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Abstract. The Rayleigh quotient of a bent function is an invariant under
the action of the orthogonal group, and it measures the distance of the
function to its dual. An efficient algorithm is derived that generates all
bent functions of given Rayleigh quotient. The Rayleigh quotient of some
bent functions obtained by primary (Maiorana McFarland, Dillon) or
secondary (direct and indirect sum) constructions is computed.
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1 Introduction

Ever since its introduction by Rothaus, the main problem with the class of
Boolean functions known as bent has been the classification. In this article we
study a parameter that measures the distance between a function and its dual
and this parameter is invariant under the action of the extended orthogonal
group, a subgroup of the affine group. We introduced this parameter in [4] and
called it the Rayleigh quotient as it is proportional to the Rayleigh quotient (in
the sense of numerical analysis) of the matrix of the Walsh Hadamard transform.
For a bent function in n variables this quantity in the normalization used here, is
an even integer in the range [−2n, 2n]. It was proved in [4] that a bent function
is equal to its dual iff its Rayleigh quotient is 2n, in which case the function
is called self dual. Likewise a bent function is the complement of its dual iff
its Rayleigh quotient is −2n, in which case the function is called anti self dual.
[4] then tabulated the Rayleigh quotient values for all self dual bent Boolean
functions in ≤ 6 variables and all quadratic such functions in 8 variables, up to
the action of the extended orthogonal group.

This article builds on the results of [4], by tabulating the Rayleigh quotient
of all bent Boolean functions of ≤ 6 variables, up to equivalence with respect to
the extended orthogonal group, and is organized as follows. Section 2 contains
the necessary notation. Section 3 develops the linear algebra needed to study the
Rayleigh quotient. Section 4 exploits these ideas to derive an algorithm, more
effective than exhaustive search, to construct all bent functions with prescribed
Rayleigh quotient - this algorithm is a variant on that used in [4]. Along the
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way a connection with plateaued functions is pointed out. Section 5 presents
computational results, tabulating the Rayleigh quotients of all bent functions up
to 6 variables. Section 6 studies some properties and symmetries of the Rayleigh
quotient. Section 7 gives evaluations of the Rayleigh quotient for some special
constructions of bent functions: Maiorana McFarland and Dillon, as well as for
secondary constructions like the direct and indirect sum.

We are not aware of much work in the literature pertaining to the Rayleigh
quotient. However, [6] has considered the respective algebraic degree of a Boolean
function and its dual. Moreover, the decompositions of bent functions have been
studied in [1], where a link is made between the Walsh Hadamard spectra of the
restrictions of a function and the decompositions of its dual.

2 Definitions and notation

A Boolean function f in n variables is any map from Fn2 to F2. Its Walsh Hadamard
Transform (WHT), namely F̂ ∈ R2n

, can be defined as

F̂ (x) :=
∑
y∈Fn

2

(−1)f(y)+x·y,

where x · y denotes the dot product of x with y. The sign function of f is defined
by F := (−1)f . The Boolean function, f , is said to be bent iff |F̂ (x)| = 2n/2, ∀x,
which is only possible if n is even. If f is bent then its dual with respect to the
WHT, f̃ , is also a bent Boolean function. Let F̃ be the sign function of f̃ for the
case that f is bent. Then the duality of f̃ to f is defined by

F̃ (x) := 2−n/2F̂ (x) ⇔ (−1)f̃(x) := 2−n/2
∑
y∈Fn

2

(−1)f(y)+x·y, f bent.

The matrix of the WHT is the Hadamard matrix Hn of Sylvester type, which we
now define by tensor products. Let

H :=
(

1 1
1 −1

)
.

Let Hn := H⊗n be the n-fold tensor product of H with itself. Thus Hn =
Hn−1 ⊗

(
1 1
1 −1

)
=
(

Hn−1 Hn−1
Hn−1 −Hn−1

)
, where H1 = H. Let Hn := 2−n/2Hn, be its

normalized version. Recall the Hadamard property

HnH
T
n = 2nI2n ,

where we denote by IM the M by M identity matrix. View F as a vector F =
(F0...00, F0...01, . . . , F1...11) ∈ Fn2 , whose elements, Fx, are ordered lexicographically
in x. Let F̂ have a similar vector interpretation. Then we can express the WHT
in matrix-vector form as

F̂ = FHn.
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For example, when n = 2 and f(y1, y2) = y1y2, we have F = (1, 1, 1,−1) and

F̂ = FH2 = ( 1 1 1 −1 )
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
= ( 2 2 2 −2 ) .

In this case |F̂x| = 2, ∀x, so f is bent and its dual is f̃(x1, x2) = x1x2, where
F̃ = (−1)f̃ = 2−1F̂ = (1, 1, 1,−1).

If f is not only bent but, furthermore, f = f̃ , then f is self dual bent - such
is the case for the example just given. This means that the sign function of f is
an eigenvector of Hn attached to the eigenvalue 1. Similarly, if f = f̃ + 1 then
f is anti self dual bent. For example, f(y1, y2) = y1y2 + y1 + y2 is anti self dual
bent. This means that its sign function is an eigenvector of Hn attached to the
eigenvalue −1. Define the Rayleigh quotient Sf of a Boolean function f in n
variables by the character sum

Sf :=
∑

x,y∈Fn
2

(−1)f(x)+f(y)+x·y =
∑
x∈Fn

2

F (x)F̂ (x).

Define the normalized Rayleigh quotient Nf of a bent Boolean function f in n
variables by the character sum

Nf :=
∑
x∈Fn

2

(−1)f(x)+f̃(x) = 2−n/2Sf .

We see that Nf = 2n if f is self dual bent and Nf = −2n if f is anti self dual
bent.

3 Linear algebra

We now establish an orthogonal eigen-decomposition of the sign function of a
Boolean function and use it to obtain expressions for the Rayleigh quotient of a
bent Boolean function in terms of this eigen-decomposition. Recall the following
elementary Lemma from [4].

Lemma 1. The spectrum of Hn consists of the two eigenvalues ±1, each with
multiplicity 2n−1. A basis of the eigenspace attached to the eigenvalues 1 (resp. −1)
is formed from the rows of the 2n−1× 2n matrix (Hn−1 + 2n/2I2n−1 , Hn−1) (resp.
(Hn−1 − 2n/2I2n−1 ,Hn−1)). An orthogonal decomposition of R2n

in eigenspaces
of Hn is

R2n

= Ker(Hn + 2n/2I2n)⊕Ker(Hn − 2n/2I2n).

Proof. The basis characterization follows because

(Hn−1 + 2n/2I2n−1 , Hn−1)Hn
= (Hn−1 + 2n/2I2n−1 , Hn−1)2−n/2(Hn−1 ⊗H1)
= 2−n/2(2Hn−1 + 2n/2I2n−1 , 2n/2I2n−1)(Hn−1 ⊗ I2)
= (2n/2I2n−1 +Hn−1, Hn−1).
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Similar arguments show that

(Hn−1 − 2n/2I2n−1 , Hn−1)Hn = −(Hn−1 + 2n/2I2n−1 , Hn−1).

The kernel (i.e. nullspace) of Hn + 2n/2I2n is the row space of a matrix, say
M+, such that (Hn + 2n/2I2n)M+ = 0. From the above basis characterization
we see that one choice is M+ = (Hn−1 − 2n/2I2n−1 , Hn−1). Similarly, Ker(Hn −
2n/2I2n) is the row space of M− = (Hn−1 + 2n/2I2n−1 ,Hn−1). The orthogonal
decomposition of R2n

follows because the two kernels are orthogonal, i.e. because
M+M−

T = 0. ut

By Lemma 1, the orthogonal decomposition in eigenspaces of Hn yields
the following decomposition for the sign function F of a Boolean function,
F = F++F−, with F± ∈ Ker(Hn±2n/2I2n), and 〈F, F 〉 = 〈F+, F+〉+〈F−, F−〉,
where 〈A,B〉 is the inner product of real vectors A and B. By observing that
F̂ = 2n/2(F+ − F−), and that Sf = 〈F, F̂ 〉, we obtain

Nf = 〈F+, F+〉 − 〈F−, F−〉,

and by the triangle inequality, |Nf | ≤ 2n, with equality if and only if F = F+ or
F = F−. If f is bent then the sign function, F̃ , of its dual exists, and

F̃ = F+ − F−.

Thus F ± F̃ = 2F± has entries in {0,±2}, so both F+ and F− have entries in
{0,±1}. Denote by S+ (resp. S−) the set of x ∈ Fn2 such that F+

x = 0 (resp.
F−x = 0). Because F = F+ + F− has entries in {±1}, it follows that the sets
S+ and S− partition Fn2 . Conversely, given a pair of eigenvectors of Hn, F+ and
F−, with entries in {0,±1}, and with corresponding sets S+ and S−, such that
S+∪S− = Fn2 , then the sum of F+ and F− is the sign function of a bent function.
In summary

Proposition 1. Let F be the sign function of a bent Boolean function of n
variables. Then there exist two vectors F+ and F−, and two subsets, S+ and S−,
with the following properties.

1. F = F+ + F−

2. F+ and F− have entries in {0,±1}.
3. the sets S+ and S− partition Fn2 .
4. F±x = 0 iff x ∈ S±.

Conversely, given eigenvectors, F±, of Hn, and sets S± with the last three
properties, the sum F++F− is the sign function of a bent function with normalized
Rayleigh quotient

Nf = |S−| − |S+| = 2n − 2|S+| = 2|S−| − 2n.

Moreover, |S+| = dH(f, f̃), where dH( , ) denotes the Hamming distance.
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Example: Let n = 4 and f = x1x3 + x2x3 + x2x4 + x2. Then F = (1, 1, 1, 1, −1,
1, 1, −1, 1, 1, −1, −1, −1, 1, −1, 1). As f is a bent function it has a dual. By
computation, f̃ = x1x3 + x1x4 + x2x4 + x4 and F̃ = (1, −1, 1, −1, 1, 1, 1, 1, 1,
1, −1, −1, 1, −1, −1, 1). It follows that F+ = (F + F̃ )/2 = (1, 0, 1, 0, 0, 1, 1,
0, 1, 1, −1, −1, 0, 0, −1, 1), giving S+ = {0010, 0011, 1000, 1011, 1100, 1110}.
Therefore the normalized Rayleigh quotient of f is Nf = 2n − 2|S+| = 4.

4 Search algorithm

We now describe an algorithm where we construct all bent Boolean functions, F ,
of n variables, given a specified zero set, S+, for F+, where F = F+ + F−. For
an arbitrary n-variable function, A(x1, x2, . . . , xn), with domain Fn2 , let A|x1=0

(resp. A|x1=1) be the restrictions of A to x1 = 0 and x1 = 1 respectively, such
that A(x) = (A|x1=0 , A|x1=1).

Let F+ := (Y,Z), where Y, Z ∈ R2n−1
, such that Y := F+

|x1=0
, and Z := F+

|x1=1
,

i.e. F+ is the concatenation of Y with Z. Let S+ ⊂ Fn2 similarly be decomposed
into SY+ and SZ+ , where

SY+ := {s|x1=0 | s ∈ S+} ⊂ Fn−1
2 , SZ+ := {s|x1=1 | s ∈ S+} ⊂ Fn−1

2 .

We want to construct an F+ with zero set S+.

Theorem 1. Let Z have entries in {0,±1}, with Zx = 0 iff x ∈ SZ+. Define
Y := Z + 2Hn−1

2n/2 Z. If Y has entries in {0,±1}, with Yx = 0 iff x ∈ SY+ , then the
vector F+ = (Y,Z) is in the eigenspace of Hn attached to 1 with zero set S+.

Proof. By Lemma 1, for eigenspace 1, we consider anX such that F+ = X(Hn−1+
2n/2I2n−1 , Hn−1) = (Y,Z), from which it follows that Y = Z+ 2Hn−1

2n/2 Z. Moreover,
we require that Y and Z both have, by Proposition 1, entries in {0,±1}. For
each arbitrary choice of Z with entries in {0,±1}, we can then check whether Y
has entries in {0,±1}. ut

A similar result holds for F−, for F− := (Y,Z), Y := F−|x1=0
and Z := F−|x1=1

.
The proof is analogous and is omitted.

Theorem 2. Let Z have entries in {0,±1}, with Zx = 0 iff x ∈ SZ−. Define
Y := Z − 2Hn−1

2n/2 Z. If Y has entries in {0,±1}, with Yx = 0 iff x ∈ SY− , then the
vector F− = (Y,Z) is in the eigenspace of Hn attached to −1 with zero set S−.

Based on Proposition 1 and the above two theorems we give an algorithm to
generate all bent functions with given zero set S+, and therefore, from Proposition
1, with fixed Rayleigh quotient 2n − 2|S+|.

Algorithm BWS(n, S+)

1. Pick Z with entries in {0,±1}, and Zx = 0 iff x ∈ SZ+



6

2. Compute all candidate Y as Y := Z + 2Hn−1

2n/2 Z.
3. If Y has entries in {0,±1} and Yx = 0 iff x ∈ SY+ let F+ := (Y,Z), else go

to next Z.
4. Pick Z with entries in {0,±1}, and Zx = 0 iff x /∈ SZ+
5. Compute all candidate Y as Y := Z − 2Hn−1

2n/2 Z.
6. If Y has entries in {0,±1} and Yx = 0 iff x /∈ SY+ let F− := (Y,Z), else go

to next Z.
7. Output F = F+ + F− for all F+ found in step 3 and all F− found in step 6.

It should be noted that, compared to brute force exhaustive search of com-
plexity 22n

this algorithm is of complexity 2R with R ≤ 2n−1, depending on the
size of S.

We point out a connection with plateaued functions. Recall that, according to
[9], a Boolean function f in n variables is plateaued of order r if the entries of
its WHT, F̂ , have modulus either zero or 2n−r/2, where r is even and can range
from 0 to n. If r = n then f is bent.

Theorem 3. Keep the notation of Proposition 1. Write F+ = (Y +, Z+) and
F− = (Y −, Z−). If Y + and Z+ (resp. Y − and Z− ) have the same supports,
that is

{x | Y ±x = 0} = {x | Z±x = 0},

then both Z+ + Z− and Z+ − Z− (resp. Y + + Y − and Y + − Y − )are sign
functions of plateaued functions of order n− 2 in n− 1 variables.

Proof. By Proposition 1 both Z+ ± Z− and Y + ± Y − have entries in {±1} and
are thus legitimate sign functions of Boolean functions in n − 1 variables. By
hypothesis, Y

+−Z+

2 and Z−−Y −
2 have entries in {0, ±1}. By Proposition 1 their

sum and difference still have entries in {0, ±1}. Like in Theorem 1 and 2 we have

Hn−1Z
+ = 2n/2(

Y + − Z+

2
) (1)

and, symmetrically,

Hn−1Z
− = 2n/2(

Z− − Y −

2
) (2)

The result follows now by adding and subtracting equations 1 and 2. ut

Note that this result is different from the construction of bent functions from
complementary plateaued functions in [8].

5 Numerical results

In previous work, we have classified self dual bent functions [4]. We here extend
this result by calculating the Rayleigh quotient of all bent functions of up to six
variables. Tables 1 and 2 list the number of bent functions, where no symmetries
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are taken into account, of four and six variables with normalized Rayleigh quotient
Nf . Table 3 gives the Rayleigh quotients of all quadratic bent functions of six
variables. It follows from Theorem 5 that there will always be the same number
of functions with Nf = −x as there are functions with Nf = x, so these functions
are counted together. (For instance, there are 20 bent functions of four variables
with Nf = 16, and 20 such functions with Nf = −16.)

Table 1: Number of Bent Functions of Four Variables with given Rayleigh Quotient

Nf Functions

±16 40
±8 192
±4 384
0 280

Total 896

Table 2: Number of Bent Functions of Six Variables with given Rayleigh Quotient

Nf Functions

±64 85,792
±48 814,080
±40 5,225,472
±36 10,813,440
±32 33,686,400
±28 61,931,520
±24 159,169,536
±20 327,155,712
±16 548,066,304
±12 865,075,200
±8 1,194,362,880
±4 1,434,058,752
0 784,985,440

Total 5,425,430,528

According to Prop. 3, |Nf | ≤ 60 for a bent function of six variables that is
neither self dual nor anti self dual. We observe that no function meeting this
bound with equality exists. Up to equivalence, where we consider the functions f
and g to be in the same equivalence class if g(x) = f(Lx+ d) + d · x+ c, where
LLT = I, d ∈ Zn2 , wt(d) even, and c ∈ Z2, there are seven bent functions of six
variables with Nf = 48. Representatives from each equivalence class are listed
below. The functions with Nf = −48 can be obtained from Theorem 5 (For a
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Table 3: Number of Quadratic Bent Functions of Six Variables with given Rayleigh
Quotient

Nf Functions

±64 1504
±32 44,160
±16 503,808
±8 737,280
0 490,912

Total 1,777,664

classification of the bent functions of six variables with |Nf | = 64, we refer to
previous work [4].)

1. x1x2x6 +x1x3x6 +x1x4x5 +x1x3x5 +x2x4x6 +x3x4x6 +x2x4x5 +x2x3x5 +
x1x2 + x1x5 + x2x6 + x3x4 + x3x6 + x4x5 + x5x6

2. x2x4x6 + x3x5x6 + x1x4x5 + x1x2x3 + x1x6 + x2x5 + x2x6 + x3x4 + x3x5 +
x3x6 + x4x5 + x4x6 + x5x6 + x2 + x3

3. x2x3x4 +x1x3x4 +x2x3x6 +x2x3x5 +x2x4x6 +x2x4x5 +x2x5x6 +x1x5x6 +
x1x2 + x3x5 + x4x6 + x5x6

4. x1x2x3 + x1x2x5 + x1x3x4 + x1x4x5 + x1x6 + x2x4 + x2x6 + x3x5 + x3x6 +
x4x6 + x5x6 + x1 + x2 + x3

5. x1x2x3 + x1x4x5 + x1x3x5 + x3x5x6 + x1x6 + x2x5 + x3x4 + x3x6 + x4x5 +
x5x6 + x1 + x2 + x3 + x4

6. x1x3x5 + x1x2x5 + x1x3x4 + x1x2x4 + x1x6 + x2x5 + x3x4 + x4x6 + x5x6 +
x1 + x2 + x4

7. x2x3x6 + x2x4x6 + x3x5x6 + x4x5x6 + x1x6 + x2x3 + x4x5

We have also calculated the Rayleigh quotients of all Boolean functions of four
and five variables, listed in Tables 4 and 5. For five variables, the non-normalized
values Sf are given, since the values Nf are not integer for odd n.

We observe that for Boolean functions of four variables, the highest value of
|Nf | < 16 is |Nf | = 13. Up to equivalence, the following three functions have
Nf = 13. (For a classification of the functions of four variables with |Nf | = 16,
we refer to previous work [4].)

1. x1x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1

2. x1x2x3x4 + x1x2 + x1x3 + x2x4 + x3x4

3. x1x2x3x4 + x1x2 + x3x4

For Boolean functions of five variables, the highest obtainable Rayleigh
quotient is |Sf | = 160. Up to equivalence there are four functions with Sf = 160,
which are listed below. In general, it is not known what the highest possible value
of |Sf | for odd n is.

1. x1x2x3x4 +x1x2x3x5 +x1x2x3 +x1x2x4 +x1x2x5 +x1x4x5 +x3x4x5 +x1x4 +
x1x5 + x2x3
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Table 4: Number of Boolean Functions of 4 Variables with given Rayleigh Quotient

Nf Functions

±16 40
±13 416
±12 800
±11 1504
±10 2560
±9 2944
±8 3904
±7 4992
±6 5632
±5 6816
±4 7264
±3 7648
±2 8192
±1 8448
0 4376

Total 65,536

2. x1x2x3 + x1x2x4 + x1x2x5 + x1x3 + x1x4 + x1x5 + x3x4 + x3x5 + x4x5 + x1

3. x1x2x3 + x1x2x4 + x1x2x5 + x3x4 + x3x5 + x4x5 + x1 + x2 + x3 + x4

4. x1x2x3 + x1x2 + x1x3 + x4x5

6 Properties of the Rayleigh quotient

6.1 Elementary properties

The normalized Rayleigh quotient is the sum of 2n terms ±1. Therefore

Proposition 2. The normalized Rayleigh quotient Nf of a bent Boolean function
f is an even integer (negative or positive).

For bent functions that are neither self dual nor anti self dual we can improve on
the estimate of Nf over [4].

Proposition 3. Let f be a bent function in n variables. If f is neither self dual
nor anti self dual then |Nf | ≤ 2n − 4.

Proof. By the proof of Theorem 1 we see that if Z = 0 then X = 0 and F+ = 0
forcing f to be anti self dual. A similar argument for F− shows that we cannot
have Z = 0 for F−. It follows, to avoid either situation, that S+ cannot have size
2n − 1. The result follows. ut
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Table 5: Number of Boolean Functions of 5 Variables with given Non-Normalized
Rayleigh Quotient

Sf Functions

±160 8960
±155 23,040
±150 50,688
±145 150,528
±140 840,320
±135 1,039,360
±130 1,627,392
±125 2,581,792
±120 9,404,480
±115 7,907,840
±110 10,849,152
±105 14,716,416
±100 44,280,000
±95 31,537,920
±90 38,784,320
±85 47,529,984
±80 125,472,000
±75 79,892,480
±70 92,338,176
±65 105,623,232
±60 254,490,560
±55 149,760,000
±50 164,694,016
±45 180,602,112
±40 404,723,200
±35 224,425,920
±30 236,937,728
±25 249,284,160
±20 529,400,320
±15 277,094,400
±10 284,104,704
±5 288,219,136
0 436,572,960

Total 4,294,967,296
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6.2 Symmetries

In this section we give symmetries, that is operations, on Boolean functions that
preserve bentness and the Rayleigh quotient. Define, following [7], the orthogonal
group of index n over F2 as

On := {L ∈ GL(n, 2) | LLt = In}.

Observe that L ∈ On if and only if (In, L) is the generator matrix of a self
dual binary code of length 2n. Thus, for even n, an example is In + Jn with
Jn =all-one matrix.

Theorem 4. Let f denote a bent function in n variables. If L ∈ On and c ∈
{0, 1} then g(x) := f(Lx) + c is also bent, and Ng = Nf .

Proof. The WHT of g is

Ĝ(x) = (−1)cF̂ (Lx) = 2n/2(−1)f̃(Lx)+c = 2n/2(−1)g̃(x),

where the first equality holds by observing that x.y = L(x).L(y), and by a
change of variable involving L−1 = LT , and the last equality by definition of g̃.
Computing the normalized Rayleigh quotient of g yields

Ng = 〈(−1)g, (−1)g̃〉 =
∑
x

(−1)f(Lx)(−1)f̃(Lx) = Nf . ut

Theorem 5. Let f denote a bent function in n variables. Define g by g(x) :=
f(x+ d) + d · x. If d ∈ Fn2 then g is also bent, and Ng = (−1)d·dNf .

Proof. A change of variables y = x + d in the definition of Ĝ yields Ĝ(y) =
(−1)d·(y+d) × F̂ (y + d). Therefore g is bent with dual function

g̃(y) = d · (y + d) + f̃(y + d).

Adding up yields

g(y) + g̃(y) = d · d+ f(y + d) + f̃(y + d).

The result follows after a change of variables. ut

Theorem 5 explains why, for every function, f , with normalized Rayleigh
quotient Nf , there exists a family of functions, {fe} each with normalized Rayleigh
quotient, Nf , and an equal size family of functions, {fo}, each with normalized
Rayleigh quotient, −Nf , as obtained by evaluating g for even and odd weight
values of d, respectively.

We refer, in this and related work, to the combined action of the symmetries
of theorems 4 and 5 as the action of the extended orthogonal group, being a
subgroup of the affine group.



12

7 Special constructions

In [4] primary constructions for (anti) self dual bent functions were presented for
the case of Maiorana McFarland, Dillon’s partial spreads, and monomial power
functions. Secondary constructions using both direct and indirect sum were also
presented. We now generalise this work, in the cases of Maiorana McFarland
and partial spreads, and for direct and indirect sum, to the situation where the
Rayleigh quotient can have magnitude less than 2n.

7.1 Maiorana McFarland

A general class of bent functions is the Maiorana McFarland class, that is
functions of the form

x · φ(y) + g(y)

with x, y ∈ Fn/22 , φ : Fn/22 → Fn/22 , a permutation, and g arbitrary Boolean.

Theorem 6. A Maiorana McFarland function f = x · φ(y) + g(y) with φ(x) =
L(x)+a, L ∈ GL(n/2, 2) and unitary (LT = L−1), and a ∈ Fn/22 , has normalized
Rayleigh quotient

Nf = (−1)a·a × (
∑
x

(−1)g(x)+a·L(x))2.

Proof. The dual of a Maiorana-McFarland bent function x · φ(y) + g(y) is equal
to φ−1(x) · y + g(φ−1(x)) [5]. Computing the normalized Rayleigh quotient of f
yields, after replacing x by φ(x),

Nf = 〈(−1)f , (−1)f̃ 〉 =
∑
x,y

(−1)φ(x)·φ(y)+x·y+g(x)+g(y),

and, since, for L unitary, L(x) · L(y) = x · y,

Nf =
∑
x,y

(−1)g(x)+a·L(x)+g(y)+a·L(y)+a·a.

The result follows. ut

The proof of the following corollary is omitted.

Corollary 1. If g(x) + a · L(x) is constant, then f is self dual (resp. anti self
dual) if a has even (resp. odd) weight, i.e. Nf = 1 (resp. Nf = −1), and, if
g(x) + a · L(x) is balanced then Nf = 0.
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7.2 Dillon functions

Let x, y ∈ F2n/2 . The class denoted by PSap in [5] consists of so-called Dillon’s
function of the type

f(x, y) = g(x/y)

with the convention that x/y = 0 if y = 0, and where g is a balanced Boolean
function and g(0) = 0. We introduce the character sum

Kg :=
∑
u

(−1)g(u)+g(1/u).

In particular, if g = Tr then Kg is a Kloosterman sum.

Theorem 7. Let f be a bent function constructed from a Dillon g as above. Its
Rayleigh quotient is

Nf = 2n/2 + (2n/2 − 1)Kg.

Proof. The dual of f = g(x/y) is f̃ = g(y/x). ThereforeNf =
∑
x,y(−1)g(x/y)+g(y/x).

Noting when y vanishes and making the change of variables u = x/y when y 6= 0
gives the result. ut

7.3 Direct and indirect sums

If f and g are Boolean functions in n and m variables, respectively, define the
direct sum of f and g as the Boolean function on n + m variables given by
f(x) + g(y). The following result is immediate, and its proof is omitted.

Proposition 4. If f and g are bent functions their direct sum is bent of Rayleigh
quotient NfNg.

A more general construction involving four functions can be found in [3]. If
a, b and c, d are two pairs of Boolean functions in n and m variables, respectively,
define the indirect sum of these four functions by

f(x, y) := a(x) + d(y) + (a(x) + b(x))(c(y) + d(y)).

It is shown in [3], and also reviewed in [2], that, if a, b, c, d are bent functions,
then f is a bent function, and

Lemma 2.
f̃ = ã+ d̃+ (ã+ b̃)(c̃+ d̃).

We further show that,

Proposition 5. If a, b and c, d are two pairs of dual bent functions, i.e. such
that b = ã and d = c̃, then f and g = b+ c+ (a+ b)(c+ d) are also dual bent
functions, i.e. g = f̃ . Furthermore the Rayleigh quotient of both f and g is

Nf = NaNc.
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Proof. Comes from
f̃ = f + (a+ b) + (c+ d),

and the definition of Na and Nb. The result follows. ut

A generalisation on this theme is the following

Proposition 6. If a, b and c, d are two pairs of bent functions satisfying b =
ã + ε, d = c̃ + µ, for ε, µ ∈ {0, 1}, then f = a + d + (a + b)(c + d) and g =
b+ c+ (a+ b)(c+ d) are both bent. Furthermore the Rayleigh quotient of both is

Nf = NaNc.

Proof. A direct computation using Lemma 2 shows that

f + f̃ = (a+ b) + (c+ d) + (ε+ µ).

The result follows. ut

Finally,

Proposition 7. Let a and b be self dual or anti self dual bent Boolean functions
over m variables. Let dH(a, b) be the Hamming distance between a and b. Let c and
d both be bent Boolean functions over n variables. Then, f = a+d+(a+ b)(c+d)
and g = b+ c+ (a+ b)(c+ d) are both bent over n+m variables, and

Nf = (2mNd + dH(a, b)(Nc −Nd)) (−1)ea , ea = eb,
Ng = (2mNc − dH(a, b)(Nc −Nd)) (−1)eb , ′′

Ng = (2mNd + dH(a, b)(Nc −Nd)) (−1)ea , ea 6= eb,
Nf = (2mNc − dH(a, b)(Nc −Nd)) (−1)eb , ′′

where ea, eb ∈ F2, ea = 0 (resp. 1) if a is self dual (resp. anti self dual), eb = 0
(resp. 1) if b is self dual (resp. anti self dual).

Proof. From Lemma 2 and the (anti) self dual properties of a and b, we obtain

f̃ = a+ d̃+ (a+ b+ ea + eb)(c̃+ d̃) + ea.

Therefore

f + f̃ = d+ d̃+ (a+ b+ ea + eb)(c+ c̃+ d+ d̃) + ea.

Consider the case where ea = eb. For x ∈ Fm2 such that a(x) + b(x) = 0 (resp. 1),
the previous equation then reduces to f + f̃ = d+ d̃+ea (resp. f + f̃ = c+ c̃+ea).
From Proposition 1. we see that an n-variable bent Boolean function, h, has
Rayleigh quotient given by Nh = 2n − 2dH(h, h̃). Plugging this back into the
previous equations, we obtain

(−1)eaNf = 2n+m − 2
(

(2m − dH(a, b))dH(d, d̃) + dH(a, b)dH(c, c̃)
)

which, after some re-arrangements, gives the expression for Nf when ea = eb in
the Proposition. Similar arguments can be used to obtain the expression for Nf
when ea 6= eb, and, likewise, one obtains similar expressions for Ng. ut
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It follows immediately from the proposition that, if a + b is balanced, and
ea = eb, then Nf = Ng = (−1)ea2m−1(Nc +Nd). If, further to this, Nc = −Nd,
e.g. if c is self dual and d is anti self dual, then Nf = Ng = 0. Also, from the
proposition,

Nf +Ng = 2m(Nc + (−1)ea+ebNd)(−1)eb .
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