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1 Introduction

Bent functions form a remarkable class of Boolean functions with applications
in many domains, such as difference sets, spreading sequences for CDMA, error
correcting codes and cryptology. In symmetric cryptography, these functions can be
used as building blocks of stream ciphers. They will not, in general, be used directly
as combining functions or as filtering functions, because they are not balanced,
but as Dobbertin showed in (Dobbertin, 1995), they can be used as an ingredient
to build balanced filtering functions. While this class of Boolean functions is very
small compared to the class of all Boolean functions it is still large enough to make
enumeration and classification impossible if the number of variables is ≥ 10. It is
therefore desirable to look for subclasses that are more amenable to generation,
enumeration and classification.

A subclass that has received little attention since Dillon’s seminal thesis (Dillon,
1974) is the subclass of those Boolean functions that are equal to their dual (or
Fourier transform in Dillon’s terminology). We call these self-dual bent functions.
Of related interest are those bent functions whose dual is the complement of the
function. We call these anti-self-dual bent functions. In this work we characterize
the sign functions of these two class of functions as the directions where extrema of
the Rayleigh quotient of the Sylvester type Hadamard matrix occur, or, equivalently,
as eigenvectors of that matrix. This spectral characterization allows us to give a
very simple and efficient search algorithm, that makes it possible to enumerate
and classify all self-dual bent function for ≤ 6 variables and all quadratic such
functions in 8 variables. The computational saving on the exhaustive search is
doubly exponential in n. We derive primary constructions (Maiorana-McFarland
and Dillon’s partial spreads), secondary constructions (going from bent function
in n variables to self-dual or anti-self-dual bent functions in n+m variables) and
class symmetries (operations on Boolean functions that preserve self-duality or
anti-self-duality). The subclass of the Maiorana-McFarland class of bent functions
exhibits interesting connections with self-dual codes, a fact which was our original
motivation at the start of the study: to connect the duality of codes with the duality
of Boolean functions. This appears also in the section on class symmetries.

When the number of variables is odd and bent functions cannot exist maximizing
the Rayleigh quotient still makes sense. We give an iterative construction to build
Boolean functions with Rayleigh quotient converging to some asymptote.

The material is organized as follows. Section 2 collects the notation and
definitions that we need for the rest of the paper. Section 3 contains the
characterization in terms of Rayleigh quotient and the bounds on that quantity for
an odd number of variables. Section 4 looks into constructions, first primary then
secondary. Section 5 describes the search algorithm and establishes the symmetry
between self-dual and anti-self-dual bent functions. The numerical results are listed
in Section 6.
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2 Definitions and Notation

A Boolean function f in n variables is any map from Fn
2 to F2. Its sign function is

F := (−1)f , and its Walsh-Hadamard transform (WHT) can be defined as

F̂ (x) :=
∑
y∈Fn

2

(−1)f(y)+x·y.

When F is viewed as a column vector the matrix of the WHT is the Hadamard
matrix Hn of Sylvester type, which we now define by tensor products. Let

H :=
(

1 1
1−1

)
.

Let Hn := H⊗n be the n-fold tensor product of H with itself and Hn :=
H⊗n/2n/2, its normalized version. Recall the Hadamard property

HnH
T
n = 2nI2n ,

where we denote by IM the M by M identity matrix. A Boolean function in n
variables is said to be bent if and only if HnF is the sign function of some other
Boolean function. That function is then called the dual of f and denoted by f̃ . The
sign function of f̃ is henceforth denoted by F̃ . If, furthermore, f = f̃ , then f is
self-dual bent. This means that its sign function is an eigenvector of Hn attached
to the eigenvalue 1. Similarly, if f = f̃ + 1 then f is anti-self-dual bent. This means
that its sign function is an eigenvector of Hn attached to the eigenvalue −1.

3 A Characterization

Define the Rayleigh quotient Sf of a Boolean function f in n variables by the
character sum

Sf :=
∑

x,y∈Fn
2

(−1)f(x)+f(y)+x·y =
∑
x∈Fn

2

F (x)F̂ (x).

Theorem 3.1: Let n denote an even integer and f be a Boolean function in n
variables. The modulus of the character sum Sf is at most 23n/2 with equality if and
only if f is self-dual bent or anti-self-dual bent.

Proof: The triangle inequality yields∣∣∣∣∣∑
x,y

(−1)f(x)+f(y)+x·y

∣∣∣∣∣ ≤∑
x

∣∣∣∣∣∑
y

(−1)f(x)+f(y)+x·y

∣∣∣∣∣ .
By the Cauchy Schwarz inequality the latter sum is at most√

2n
∑

x

(
∑

y

(−1)f(x)+f(y)+x·y)2
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which, by Parseval’s identity (
∑

x(F̂ (x))2 = 22n) equals 23n/2. So, Sf ≤ 23n/2, with
equality only if there is equality in these two inequalities. Equality holds in the
Cauchy-Schwarz inequality if and only if |F (x)F̂ (x)| = |F̂ (x)| is a constant function
of x, that is if and only if f is bent. Equality in the triangle inequality holds then if
and only if the sign of F (x)F̂ (x) = 2n/2F (x)F̃ (x) is a constant function of x, that
is if and only if, furthermore, f is self-dual (+ sign) or anti-self-dual (− sign). �

By using the sign function F of f we can write

Sf =
∑
x∈Fn

2

F (x)F̂ (x) = 〈F,HnF 〉.

The standard properties of the Rayleigh quotient attached to the real symmetric
matrix Hn show that the maximum (resp. minimum) of Sf are obtained for F
an eigenvector of Hn attached to a maximum (resp. minimum) eigenvalue of Hn,
which are, by Lemma 5.2 below, 2n/2 (resp. −2n/2). See for instance (Demmel, 1997,
p. 198) or any textbook in numerical analysis for basic definition and properties of
the Rayleigh quotient of an Hermitian matrix. Alternatively, by using Lemma 5.2
below, the orthogonal decomposition in eigenspaces of Hn yields F = F+ + F−,
with F± ∈ Ker(Hn ± 2n/2I2n), and 〈F, F 〉 = 〈F+, F+〉+ 〈F−, F−〉. Plugging this
decomposition into Sf gives

Sf = 2n/2〈F+, F+〉 − 2n/2〈F−, F−〉,

and by the triangle inequality, |Sf | ≤ 23n/2, with equality if and only if F = F+ or
F = F−.

Proposition 3.2: The Hamming distance between a self-dual bent function f1 and
an anti-self-dual bent function f2, both of n variables, is 2n−1.

Proof: Let F1 (resp. F2) denote the sign function of f1 (resp. f2.). On the one
hand

〈F1, HnF2〉 = −2n/2〈F1, F2〉,

by anti-self-duality of f2. On the other hand by self-adjunctness of Hn, we have

〈F1, HnF2〉 = 〈HnF1, F2〉,

which equals 2n/2〈F1, F2〉, by self-duality of f1. Since

〈F1, F2〉 = −〈F1, F2〉 = 0,

the result follows. �

An interesting open problem is to consider the maximum of Sf for n odd, when
the eigenvectors of Hn cannot be in {±1}2n

. In that direction we have

Theorem 3.3: The maximum Rayleigh quotient of a Boolean function g in an
odd number of variables n is at least Sg ≥ 2(3n−1)/2.
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Table 1 Boolean Functions with Maximum Rayleigh Quotient Found by Experiment

n Sf max Examples

3 0.883883 123 + 13 + 23
5 0.883883 12345 + 1235 + 2345 + 124 + 125 + 234 + 245 + 12 + 14 + 34 + 1
7 0.883883 123456 + 123457 + 12345 + 12346 + 12347 + 13456 + 13457 +

23456 + 23457 + 1234 + 1236 + 1237 + 1246 + 1247 + 1345 +
1456 + 1457 + 2356 + 2357 + 2456 + 2457 + 123 + 126 + 127 +
134 + 136 + 2456 + 2457 + 123 + 126 + 127 + 134 + 136 + 137 +
145 + 236 + 237 + 246 + 247 + 346 + 347 + 356 + 357 + 456 +
457 + 16 + 17 + 25 + 26 + 27 + 35 + 36 + 37 + 46 + 47 + 56 + 57 +
67 + 3 + 5

9 0.883883 algebraic degree 7, number of monomials is 110
11 0.905981 algebraic degree 8, number of monomials is 524
13 0.919791 algebraic degree 9, number of monomials is 1767
15 0.926697 algebraic degree 10, number of monomials is 5494
17 0.930149 algebraic degree 11, number of monomials is 16673
19 0.931876 algebraic degree 12, number of monomials is 50208
21 0.932739 algebraic degree 13, number of monomials is 150811
23 0.933170 algebraic degree 14, number of monomials is 452618
25 0.933386 algebraic degree 15, number of monomials is 1358037

Proof: Let F be the sign function of a self-dual bent function in n− 1 variables,
so that Hn−1F = 2(n−1)/2F . Define a Boolean function in n variables by its sign
function G = (F, F ). Write Hn = H ⊗Hn−1, to derive

HnG = (2Hn−1F, 0)t = (2(n+1)/2F, 0)t.

Taking dot product on the left by G yields

Sg = 2(n+1)/2F tF = 2(n+1)/22n−1 = 2(3n−1)/2.

�

Define the normalised Rayleigh quotient magnitude of a Boolean function, f , of
n variables, to be

Sf =
|Sf |

23n/2
.

When n is even then the maximum achievable Sf is exactly one. When n is odd
then the bent concatenation construction contained in the proof of Theorem 3.3
gives Sf = 2−

1
2 . We call this latter figure the bent-concatenation bound for Sf . We

are interested in finding Boolean functions that achieve Sf > 2−
1
2 = 0.707 for n

odd. It turns out that such functions do exist. Table 1 shows the maximum Sf

found so far by some initial computations, for different n, by the iterative method
we now describe. Note that the search for n = 3 is exhaustive, while searches for
n ≥ 5 are non-exhaustive.
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For lack of bent functions—and therefore dual bent functions—in odd number
of variables, we need to introduce the following notion of duality. For any Boolean
function f in n variables, with n odd, let

F̂ = FmF p,

with Fm ≥ 0, and F p with values in {±1}. If Fm(x) = 0, we take the convention
that F p(x) = 1. (Mnemonic: m for magnitude and p for phase). Let F0 denote an
arbitrary sign function in n variables. Define for k ≥ 1, a sequence of sign functions
in n+ 2k variables that, at each step, satisfy one of the following two recursions:

Fk = (Fk−1, F
p
k−1, F

p
k−1,−Fk−1)t or Fk = (F p

k−1, Fk−1, Fk−1,−F p
k−1)t.

The attached Boolean function is fk such that Fk = (−1)fk .

Theorem 3.4: The sequence of normalized Rayleigh quotients of fk is
nondecreasing.

Proof: Note that Hn+2k = H2 ⊗Hn+2k−2. Write, for simplicity M = Hn+2k−2,
and Sk for Sfk

. We evaluate Sk as a function of Sk−1. Using the expression for
Hn+2k−2, we get, depending on the choice of Fk,

Hn+2kFk = H2(MFk−1,MF p
k−1,MF p

k−1,−MFk−1)t,

or

Hn+2kFk = H2(MF p
k−1,MFk−1,MFk−1,−MF p

k−1)t.

Multiplying on the left by F t
k (regarded as a length 4 row vector) we get, for either

choice of Fk,

Sk = 4〈Fk−1,MF p
k−1〉+ 4〈F p

k−1,MFk−1〉,

and, by self-adjunctness of M ,

Sk = 8〈MFk−1, F
p
k−1〉.

By definition of the phase part, MFk−1 = F p
k−1F

m
k−1. Plugging back in yields

|Sk| = 8
∑

x

Fm
k−1(x).

By definition of the Rayleigh quotient,

Sk−1 =
∑

x

Fk−1(x)F p
k−1(x)Fm

k−1(x),

from which it follows that |Sk−1| ≤
∑

x F
m
k−1(x) and, therefore, that

|Sk−1| ≤
|Sk|

8
.
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By the identity 23(n+2k)/2 = 8 · 23(n+2k−2)/2, the result follows. �

Since a bounded nondecreasing sequence of reals converge we can define the
asymptote of a Boolean function f by the limit of the normalized Rayleigh quotients
of fk with initial condition f0 = f for k large. In Table 2 we give some lower bounds
on asymptotes for Sfk

as k →∞, for n small, by iterating just the construction
Fk = (Fk−1, F

p
k−1, F

p
k−1,−Fk−1)t. For instance, for n = 3, experiments show that

applying the construction to the Boolean functions in 3 variables partitions the
input space into four classes depending on the asymptote of Sfk

for k large. We
see, for n = 3, that the four lower bounds are Sf10 = 0.507629, 0.882848, 0.883538,
and 0.883883, which appear to be tight to within two or three decimal places.
Observe that the f10 are Boolean functions of 3 + (10× 2) = 23 variables. One
could, of course, get tighter bounds by computing, in each case, e.g. Sf11 and higher,
but computational demands then become prohibitive. The lowest two classes for
n = 2, 3, and the lowest class for n = 4 are for f0 taken from the set of affine
functions. Observe that, for n even, we appear to obtain a construction for functions
which are ‘asymptotically self-dual ’.

At each iteration step, we could either choose construction

Fk = (Fk−1, F
p
k−1, F

p
k−1,−Fk−1)t

or

Fk = (F p
k−1, Fk−1, Fk−1,−F p

k−1)t,

and, although not shown in Table 2, this extra freedom appears, experimentally, to
yield a much larger set of asymptotic bounds.

To demonstrate that the above recursive construction is effective, we need to
consider what the average Rayleigh quotient of a Boolean function is when picked
at random. Computer experiments give the following:

• For n = 2, Sf av = 0.5.

• For n = 3, Sf av = 0.398.

• For n = 4, Sf av = 0.281.

• For n = 5, Sf av ≈ 0.199.

• For n = 6, Sf av ≈ 0.141.

• For n = 7, Sf av ≈ 0.100.

• For n = 8, Sf av ≈ 0.070.

From these experimental results we propose the following conjecture.

Conjecture 3.5: The expected absolute Rayleigh quotient of a random Boolean
function is ∼ 9/2

n
2 +3 for large n.
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Table 2 Lower Bounds, Sfk , on the Normalised Asymptotic Rayleigh Quotient
Magnitude of fk for f0 an n-Variable Boolean Function

n k Lower bound on asymptote

1 11 0.883883
2 0 1.0

12 0.999756
12 0.687317

3 10 0.883883
10 0.883538
10 0.882848
10 0.507629

4 0 1.0
10 0.999756
10 0.999512
6 0.871582
6 0.840820
6 0.831810
6 0.828461
6 0.813049
6 0.812500
6 0.811523
6 0.809570
6 0.807617
6 0.687500
6 0.686523
6 0.684570
6 0.680664
10 0.366730

5 Highest class sampled
10 0.933386

Lowest class sampled
10 0.508104
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4 Constructions

4.1 Primary Constructions

4.1.1 Quadratic Functions

Recall that a matrix over F2 is called symplectic (see (MacWilliams and Sloane,
1977, Chap. 15, sec. 2, p. 435)) if it is symmetric with zero diagonal. Let f
be a quadratic function, and let ϕf (x, x′) = f(0) + f(x) + f(x′) + f(x+ x′) its
associated symplectic form. We have (see (MacWilliams and Sloane, 1977, Chap.
15)) ϕf (x, x′) = x′ · Lf (x), where Lf is a linear endomorphism whose matrix is
symplectic (conversely, for every symplectic matrix, denoting by L the linear
function admitting it as a matrix, the set of functions f such that ϕf (x, x′) =
x′ · L(x) is a coset of the Reed-Muller code of order 1 in the Reed-Muller code of
order 2).

Theorem 4.1: If f is self-dual bent or anti-self-dual bent quadratic Boolean
function then the symplectic matrix attached to its symplectic form Lf is an
involution, and f(x) + f(Lf (x)) is constant.

Proof: It is well-known (see e.g. (Carlet, 2009)) that∑
x∈Fn

2

(−1)f(x)

2

= 2n|Ef |,

where Ef is the kernel of Lf , if the restriction of f to Ef is constant, and if not
constant then the squared character sum is 0. By Theorem 3.1 the function f is
self-dual bent or anti-self-dual bent if and only if ∑

x,y∈Fn
2

(−1)f(x)+f(y)+x·y

2

= 23n.

According to the facts recalled above and applied to the quadratic function f
in 2n variables (x, y) 7→ f(x) + f(y) + x · y, this is equivalent to the fact that Ef
has dimension n and f is constant on Ef . So let us calculate the symplectic form
associated to f. It is straightforward to see that it equals x′ · Lf (x) + y′ · Lf (y) +
x · y′ + x′ · y. We deduce that

Ef = {(x, y) ∈ (Fn
2 )2 | Lf (x) + y = Lf (y) + x = 0}

= {(x, y) ∈ (Fn
2 )2 | y = Lf (x), L2

f (x) + x = 0}.

Hence, f is self-dual bent or anti-self-dual bent if and only if L2
f = id and the

function f(x) + f(Lf (x)) + x · Lf (x) is constant. But x · Lf (x) = ϕf (x, x) = f(0) +
f(x) + f(x) + f(0) = 0. �

Example 4.2: Let us take the example of the Gold-like monomial functions
f(x) = tr(ax2i+1), a ∈ F2n , with the inner product x · y = tr(xy). We have Lf (x) =
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ax2i

+ (ax)2
n−i

. Hence Ef has dimension n if and only if, for every x ∈ F2n ,
we have a(ax2i

+ (ax)2
n−i

)2
i

+ (a(ax2i

+ (ax)2
n−i

))2
n−i

= x, that is a2i+1x22i

+
a2x+ a2n−i+1

x+ a2n−2i+2n−i

x2n−2i

= x, that is a2i+1x22i

+ (a2 + a2n−i+1
+ 1)x+

a2n−2i+2n−i

x2n−2i

= 0. Hence, f is self-dual bent or anti-self-dual bent if and only
if:

• either i = n/2 and a2 + a2n/2+1
+ 1 = 0,

• or i = n/4, a2n/4+1 + a2n/2+23n/4
= 0 and a2 + a23n/4+1

+ 1 = 0.

Remark 4.3: Classifying all involutory symplectic matrices seem difficult. For
instance, taking the adjacency matrix of an undirected graph of girth at least three
provides, after reduction modulo 2, many examples.

4.1.2 Maiorana-McFarland

A general class of bent functions is the Maiorana-McFarland class, that is functions
of the form

x · φ(y) + g(y)

with x, y dimension n/2 variable vectors, φ any permutation in Fn/2
2 , and g arbitrary

Boolean. In the following theorem we consider the case where φ ∈ GL(n/2, 2). Let
Lt denote the transpose of L.

Theorem 4.4: A Maiorana-McFarland function is self-dual bent (resp. anti-
self-dual bent) if and only if g(y) = b · y + ε and φ(y) = L(y) + a where L is a
linear automorphism satisfying L× Lt = In/2, a = L(b), and a has even (resp. odd)
Hamming weight. In both cases the code of parity check matrix (In/2, L) is self-dual
and (a, b) one of its codewords. Conversely, to the ordered pair (H, c) of a parity
check matrix H of a self-dual code of length n and one of its codewords c can be
attached such a Boolean function.

Proof: The dual of a Maiorana-McFarland bent function x · φ(y) + g(y) is equal
to φ−1(x) · y + g(φ−1(x)) (Carlet, 2009). If the function f is self-dual then g and
φ must be affine, that is, g(y) = b · y + ε and φ(y) = L(y) + a (where L is a linear
automorphism). Then f is self-dual if and only if, for every x, y ∈ Fn/2

2 , x · (L(y) +
a) + b · y + ε = y · L−1(x+ a) + L−1(x+ a) · b+ ε, that is, for every x, y ∈ Fn/2

2 ,
x · L(y) = y · L−1(x) (i.e. L× Lt = In), a = L(b) and b has even weight. �

Any self-dual code of length n gives rise to a certain number, let’s say K, of row-
column inequivalent systematic parity check matrices, and each such inequivalent
parity check matrix gives rise to 2n/2−1 self-dual bent functions, and 2n/2−1 anti-self-
dual bent functions. Thus, any self-dual code of length n gives rise to K × 2n/2−1

self-dual bent functions, and the same number of anti-self-dual bent functions, to
within variable re-labelling. All such functions are quadratic. It is possible to both
classify and/or enumerate this class given a classification and/or enumeration of
all self-dual codes, coupled with a method to classify and/or enumerate all row-
column inequivalent systematic parity check matrices for each code. One way of
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performing this last task is to generate all edge-local complementation (ELC) orbits
(Danielsen and Parker, 2008), to within re-labelling of vertices, for the bipartite
graph associated with each distinct self-dual code of size n. For each of self-dual
and anti-self-dual, enumeration would then be realised by summing the orbit sizes
and then multiplying the result by 2n/2−1, and classification would be realised by
listing each member in the union of orbits. Each member of such a list would then
be a RM(2, n) coset leader for a coset of 2n/2−1 self-dual and 2n/2−1 anti-self-dual
quadratic Boolean functions.

4.1.3 Dillon’s Partial Spreads

Let x, y ∈ F2n/2 . The class denoted by PSap in (Carlet, 2009) consists of so-called
Dillon’s function of the type

f(x, y) = g(x/y)

with the convention that x/y = 0 if y = 0, and where g is balanced and g(0) = 0.

Theorem 4.5: A Dillon function is self-dual bent if g satisfies g(1) = 0, and, for
all u 6= 0 the relation g(u) = g(1/u). There are exactly

(
2n/2−1−1
2n/2−2

)
such functions.

Proof: By (Carlet, 2009) the dual of a Dillon function is obtained by exchanging
the roles of x and y. Define g by its values on pairs u, 1/u for u different from zero
and one. Balancedness means that g evaluates to one 2n/2−1 times. The enumeration
then follows by observing that u is never equal to 1/u for u 6= 1. �

By complementing functions one may go beyond the PSap class.

Corollary 4.1: Let g be a function from F2n/2 down to F2, that satisfies g(1) =
g(0), and, for all u 6= 0 the relation g(u) = g(1/u). If g is balanced then with the
same convention as above the function f(x, y) = g(x/y) is self-dual bent.

4.1.4 Monomial Functions

In general we shall consider functions of the type f(x) = tr(axd), a ∈ F2n , even
n, with the inner product x · y = tr(xy). The Gold exponent d = 2i + 1 has been
treated in the quadratic function subsection. The Dillon exponent d = 2i − 1 follows
by (Leander, 2006, Cor. 4). The function is self-dual bent if K(a) = 0, where K(a)
denotes a Kloosterman sum. It is in fact a special case of the preceding subsection.
The Kasami exponent d = 22i − 2i − 1 is treated in (Langevin and Leander, 2008)
where it is shown that the dual is not even a monomial function.

4.2 Secondary Constructions

4.2.1 Class Symmetries

In this section we give class symmetries that are operations on Boolean functions
that leave the self-dual bent class invariant as a whole. Define, following (Janusz,
2007), the orthogonal group of index n over F2 as

On := {L ∈ GL(n, 2) | LLt = In}.
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Observe that L ∈ On if and only if (In, L) is the generator matrix of a self-dual
binary code of length 2n. Thus, for even n, an example is In + Jn with Jn the
n× n all-one matrix.

Theorem 4.6: Let f denote a self-dual bent function in n variables. If L ∈ On

and c ∈ {0, 1} then f(Lx) + c is self-dual bent.

Proof: Set g(x) := f(Lx) + c. The Walsh-Hadamard transform of that function is

Ĝ(x) = (−1)cF̂ (L(x)) = 2n/2(−1)f(Lx)+c = 2n/2(−1)g(x),

where the first equality holds by a change of variable involving L−1 = LT , and the
last before last by self-duality of f . �

Recall that a function is I-bent if it has flat spectrum with respect to some
unitary transform U obtained by tensoring m matrices I2 and n−m matrices H1

in any order (Riera and Parker, 2006), for some m ≤ n.

Theorem 4.7: Let f denote a self-dual bent function in n variables, that is
furthermore I-bent. Its I-bent dual is self-dual bent.

Proof: By definition, there is an unitary matrix U and a Boolean function g such
that U(−1)f = (−1)g. The result then follows from the fact that U commutes with
Hn.

Hn(−1)g = HnU(−1)f = UHn(−1)f = U(−1)f ,

where the last equality comes from the self-duality of f . �

4.2.2 n+m Variables from n Variables and m Variables

For this subsection define the duality of a bent function to be 0 if it is self-dual
bent and 1 if it is anti-self-dual bent. If f and g are Boolean functions in n and
m variables, respectively, define the direct sum of f and g as the Boolean function
on n+m variables given by f(x) + g(y). The following result is immediate, and
its proof is omitted. Still it shows that self-dual and anti-self-dual bent functions
cannot be considered separately.

Proposition 4.8: If f and g are bent functions of dualities ε and ν their direct
sum is bent of duality ε+ ν.

A more general construction involving four functions can be found in (Carlet,
2004). If f1, f2 and g1, g2 are a pair of Boolean functions in n and m variables,
respectively, define the indirect sum of these four functions by

h(x, y) := f1(x) + g1(y) + (f1 + f2(x))(g1 + g2(y)).

Theorem 4.9: If f1, f2 (resp. g1, g2) are bent functions of dualities both ε (resp.
both ν) their indirect sum is bent of duality ε+ ν. If f1 is bent, f̃1 its dual, and
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f2 = f̃1 + ε for some ε ∈ {0, 1}, and g1 is self-dual bent and g2 is anti-self-dual bent,
then the indirect sum of the four functions is self-dual bent of duality ε.

Proof: The proof of the first assertion comes from the fact that the indirect sum
is bent if all four functions are bent and in this case the dual function is obtained
as the indirect sum of the duals of the four functions (Carlet, 2004). Writing
fi = fi + ε, and gi = gi + ν for i = 1, 2, the result follows. The proof of the second
assertion is similar and is omitted. �

As an example of the construction take g1(y1, y2) = y1y2 which is self-dual bent
and g2(y1, y2) = y1y2 + y1 + y2 which is anti-self-dual bent. Let f be a bent function
in n variables and put F (resp. F̃ ) its sign function (resp. the sign function of its
dual). The vector (F, F̃ , F̃ ,−F ) is the sign function of a self-dual bent function in
n+ 2 variables. The vector (F,−F̃ ,−F̃ ,−F ) is the sign function of an anti-self-
dual bent function in n+ 2 variables. The observant reader will notice that the
sign pattern of the above construction is the same as that of self-dual bent and
anti-self-dual bent functions in 2 variables. This leads us to conjecture the existence
of 20 different constructions of self-dual bent functions in n+ 4 variables from bent
functions in n variables.

5 A search algorithm

Theorem 5.1: Let n ≥ 2 be an even integer and Z be arbitrary in {±1}2n−1
.

Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}2n−1
, then the vector (Y,Z) is the sign

function of a self-dual bent function in n variables. Moreover all self-dual bent
functions respect this decomposition.

We prepare for the proof by a linear algebra lemma.

Lemma 5.2: The spectrum of Hn consists of the two eigenvalues ±1 with the
same multiplicity 2n−1. A basis of the eigenspace attached to 1 is formed from the
rows of the matrix (Hn−1 + 2n/2I2n−1 , Hn−1). An orthogonal decomposition of R2n

in eigenspaces of Hn is

R2n

= Ker(Hn + 2n/2I2n)⊕Ker(Hn − 2n/2I2n).

Proof of the Lemma: The minimal polynomial of Hn is X2 − 1, by symmetry of
Hn and the Hadamard property of Hn. Hence the spectrum. The multiplicity follows
by Tr(Hn) = 0. The matrix Hn + In is a projector on the eigenspace attached to
the eigenvalue 1. The said basis is, up to scale, the first 2n−1 columns of that
matrix. The last assertion follows by standard properties of symmetric real matrices.
�

Proof: By the Lemma, we need to solve for X with rational coordinates the system

(Hn−1 + 2n/2I2n−1)X = 2n/2Y

Hn−1X = 2n/2Z
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or, equivalently

Z +X = Y

Hn−1X = 2n/2Z.

The result follows by H2
n−1 = 2n−1In−1. �

As an example we treat the case n = 2. We get Y = (2z1 + z2, z1)T . The
condition y1 = ±1 forces z1 = −z2. We have two self-dual bent functions of sign
functions (z1, z1, z1,−z1)T , with z1 = ±1. We give an algorithm to generate all
self-dual bent functions of degree at most k.

Algorithm SDB(n, k):

1. Generate all Z in RM(k, n− 1).

2. Compute all Y as Y := Z + 2Hn−1

2n/2 Z.

3. If Y ∈ {±1}2n−1
output (Y,Z), else go to next Z.

It should be noted that compared to brute force exhaustive search the
computational saving is of order 2R, with

R = 2n −
k∑

j=0

(
n− 1
j

)
= 2n−1 +

n−k−1∑
j=0

(
n− 1
j

)
.

The next result shows that there is a one-to-one correspondence between self-dual
and anti-self-dual bent functions.

Theorem 5.3: Let n ≥ 2 be an even integer and Z be arbitrary in {±1}2n−1
.

Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}2n−1
, then the vector (Z,−Y ) is the sign

function of an anti-self-dual bent function in n variables.

Proof: Observe the identity(
I2n−1 +

2Hn−1

2n/2

)(
I2n−1 − 2Hn−1

2n/2

)
= −I2n−1 .

From there we see that

Z = Y ′ − 2Hn−1

2n/2
Y ′

with Y ′ = −Y. By the analogue of Theorem 3.1 for anti-self-dual bent functions
the result follows. �

From this result follows a generation algorithm for anti-self-dual bent functions
of degree at most k.

Algorithm NSDB(n, k):

1. Generate all Z in RM(k, n− 1).
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2. Compute all Y as Y := Z − 2Hn−1

2n/2 Z.

3. If Y ∈ {±1}2n−1
output (Y,Z), else go to next Z.

Eventually, we point out a connection with plateaued functions. Recall that a
Boolean function f on n variables is plateaued of order r if the entries of Hn(−1)f

have modulus either zero or 2n−r/2, where r is even and can range from 0 to n.

Theorem 5.4: Let n ≥ 2 be an even integer and Z be arbitrary in {±1}2n−1
.

Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}2n−1
, then both Y and Z are sign functions

of plateaued Boolean functions of order n− 2 in n− 1 variables.

Proof: Observe that the entries of Y − Z take values in the set {0,±2}, and,
therefore the entries of Hn−1Z in the set {0,±2n/2}. Similarly, by the proof of the
preceding Theorem, Z := −Y + 2Hn−1

2n/2 Y. By the same argument as previously, the
entries of Hn−1Y are in the set {0,±2n/2}. �

6 Numerics

The following results were obtained by using the algorithms SDB(n, k) and
NSDB(n, k) for n ≤ 6 and k ≤ n/2. We consider the self-dual bent functions f and
g to be equivalent when g(x) = f(Ax+ b) + b · x+ c, where AAt = I, b ∈ Zn

2 , wt(b)
even, and c ∈ Z2.

6.1 Two variables

There is one and only one self-dual bent function in two variables up to
complementation: (1, 1, 1,−1), or x1x2. There is one and only one anti-self-dual
bent function in two variables up to complementation: (1,−1,−1,−1).

6.2 Four and Six Variables

We have classified all self-dual bent functions of up to 6 variables. Table 3 gives
a representative from each equivalence class, and the number of functions in each
class. An expression like 12 + 34 denotes x1x2 + x3x4.

6.3 Eight Variables

We have classified all quadratic self-dual bent functions of 8 variables. Table 4 gives
a representative from each equivalence class, and the number of functions in each
class.

7 Conclusion and open problems

In this work we have explored the class of self-dual bent functions and characterized
it by the Rayleigh quotient of the Hadamard matrix of Sylvester type. We have
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Table 3 Self-Dual Bent Functions of 4 and 6 Variables

Representative from equivalence class Size

12 2

Total number of functions of 2 variables 2

12 + 34 12
12 + 13 + 14 + 23 + 24 + 34 + 1 8

Total number of functions of 4 variables 20

12 + 34 + 56 480
12 + 34 + 35 + 36 + 45 + 46 + 56 + 3 240
12 + 13 + 14 + 15 + 16 + 23 + 24 + 25 + 26 + 34 + 35 + 36 + 45 + 46 +
56 + 1 + 2

32

134 + 234 + 156 + 256 + 12 + 35 + 46 + 56 11,520
126 + 136 + 125 + 135 + 246 + 346 + 245 + 345 + 12 + 15 + 26 + 34 +
36 + 45 + 56

5760

126 + 136 + 145 + 135 + 246 + 236 + 245 + 345 + 12 + 15 + 25 + 34 +
36 + 46 + 56

23,040

456 + 356 + 145 + 246 + 135 + 236 + 124 + 123 + 15 + 26 + 34 + 35 +
36 + 45 + 46 + 3

1440

123 + 124 + 134 + 126 + 125 + 136 + 135 + 234 + 236 + 235 + 146 + 145 +
156 + 246 + 245 + 346 + 345 + 256 + 356 + 456 + 14 + 25 + 36 + 45 + 46 +
56 + 1 + 2 + 3

384

Total number of functions of 6 variables 42,896

Table 4 Quadratic Self-Dual Bent Functions of 8 Variables

Representative from equivalence class Size

12 + 34 + 56 + 78 30,720
12 + 34 + 56 + 57 + 58 + 67 + 68 + 78 + 5 15,360
13 + 14 + 15 + 26 + 27 + 28 + 34 + 35 + 45 + 67 + 68 + 78 + 1 + 2 2048

Number of quadratic functions of 8 variables 48,128
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determined all self-dual bent functions in at most 6 variables and all quadratic
self-dual bent functions for 8 variables. A complete characterization of the class of
quadratic self-dual bent functions is a difficult problem that comprises classifying
involutory symplectic matrices as a subproblem. The open question is to know
if there is more than the Maiorana-McFarland type of Section 4.1. We also have
given some symmetries that preserve the self-dual class in Section 4.2. It would
be interesting to know if there are no more. More connections with the theory of
self-dual binary codes, for instance weight enumerators, is a goal worth pursuing.
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