′,Q′) ≡ (M ′, P ′,Q′), and is obtained from (G,R,Q) as follows:

Let v ∈ L, w ∈ NG
v . Then, (G′,R′,Q′) = swp(G,R,Q, v, w) can be expressed as:
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R′ = R ∪ {v} \ {w},
G′′ = Gvw,

if Qw = 1

(G′,Q′) = (G′′,Q)w

else

(G′,Q′) = (G′′,Q).

Proof: Section 7.

We now describe the action of Hv on a generalised two-graph state.

Theorem 3 Let |ψ〉 be a generalised two-graph state over n qubits, represented by the graph-set-set (G,R,Q) ≡
(M,P,Q). Let v ∈ {0, 1, . . . , n − 1}. Then |ψ′〉 = Hv |ψ〉 is also a generalised two-graph state and can be

described by the graph-set-set (G′,R′,Q′) ≡ (M ′, P ′,Q′), where

(G′,R′,Q′) = Hv(G,R,Q):







R′ = R∪ {v},
(G′,Q′) = (G,Q),

if v ∈ L,











































































if Qv = 0

R′ = R \ {v},
(G′,Q′) = (G,Q),

else

R′ = R,
(G′′,Q′′) = (G,Q)v

G′ = G′′ + ∆BGv
Q′ = Q′′ ∪ {v} ,

if BG
v ⊆ R















assign w ∈ NM
v ,

(G′,R′′,Q′) = swp(G,R,Q, w, v),
R′ = R′′ ∪ {v},

if v ∈ R,BG
v 6* R.

Proof: Section 7.

Example: Let |ψ〉 = mip be a generalised two-graph state, with n = 5, m = (x0 +x2 +x3 +1)(x1 +x2 +x3),

p = 2x2x3 + 2x2x4 + 2x3x4 + x2 + 3x3, and graph (G,R,Q) ≡ (M,P,Q), where G has edge set E =
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{02, 03, 12, 13, 23, 24, 34, 11, 33}, R = {2, 3, 4}, and Q = {2, 3}. Then the action of H3 on |ψ〉 can be

detailed as follows where we, arbitrarily, choose w = 1. Then R′ = {1, 2, 3, 4} and Q′ = {1, 2, 3, 4}. The

resulting graph, (G′,R′,Q′) ≡ (M ′, P ′, Q′), represents the generalised two-graph state |ψ′〉 = m′ip
′
, where

m′ = (x0 + x1) and p′ = 2x1x3 + 2x1x4 + 2x2x3 + x2 + x3 + x4. This example is illustrated in figure 5.
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Figure 5: The action of H3 on a generalised two-graph state

We now describe the action of Nv on a generalised two-graph state.

Theorem 4 Let |ψ〉 be a generalised two-graph state over n qubits, represented by the graph-set-set (G,R,Q) ≡
(M,P,Q). Let v ∈ {0, 1, . . . , n − 1}. Then |ψ′〉 = Nv |ψ〉 is also a generalised two-graph state and can be

described by the graph-set-set (G′,R′,Q′) ≡ (M ′, P ′,Q′), where

16



(G′,R′,Q′) = Nv(G,R,Q):















R′ = R∪ {v},
(G′,Q′′) = (G,Q)v ,

Q′ = Q′′ \ {v},
if v ∈ L,











































































if Qv = 1

R′ = R \ {v},
G′ = G+ ∆{v},

Q′ = Q \ {v},
else

R′ = R,
(G′′,Q′) = (G,Q)v

G′ = G′′ + ∆BGv ,

if BG
v ⊆ R







































assign w ∈ NM
v ,

(G′′,R′′,Q′′) = swp(G,R,Q, w, v),
R′ = R′′ ∪ {v},
(G′,Q′′′) = (G′′,Q′′)v,

Q′ = Q′′′ \ {v},

if v ∈ R,BG
v 6* R.

Proof: Section 7.

We now describe the action of the inverse of Nv on a generalised two-graph state. This is important for

computational reasons, as it allows us to compute spectral measures such as the Lj norm and the Clifford

merit factor [24] of a graph state (section 6) by using a Gray code ordering on successive actions of H and

N on each qubit, thereby avoiding the problem of having to store all the graphs from every step.

Lemma 3 Let |ψ〉 be a generalised two-graph state over n qubits, represented by the graph-set-set (G,R,Q) ≡
(M,P,Q). Let (G′′,R′′,Q′′) ≡ (M ′′, P ′′,Q′′) be the generalised two-graph state resulting from the applica-

tion of Hv to (G,R,Q). Let v ∈ {0, 1, . . . , n − 1}. Then the action of N−1 on v is the graph-set-set

(G′,R′,Q′) ≡ (M ′, P ′,Q′), where:
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G′ = G′′ + CNG′′
v

+ ∆NG′′
v

+ ΓG′′

vv ∆NG′′
v

+ ∆Q′′∩NG′′
v

Q′ = Q′′ ⊖NG′′

v

if v ∈ L′′







G′ = G′′ + ∆v

Q′ = Q′′ ∪ {v}
if v ∈ R′′ and Q′′

v = 0







G′ = G′′

Q′ = Q′′ \ {v}
if v ∈ R′′ and Q′′

v = 1

R′ = R′′.

Proof: Section 7.

Theorem 5 Let |ψ〉 = mip be a generalised two-graph state over n qubits. Then there always exists a graph

state, |ψ〉′, such that |ψ〉′ = U |ψ〉, where U ∈ Cn.

Proof: A generalised two-graph state, (G,R,Q) is always locally-equivalent to a two-graph state, (G,R) =

(G,R,Q′), via the action of some unitary in Dn, where Q′ = ∅. The theorem then follows from theorem 2.

Corollary 2 (theorem 5) The generalised two-graph state is a stabilizer state, and vice-versa.

Proof: ¿From [14, 32] and theorem 5, all stabilizer states and all generalised two-graph states are graph

states, via the action of unitaries from the local Clifford group, and such action is reversible.

4.1 The actions of λ and λ
2

We have described the action of N and H on the generalised two-graph state. It is trivial to convert these

actions to the actions of λ and λ2 on the state, respectively, remembering that, in this paper, global multi-

plicative constants are ignored. Explicitly,

λv(G,R,Q) = Nv(G,R,Q), λ2
v(G,R,Q) = S−1

v Hv(G,R,Q) = N2
v (G,R,Q).

5 Canonisation

For some (generalised) two-graph state, mip, as represented by (G,R,Q) over n qubits, let L 6= ∅. Then

there is a set of equivalent representations for the same state. For purposes of comparison, it is desirable
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to find a canonical representative from each set of equivalent representations. In this section we provide a

simple algorithm to obtain, from an arbitrary (generalised) two-graph state, a canonical representative.

Definition 14 A generalised two-graph state, (G,R,Q), is defined to be canonised if v < u, ∀(v, u) ∈
(L,NG

v ).

Observe that such a canonical form is unique and, given such a unique M graph, the P graph and Q

set are also unambiguously fixed. We now describe the process of canonisation of a generalised two-graph

state.

Lemma 4 Let |ψ〉 be a generalised two-graph state over n qubits, as represented by (G,R,Q). Then we

can obtain a canonical representation of |ψ〉, as represented by (Gn,Rn,Qn), by following these steps, where

min(A) means the minimum integer in set A:

(Gn,Rn,Qn) = canon(G,R,Q):







































Set (G0,R0,Q0) = (G,R,Q), and set i = 0

while ∃v ∈ Li such that v > min(NGi
v )

w = min(NGi
v )

(Gi+1,Ri+1,Qi+1) = swp(Gi,Ri,Qi, v, w)

i← i+ 1.

Each call to canon will have worst-case complexity O(|L|2).

Proof: Section 7.

One can apply canonisation to the generalised two-graph state after each application of N or H, if

required.

6 Spectral Analysis of the Graph State

We now briefly demonstrate the usefulness of the two-graph representation by computing various Lj-norms

of the graph state wrt the local Clifford group. Let |ψ〉 be a generalised two-graph state over n qubits. For

U ∈ Cn, let |ψU 〉 = U |ψ〉. The Lj-norm of |ψ〉 is given by

|| |ψ〉 ||j =



2−n
∑

x∈Z
n
2

(2
n
2 | |ψ〉

x
|)j




1
j

= 2n( 1
2
− 1
j
)





∑

x∈Z
n
2

| |ψ〉
x
|j




1
j

.

We wish to compute the Lj-norm over every state generated by the action of the local Clifford group on

|ψ〉. However, as these norms only depend on a summary of powers of magnitudes, it suffices to compute

the Lj-norm over every state generated by the action of {I,H,N}⊗n on |ψ〉, as the action of matrices
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from Dn on the state does not affect coefficient magnitudes; that is, let U = UDUT , with UD ∈ Dn and

UT ∈ {I,H,N}⊗n: then || |ψU 〉 || = || |ψUDUT 〉 || = || |ψUT 〉 ||. Thus

|| |ψ〉 ||Cn,j =

(

24−n

8

∑

U∈Cn

|| |ψU 〉 ||jj

)
1
j

=



3−n
∑

U∈{I,H,N}⊗n
|| |ψU 〉 ||jj





1
j

= 2
n
2











6−n
∑

x ∈ Z
n

2

U ∈ {I,H,N}⊗n

| |ψU 〉x |j











1
j

.

Normalisation of the pure state ensures that || |ψ〉 ||2 = || |ψ〉 ||Cn,2 = 1, by Parseval’s theorem.

Let |ψU 〉 be represented by the graph-set-set (GU ,RU ,QU ), where LU = V \ RU . Then one can show

that,

|| |ψU 〉 ||j = 2
(j−2)|LU |

2j .

Therefore,

|| |ψ〉 ||Cn,j =



3−n
∑

U∈{I,H,N}⊗n
2

(j−2)|LU |
2





1
j

.

In other words, || |ψ〉 ||Cn,j can be efficiently computed by keeping track of the size of LU after each successive

action of H and N on the two-graph state. In particular, although the evaluation is theoretically over all

24n×8 transforms represented by the local Clifford group, we obtain the same evaluation by only considering

the 3n transforms represented by {I,H,N}⊗n, which is an exponential improvement in computational

complexity.

Using the Database of Self-Dual Quantum Codes [5] we classify all inequivalent graph states according

to their Lj norms wrt Cn, up to n = 7 qubits, as shown in table 1 for j = 3 and j = 4, where the norm is

|| |ψ〉 ||Cn,j . One can expect the entanglement of the graph state to be higher if || |ψ〉 ||Cn,j is lower. In [24],

the so-called Clifford merit factor (CMF) was proposed as a suitable measure of entanglement for a graph

state, where

CMF(|ψ〉) =
1

|| |ψ〉 ||4
Cn,4 − 1

.

One can expect the entanglement of a graph state to be higher if the CMF of a graph state is higher.

Moreover, it was proved in [24] that the expected value of 1
CMF for a random graph state, as n→∞, is 1 1

. This is suggested as, at least, reasonable by the results of table 1 as || |ψ〉 ||4
Cn,4 for a random graph state

could well approach 2 from below as n→∞.

We can also compute the L∞ norm of a graph state wrt the local Clifford group, where,

|| |ψ〉 ||Cn,∞ = 2

“

sup
U∈{I,H,N}⊗n(|LU |)

”

/2
,

and (potentially) ranges from 1 to 2n/2 (although, for connected graphs, neither the ‘ideal’ lower bound or

the worst-case upper-bound are ever reached). In [4] the PARIHN , of a graph state is computed, where

PARIHN (|ψ〉) = || |ψ〉 ||2
Cn,∞, and where n − log2(PARIHN ) gives an upper bound on the entanglement

of the graph state as measured by the log form of the geometric measure [38], which is an entanglement

1 Assumes all graphs are equally likely.
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monotone [37]. This upper bound is shown to be tight for a graph state with a bipartite graph in its LC

orbit [22, 4]. The method used in [4] to compute PARIHN looked for the independent set of largest size

over the set of graphs in the LC orbit of |ψ〉. It is evident that supU∈{I,H,N}⊗n(|LU |) is equal to the size of

this largest independent set. So we do not strictly need the two-graph form to compute the L∞-norm of

the graph state, but can make do with LC over the graph state. However, we then require to search for the

largest independent set in each graph in the LC orbit. In contrast, if we use the two-graph representation to

compute the L∞-norm of the graph state then we identify an independent set in the current graph wrt U as

being the set LU . Thus the two-graph representation implicitly encodes and keeps track of the independent

sets in the graphs in the LC orbit of the graph state. The search techniques of [4] and this paper are of

approximately equal computational complexity. Results for PARIHN for graph states are provided in [4].

In figure 6 we plot the expected PARIHN of a graph state of varying density, where the ‘density’ indicates

the percentage probability that a given edge exists. From figure 6 we conclude that very dense and very

sparse graphs represent graph states with relatively high values of PARIHN , which translates to a relatively

low upper bound on the geometric measure of entanglement. Therefore, as one might expect, it appears

that graph states of density around 0.5 should maximise the upper bound on the geometric measure of

entanglement.

Figure 6: Expected PARIHN of random graph states of n = 2 to 13 vertices versus graph density, 10−100%

In figure 7 we compute the expected value for an Lj norm, 2 ≤ j < 16, for a random graph state

of density 50%. The horizontal lines are the results for the L∞ norm, where || |ψ〉 ||Cn,∞ =
√

PARIHN .

The results indicate that the L∞ norm is approached from below by the Lj norm as j → ∞ (it is not so

difficult to prove this). The results also indicate that the relationship between expected || |ψ〉 ||Cn,∞ and n

is marginally superlinear, at least for small numbers of vertices.
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Figure 7: Expected Lj norm and
√

PARIHN versus j for n-vertex random graph states

7 Appendix: Proofs

For an integer set, S, denote xS =
∑

j∈S xj, and let xa ∈ f , xa 6∈ f , mean that f is or is not dependent on

xa, respectively. We denote pa = pxv=a, ma = m|xv=a, for a ∈ Z2.

7.1 Proofs for section 3

Proof: (of lemma 1) We write m = r(xv + xw + hv)
∏

t∈NM
w \{v}(xt + xw + ht), with xv, xw /∈ r, for

hk = ΓMkk
+ 1 +

∑

j∈NM
k

\{w} xj . We also write p = xw(xNP
w

+ ΓPww) + p|xw=0. We want to interchange the

roles of v and w by re-factoring m and by substituting xw = xv +hv +1 in the remaining terms that involve

xw. Thus m′ = r(xw +xv +hv)
∏

t∈NM
w \{v}(xt+xv +hv +ht+1), and p′ = (xv +hv +1)(xNP

w
+ΓPww)+p|xw=0.

¿From the form of m, p, and m′, p′, where R′ = R∪ {v} \ {w}, we obtain the graph equations,

M ′ = M −K{v},NM
v
−KNM

w \{v},{w} − ΓMvv∆{v} +K{w},BMv \{w} +KNM
w \{v},BMv \{w} + ΓMvv(∆{w} + ∆NM

w \{v}),

P ′ = P −K{w},NP
w
− ΓPww∆{w} +KBMv \{w},NP

w
+ ΓMvv∆NP

w
+ ΓPww∆BMv \{w}.

Rearranging,

M ′ = M +K{v},NM
v

+KNM
w \{v},BMv + ΓMvv∆BMw \{v},

P ′ = P +KBMv ,NP
w

+K{w},BMv \{w} + ΓMvv∆NP
w

+ ΓPww∆BMv \{w}.

Combining and simplifying,

G′ = M ′ + P ′ = G+KNM
w ,BMv + ∆{v} +KBMv ,BPw + ∆{w} + ΓGvv∆BGw + ΓGww∆BGv

= G+KBGv ,BGw + ∆{v,w} + ΓGvv∆BGw + ΓGww∆BGv = Gvw.
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To prove theorem 1 we require the following lemma.

Lemma 5 Let m and p be Boolean functions. Then,

√
2Hvm(−1)p = m0(−1)p0 +m1(−1)p1+xv . (1)

Proof: (lemma 5) Without loss of generality we set v = n− 1. Then we write the 2n × 1 vector

m(−1)p =
(

m0(−1)p0

m1(−1)p1

)

.

Using the equality
√

2H = X + Z,

Hnm(−1)p =
1√
2

(

Xn−1

(

m0(−1)p0

m1(−1)p1

)

+ Zn−1

(

m0(−1)p0

m1(−1)p1

))

=
1√
2

((

m1(−1)p1

m0(−1)p0

)

+
(

m0(−1)p0

−m1(−1)p1

))

.

Proof: (theorem 1)

For xv /∈ m (i.e. BG
v ⊆ R), we only need to show that |ψ′〉 = 1√

2
m′(−1)p

′
= Hvm(−1)p, where

m′ = m(xBPv + 1), p′ = p0 , (2)

as this implies that M ′ = M + Pv, P
′ = P − Pv, G

′ = M ′ + P ′ = G, and v ∈ L′, as required. By lemma 5,

and given that xv /∈ m,
√

2Hvm(−1)p = m(−1)p0(1+(−1)
x
BPv ) =







0 if xBPv = 1 mod 2

(−1)p0 if xBPv = 0 mod 2,
thereby

proving equation (2) and the case where xv /∈ m.

For v ∈ L, then p0 = p1 = p, and

m0 + (−1)xvm1 = (−1)
xv(ΓMvv+x

NG
v

) m

(ΓMvv + 1 + xBGv )
.

Then, from lemma 5,

m′ =
m

(ΓMvv + 1 + xBGv )
, and p′ = p+ xv(ΓMvv + xNG

v
).

Therefore M ′ = M −Mv, P
′ = P +Mv and, therefore, G′ = M ′ + P ′ = G, where v ∈ R′, thereby proving

the case where v ∈ L.

For v ∈ R, Bv * R, then, for ω ∈ NM
v , we first apply ‘swp’ to interchange v and w so that v ∈ L′′,

where m′′(−1)p
′′

= m(−1)p. The case where v ∈ R, Bv * R is then proved by showing that subsequently

applying Hv to (G′′,R′′), where v ∈ L′′, obtains the result in the theorem, and such a case has been proved

above.
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7.2 Proofs for section 4

In the sequel we mix arithmetic, mod 2, and mod 4 so, to clarify the formulas for equations that mix moduli,

anything in square brackets is computed mod 2. The {0, 1} result is then embedded in mod 4 arithmetic

for subsequent operations outside the square brackets.

We use the following lemma:

Lemma 6
n
∑

i=1

[Ai] (mod 4) = [

n
∑

i=1

Ai] + 2[
∑

i<j

AiAj ] (mod 4), where Ai ∈ Z2 .

Proof: (of lemma 2) This lemma generalises lemma 1. Using the same notation as in the proof of

lemma 1, we want to interchange the roles of v and w and, as we define R′ = R∪ {v} \ {w}, we substitute

xw = xv + hv + 1 where appropriate. The function m′ is the same as in the proof of lemma 1. For p′ we

write

p′ = [xv + hv + 1](2xNP
w

+ 2ΓPww +Qw) + p|xw=0,

which is the same as in the proof of lemma 1 apart from the term Qw[xv + hv + 1]. The case were Qw = 0

is proven in lemma 1. For Qw = 1 we observe, from lemma 6, that

[xv + hv + 1] = [xBMv \{w} + ΓMvv ] = xBMv \{w} + ΓMvv + 2
∑

i,j∈BMv \{w},i<j

xixj + 2ΓMvvxBMv \{w}.

The last equation can be interpreted graphwise as adding to the graph Gvw the terms

CBGv \{w} + ΓGvv∆BGv \{w} + ∆Q∩BGv \{w},

and setting Q′ = Q ⊖ BG
v . By definition 6 we obtain BG

v \ {w} = NGvw
w , and ΓGvv = ΓGvwww . Substituting

above we obtain G′ = Gvw + CNGvw
w

+ ΓGvwww∆NGvw
w

+ ∆Q∩NGvw
w

, with Q′ = Q⊖BGvw
w .

In order to prove theorem 3, we first state some spectral results.

Lemma 7 Let m be a Boolean function, and let p : Zn
2 → Z4. Then,

√
2Hv[m]ip = [m0]i

p0 + [m1]i
p1+2xv . (3)

Proof: A trivial generalisation of the proof for lemma 5.

Lemma 8 Let v ∈ L and let s = ΓMvv + 1 + xBMv . Then equation (3) can be rewritten as:

√
2Hv[m]ip = [

m

s
]i

p+2ΓMvvxv+2xvxNM
v . (4)
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Proof: As v ∈ L, p0 = p1 = p; writing m = rs, where xv 6∈ r, and substituting for m in equation (3), we

get
√

2Hv[m]ip = [r]ip
(

[s0] + [s1]i
2xv
)

= [r]ip
(

[ΓMvv + 1 + xNM
v

] + [ΓMvv + xNM
v

]
)

.

Either [s0] = 1 or [s1] = 1, so

√
2Hv[m]ip = [r]i

p+[ΓMvv+x
NM
v

]2xv = [
m

s
]i

p+2ΓMvvxv+2xvxNM
v .

Lemma 9 Let [m]ip be a generalised two-graph state. Let BG
v ⊆ R, and let Qv = 0. Then equation (3) can

be rewritten as:
√

2Hv[m]ip = 2[m][ΓPvv + 1 + xBPv ]ip0 . (5)

Proof: As BG
v ⊆ R, we have m0 = m1 = m. Therefore we can rewrite equation (3) as:

√
2Hv[m]ip = [m]ip0 (1 + iq) ,

where q = 2xBPv + 2ΓPvv . The expression 1 + iq = 0 iff q = 2 (mod 4); furthermore q = 0 or 2 (mod 4), so

otherwise 1 + iq = 2. Thus we obtain a new term in the magnitude, namely the factor [ΓPvv + 1 + xBPv ].

Proof: (theorem 3) ¿From lemma 8 we see that, for v ∈ L, M ′ = M −Mv, P
′ = P +Mv, and v ∈ R′,

and it follows that G′ = M ′ + P ′ = G. ¿From lemma 9 we see that, for BG
v ⊆ R, when Qv = 0, then

M ′ = M + Pv, P
′ = P − Pv, and v ∈ L′, and it follows that G′ = M ′ + P ′ = G. For the case where v ∈ R

and BG
v * R, we need only to make a swap to obtain v ∈ L′, and then apply lemma 8. We prove the re-

maining case indirectly in lemma 12, where the relevance of lemma 12 to theorem 3 is proven by lemma 13.

In order to prove theorem 4, we first state some spectral results.

Lemma 10 [30] Let m be a Boolean function, and let p : Zn
2 → Z4. Then,

√
2Nv[m]ip = [m0]i

p0 + [m1]i
p1+2xv+1. , (6)

Lemma 11 Let v ∈ L and let m = r(xv + u+ ΓGvv), xv 6∈ r. Then equation (6) can be rewritten as:

√
2Nv[m]ip = [r]i

p0+[u+ΓGvv ](2x
BPv

+1)
= [r]i

p0+(u+ΓGvv+2ΓGvvu+2
P

t,t′∈u,t<t′ xtx′
t)(2x

BPv
+1)

. (7)

Proof: Let xv ∈ m (i.e. Bv * R). By equation (6),
√

2Nj[m]ip = [m0]i
p0 + [m1]i

p1+2xj+1. Let v ∈ L, so

that N P
v = ∅. Writing s = xv + u+ ΓGvv , we obtain

√
2Nv[m]ip = [r]([s0]i

p0 + [s1]i
p1+2xv+1) = [r]ip0([u+ ΓGvv ] + [1 + u+ ΓGvv ]i

2xv+1) . (8)
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When [u + ΓGvv ] = 0,
√

2Nv[m]ip = [r]ip0i
2x

BPv
+1

; when [u + ΓGvv ] = 1,
√

2Nv[m]ip = [r]ip0 . This can be

summed up as
√

2Nv[m]ip = [r]i
p0+[u+ΓGvv ](2x

BPv
+1)

, and the expansion follows from lemma 6.

Lemma 12 Let BG
v ⊆ R and let Qv = 0. Then equation (6) can be rewritten as:

Nv[m]ip =
1 + i√

2
[m]ip+2

P

k<k′ [mkmk′ ]+(3+2ΓGvv )
P

k[mk]+(3+2ΓGvv )[xv]+3ΓGvv (9)

where xNP
v

= 2[
∑

k mk] + ΓGvv .

Proof: Let xv /∈ m; then m0 = m1 = m, and therefore
√

2Nv[m]ip = [m](ip0 + ip1+2xv+1) = [m]ip0(1 +

i2B
G
v +2ΓGvv+1). When Qv = 0, the coefficients of 2xBGv +2ΓGvv +1 are in {1, 3}, and so there are no solutions

to 1 + i
2x

BGv
+2ΓGvv+1

= 0, and this term is equal to 1 + i when 2xBGv + 2ΓGvv = 0, equal to 1 − i other-

wise. If we divide by 1 + i, we get [m]ip0i0 when 2xBGv + 2ΓGvv = 0, [m]ip0i3 otherwise. Using lemma 6, we

obtain
√

2Nv[m]ip = (1+i)[m]ip0i
3/2(2x

BGv
+2ΓGvv )

, and the lemma follows by observing that xNG
v

=
∑

k mk.

Remark: Note that for the case Bv * R but v ∈ R, we can swap with some element in the neighbourhood

to obtain the desired formula.

Lemma 13 Let v ∈ R, and let Qv = 1. Then, the action of Nv (resp. Hv) on the two graph-state

corresponding to G is equal to the action of Hv (resp. Nv) on the two-graph state corresponding to the graph

G with a possible loop in G at v and Qv = 0; moreover, the loop will appear iff ΓPvv = 0 (resp. ΓPvv = 1).

Proof:
(

1 i

1 −i

)(

1 0

0 ±i

)

=
(

1 ∓1

1 ±1

)

=
(

1 1

1 −1

)(

1 0

0 ∓1

)

.

Similarly,
(

1 1

1 −1

)(

1 0

0 ±i

)

=
(

1 ±i

1 ∓i

)

=
(

1 i

1 −i

)(

1 0

0 ±1

)

.

Corollary 3 Theorem 4.

Proof: By lemmas 11, 12, lemma 9, and the proof of lemma 1.

Proof: (lemma 3) We first observe that S3
v [m]ip = [m]ip+3xv . Moreover, N−1 = S3H. Thus, applying

N−1
v to [m]ip is the same as first applying Hv, then S3

v , to [m]ip.

Let v ∈ L′′: then m′′ = r(xv + ΓM ′′
vv

+ 1 + q), where q = xNM′′
v

. Then, S3
v [m′′]ip

′′
= [m′′]ip

′′+3xv =

[m′′]ip
′′+3[ΓM′′

vv
+q]

. On the other hand, in mod 4, [ΓM ′′
vv

+ q] = ΓM ′′
vv

+ q + 2ΓM ′′
vv
q + 2

∑

j,k∈NM′′
v ,j<k xjxk.

Then,

S3
v [m′′]ip

′′
= [m′′]i

p′′+3ΓM′′
vv

+3q+2ΓM′′
vv

q+2
P

j,k∈NM′′
v ,j<k

xjxk
.

Let v ∈ R′′, Q′′
v = 0, then we obtain an extra loop in G at v and Q′ = Q∪ {v}.

When v ∈ R′′, Q′′
v = 1, then the term xv cancels with 3xv and makes Q′ = Q′′ \ {v}.
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7.3 Proofs for section 5

Proof: (lemma 4) For any generalised two-graph state, (G,R, Q) there is always one unique equivalent

canonised form, (Gc,Rc, Qc), such that the indices in set Lc are as small as possible. We first state and

prove the following lemma.

Lemma 14 For any uncanonised generalised two-graph state, (G,R, Q), there always exists at least one

v ∈ L such that v 6∈ Lc and v > min(NG
v ).

Proof: (lemma 14) By definition an uncanonised generalised two-graph state, (G,R, Q), must contain at

least one v ∈ L such that v 6∈ Lc. We call such a v ‘uncanonical’. Assume that there is precisely one un-

canonical element, v, contained in L. We shall now assume that v < min(NG
v ) and show, by contradiction,

that such an assumption is impossible. If v < min(NG
v ), then there exists a codeword in the dual code

associated with m (ignoring loops in M) of the form 00 . . . 01xx . . . x where the leftmost 1 occurs in position

v (numbering positions from 0 on the left). But we have assumed that v 6∈ Lc so there must also exist |Lc|
other codewords in the dual code associated with m, also of the form 00 . . . 01xx . . . x, where the left-most 1

now occurs in position u, ∀u ∈ Lc. Thus, in total, we have |Lc|+ 1 codewords from the dual code. They are

clearly pairwise linearly independent so generate a linear space of size 2|Lc|+1. But the dual code associated

with m is only of size 2|Lc|. This is a contradiction. The same argument can be generalised to the case

where more than one uncanonical element is contained in L and to the case where M contains loops.

By lemma 14 we can always perform at least one ‘swp’ at edge vw on an uncanonised generalised two-

graph state, (G,R, Q), where v ∈ L, w ∈ R, and v > w, so as to produce a new generalised graph state,

(G′,R′, Q′), where w ∈ L′ and v ∈ R′. It is then straightforward to see that one must obtain the canonised

form after, at worst-case,
(|Lc|

2

)

‘swps’.
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n || |ψ〉 ||Cn,3 frequency

1 1.000000 1

average 1.000000 1

2 1.000000 1

average 1.000000 1

3 1.079871 1

average 1.079871 1

4 1.035744 1

1.020167 1

average 1.027955 2

5 1.067977 1

1.040834 1

1.030604 1

1.020167 1

average 1.039895 4

6 1.106649 1

1.071174 1

1.059898 1

1.053345 1

1.047544 1

1.046710 1

1.040834 2

1.034036 1

1.027148 1

1.020167 1

average 1.049849 11

7 1.150213 1

1.108636 1

1.089457 1

1.085332 1

1.078038 1

1.075408 1

1.073824 1

1.067977 1

1.063683 2

1.059898 1

1.059355 1

1.056085 1

1.055538 1

1.051694 2

1.051143 1

1.047266 1

1.043080 1

1.042800 1

1.038578 1

1.034036 3

1.033751 1

1.029455 1

average 1.060719 26

n || |ψ〉 ||Cn,4 CMF frequency

1 1.074570 3.000000 1

average1 1.074570 1

2 1.074570 3.000000 1

average 1.074570 1

3 1.240806 0.729730 1

average 1.240806 1

4 1.154701 1.285714 1

1.121195 1.723404 1

average 1.137948 2

5 1.223202 0.807309 1

1.165247 1.185366 1

1.143857 1.404624 1

1.121195 1.723404 1

average 1.163375 4

6 1.304643 0.527115 1

1.229154 0.779679 1

1.204803 0.903346 1

1.192052 0.981157 1

1.178878 1.073638 2

1.165247 1.185366 2

1.151120 1.323049 1

1.136453 1.496920 1

1.121195 1.723404 1

average 1.184334 11

7 1.396589 0.356595 1

1.307925 0.519108 1

1.266787 0.634833 1

1.259527 0.659331 1

1.244619 0.714472 1

1.236959 0.745653 2

1.221198 0.816959 1

1.213084 0.857984 2

1.204803 0.903346 2

1.196347 0.953772 2

1.187709 1.010162 3

1.178878 1.073638 1

1.169844 1.145626 2

1.160595 1.227962 1

1.151120 1.323049 4

1.141405 1.434098 1

average 1.207200 26

Table 1: || |ψ〉 ||Cn,3 and || |ψ〉 ||Cn,4 norms for graph states of n = 1 to 7 vertices

31


	Introduction
	Codes with phase
	Quantum states and the local Clifford group
	The Pauli group, stabilizer states, and graph states
	The action of the local Clifford group
	Example
	Local equivalence and a subgroup of the local Clifford group
	Main aims of this paper

	Formal Definitions
	The Two-Graph State
	The Generalised Two-Graph State
	The actions of  and 2

	Canonisation
	Spectral Analysis of the Graph State
	Appendix: Proofs
	Proofs for section ??
	Proofs for section ??
	Proofs for section ??


