
GF(pm) Multiplication Using Polynomial Residue Number

Systems

Abstract

GF(pm) multiplication is computed in two stages. Firstly, the polynomial product is computed

modulus a highly factorisable degree S polynomial, M(x), with S ≥ 2.m − 1. This enables the

product to be computed using a Polynomial Residue Number System (PRNS). Secondly, the

result is reduced by the irreducible polynomial, I(x), over which GF(pm) is defined. Suitable

choices for S, M(x) and I(x) are discussed and an iterative method for the factorisation of

xT − k polynomials, k ∈ GF(p), is presented. Finally, multi-dimensional PRNS is proposed to

solve the upper limit constraint on m, which is dependent on p.

1 Introduction

GF(pm) multipliers are required in a number of applications. For instance, to realise cyclic convolutions

using GF(pm) spectra [3, 4] and for error-correction [4, 5], cryptographic, and multi-valued logic (MVL)

systems. The three conventional ways to perform GF(pm) multiplication use standard basis [10], normal

basis [6], or dual basis multipliers [7]. Dual basis solutions are most area-efficient, but all three methods

require at least m2 general multiplications, mod p. There is also the need for continual reduction

by an irregular polynomial modulus, requiring some fixed multiplications and additions, mod p. This

reduction will occur concurrently or interleaved, causing increased latency, decreased throughput and

impaired design symmetry. In contrast, Polynomial Residue Number Systems (PRNS) [9] decompose

polynomial products (PPs) into a small number of autonomous products, mod p, performed in parallel

without any irregular reduction by a polynomial modulus. There is the added task of conversion to and

from the polynomial residue domain, but for special PRNS this simplifies to the complexity of efficient

Number Theoretic Transforms (NTTs), mod p [1]. It will be shown how this PRNS technique can be

applied to the GF(pm) multiplier. The independence of the small products introduces a capacity for

fault-tolerance not evident in conventional GF(pm) schemes [14] and enables highly-parallel, high-speed

implementations.

Extended Galois Fields, GF(pm), are defined over irreducible polynomials, I(x), of order m, and elements

in GF(pm) are computed as PPs, mod I(x) over GF(p). If, instead, the GF(pm) multiplication is

performed mod M(x), where M(x) is factorisable and of a suitably high degree, a PRNS decomposition

can be used [9]. A final reduction, mod I(x), realises the GF(pm) product. This paper highlights suitable

choices for M(x) and I(x). Firstly, a method to determine the factorisation of xT − k, k ∈ GF(p), over

GF(p), is outlined. This method will aid in choosing M(x) and I(x). The GF(pm) multiplier is then

described as a combination of PRNS and modular reduction, using suitable I(x) and M(x). Finally, as

1

M(x) is only fully factorisable over GF(p) into distinct degree-one factors (FFD) if m is below an upper

limit determined by p, this ’upper limit’ on m is extended using multi-dimensional PRNS.

2 Factorising xT − k, k ∈ GF(p), Over GF(p)

This section describes a way to determine the degrees of the distinct factors of xT − k, k ∈ GF(p).

It can be verified that d1 distinct roots of k exist in GF(p) which zero G(x) = xT − k, where,

d1 = gcd(T, p − 1) if d1|((p − 1)/Op(k)), d1 = 0 otherwise (1)

where Op(k), the ”order of k over GF(p)”, implies kOp(k) = 1 over GF(p), with kw 6= 1 for w < Op(k).

Thus G(x) = xT − k = (x − r1,1).(x − r2,1).(x − rd1,1).G1(x) (2)

where ri,1 ∈ GF(p) are zeroes of xT − k, and d(G1(x)) = T − d1, (d(∗) means ”the degree of ∗”).

Similarly, G(x) contains d2 distinct roots of k in GF(p2), where,

d2 = gcd(T, p2 − 1) if d2|((p
2 − 1)/Op(k)), d2 = 0 otherwise (3)

These d2 roots include the d1 roots over GF(p). Thus,

G(x) = xT − k = (x − r1,1).(x − r2,1).(x − rd1,1).(x − r′1,1).(x − r′2,1).(x − r′d2−d1,1).G2(x) (4)

where ri,1 ∈ GF(p), r′i,1 ∈ GF(p2) 6∈ GF(p), and d(G2(x)) = T − d2. The roots, r′i,1, are always from

length-2 conjugate sets, and can be combined in pairs to form (d2 − d1)/2 quadratics. Thus,

G(x) = xT −k = (x−r1,1).(x−r2,1).(x−rd1,1).(x
2−r1,2).(x

2−r2,2).(x
2−r(d2−d1)/2,2).G2(x) (5)

where the ri,2 are polynomials in x with coefficients ∈ GF(p), and d(ri,2) ≤ 1.

Consider factorisation over GF(p3), where the new roots are combined to form (d3 − d1)/3 cubics,

G(x) = xT − k =

d1
∏

i=1

(x − ri,1).

(d2−d1)/2
∏

i=1

(x2 − ri,2).

(d3−d1)/3
∏

i=1

(x3 − ri,3).G3(x) (6)

The ri,3 are quadratics in x, with coefficients ∈ GF(p), d(ri,3) ≤ 2, and d(G3(x)) = T −d2−d3+d1. The

d3 roots contain the d1 roots but not the d2 roots, as GF(p3) is an extension of GF(p), not of GF(p2).

In general, dt distinct T throots of k exist in GF(pt), where,

dt = gcd(T, pt − 1) if dt|((p
t − 1)/Op(k)), dt = 0 otherwise (7)

By computing dt from t = 1 up to t = T ,

G(x) = xT − k =

T
∏

t=1





d′

t/t
∏

i=1

(xt − ri,t)



 .GT (x) where d′
t = dt −

∑

i|t,i<t

d′i,

0
∏

i=1

= 1 (8)

and d(ri,t) ≤ t− 1. There may be less than T distinct zeroes of xT − k in GF extensions 1 ≤ t ≤ T . (8)

specifies the distinct factorisation of xT − k , k ∈ GF(p), over GF(p). (Only the degrees of the factors

2

have been determined, not the coefficients). In particular,

G(x) is fully factorisable into distinct degree-one factors (FFD) over GF(p), iff

d1 = T ⇒ T |((p − 1)/Op(k)).
(9)

G(x) is irreducible over GF(p) iff dt = 0 for 1 ≤ t < T . (10)

3 GF(pm) Multiplier

Consider the GF(pm) multiplication,

C ′(x) = 〈A(x).B(x)〉I(x) = 〈C(x)〉I(x) (11)

I(x) is irreducible over GF(p), d(I(x)) = m, and d(A(x), B(x)) < m. This product can be performed

using a PRNS stage followed by a Reduction stage:

3.1 PRNS Stage

As d(C(x)) < 2.m−1, C(x) can be embedded in a polynomial ring, mod M(x), where d(M(x)) ≥ 2.m−1,

without requiring any reduction of C(x), mod M(x). Thus,

C(x) = A(x).B(x) = 〈A(x).B(x)〉M(x) (12)

where d(M(x)) = S ≥ 2.m− 1.

M(x) will be chosen to factorise over GF(p) as follows,

M(x) =

n−1
∏

i=0

qi(x) (13)

where qi(x) 6 |qj(x) i 6= j, i.e. the qi(x) factors are mutually prime, mod p. Using PRNS techniques,

C(x) = CRTP(〈C(x)〉q0(x) , 〈C(x)〉q1(x) , . . . , 〈C(x)〉qn−1(x)) (14)

where the residue products, 〈A(x).B(x)〉qi(x), are computed independently, and ’CRTP’ implies ’the

Chinese Remainder Theorem for Polynomials’ [9]. M(x) is FFD over GF(p) if n = S, with d(qi(x)) =

1 ∀ i. A FFD M(x) is particularly useful as the residue products occur over GF(p). As p is prime,

there are p − 1 mutually prime degree-one polynomials over GF(p). Therefore,

An M(x) which is FFD over GF(p) exists only if 1 ≤ S = d(M(x)) ≤ p − 1. (15)

Also S ≥ 2.m − 1 to avoid reduction of A(x).B(x), mod M(x). Thus, remembering that p is prime,

A FFD PRNS implementation of GF(pm) multiplication is only feasible if m ≤ (p − 1)/2. (16)

Solutions for m > (p− 1)/2 will be examined later. For systems that satisfy (16), a choice of FFD M(x)

is evident, where 2.m − 1 ≤ S ≤ p − 1. The qi(x) are of the form (x − ji), where ji ∈ {1, 2, . . . , p − 1}

3

and ji 6= jl for i 6= l. Often in the literature [3, 11, 12], M(x) is chosen as xS ± 1, where M(x) is

FFD, to implement cyclic, or skew-cyclic convolutions. This allows the use of the Agarwal-Cooley Cyclic

Convolution (CC) algorithm, [3], where the factors of S are mutually prime, to decompose the system

into smaller CC PRNS. Alternatively, one can use the Generalised Number Theoretic Transform to

realise the PRNS [2]. To obtain FFD M(x) of the form M(x) = xS ± 1, and, more generally, xS − α,

α ∈ GF(p), S is further restricted as stated in (9), where S = T . From (9), S may be substantially

larger than 2.m − 1. Also, S may not possess many, if any, prime factors. In such cases, solutions with

M(x) other than xS − α may be preferable.

3.2 Reduction Stage

The second stage of the multiplier reduces C(x) by I(x) to obtain the GF(pm) product, C ′(x). Hence,

C ′(x) = 〈C(x)〉I(x) where d(C(x)) < S and d(C ′(x)) < m (17)

The complexity of this reduction depends on the form of I(x). Let us define,

I(x) = xm − k where k ∈ GF(p) (18)

The reduction, mod I(x), requires only S − m fixed multiplications and additions, mod p. To achieve

this simplified reduction, an I(x) = xm − k, k ∈ GF(p), must be found which is irreducible over GF(p).

I(x) polynomials for GF(pm) multipliers can be determined using (8) and (10), and are shown in Table

1 (dimension 1). I(x) are not always found, for example, no irreducible polynomial of the form xm − k,

k ∈ GF(p), exists for p = 11 and m = 4.

4 GF(pm) Multipliers where m > (p − 1)/2

From (16), if m > (p−1)/2, FFD M(x), with S ≥ 2.m−1, do not exist. [11, 12] present a 2-dimensional

(2-D) decomposition of a 1-D PP, mod xS ± 1, to overcome the m > (p − 1)/2 constraint. These

techniques will be applied to the GF(pm) multiplier and then generalised to the multi-dimensional case.

4.1 Two-Dimensional PRNS

It will be shown that an m − 1 degree PP can always be expressed as a 2-D PP where the first and

second dimensions compute m1 − 1 and m2 − 1 degree PPs, respectively, with m1.m2 ≥ m. Let,

A(x) =

m−1
∑

i=0

ai.x
i and B(x) =

m−1
∑

i=0

bi.x
i (19)

By choosing m1 < m, where m2 = d(m − 1)/m1e, then,

m1.m2 ≥ m (20)

4

p m possible k Dimension m1 m2 m3

5 2 2,3 1 2 - -

5 3 - - - - -

5 4 2,3 2 2 2 -

5 5 - - - - -

5 6 - - - - -

5 7 - - - - -

5 8 2,3 3 2 2 2

7 2 3,5,6 1 2 - -

7 3 2,3,4,5 1 3 - -

7 4 - - - - -

7 5 - - - - -

7 6 3,5 2 2 3 -

11 2 2,6,7,8,10 1 2 - -

11 3 - - - - -

11 4 - - - - -

11 5 2,3,4,5,6,7,8,9 1 5 - -

13 2 2,5,6,7,8,11 1 2 - -

13 3 2,3,4,6,7,9,10,11 1 3 - -

13 4 2,5,6,7,8,11 1 4 - -

13 4 ” 2 2 2 -

29 2 2,3,8,10,11,12,14,15,17,18,19,21,26,27 1 2 - -

29 3 - - - - -

29 4 2,3,8,10,11,12,14,15,17,18,19,21,26,27 1 4 - -

61 2 2,6,7,8,10,11,17,18,21,23,24,26,28,29,30, 1 2 - -

31,32,33,35,37,38,40,43,44,50,51,53,54,55,59

Table 1: Irreducible Polynomials, (I(x)), for use in N -D PRNS GF(pm) General Multipliers

By assigning y = xm1 ,

A(x) = A(x, y) =

m1−1
∑

i1=0

(

m2−1
∑

i2=0

ai1+m1.i2 .y
i2

)

.xi1 =

m1−1
∑

i1=0

Ai1 (y).xi1 (21)

B(x, y) is similarly defined. Therefore,

C(x) = C(x, y) =

m1−1
∑

i1=0

Ai1 (y).xi1 .

m1−1
∑

i1=0

Bi1(y).xi1

which is a degree m1 − 1 PP in x with y polynomial coefficients. M1(x) is then chosen so that,

C(x, y) = 〈C(x, y)〉M1(x) (22)

where S1 = d(M1(x)) ≥ 2.m1 − 1.

If M1(x) is FFD over GF(p), the PP in x can be performed using a PRNS, with all operations except

residue products, performed over GF(p). The residue products are defined as follows,

C∗
j (y) = A∗

j (y).B∗
j (y) 0 ≤ j < S1 (23)

where Z∗
j (y) implies the residue of Z(x, y), mod qj(x), and M1(x) =

∏s−1
j=0 qj(x). These are degree m2−1

PPs in y, with GF(p) coefficients. M2(y) is then chosen so that,

C∗
j (y) =

〈

C∗
j (y)

〉

M2(y)
(24)

5

where S2 = d(M2(y)) ≥ 2.m2 − 1.

If M2(y) is FFD over GF(p), the PP in y can be performed using a PRNS, with all residue products

performed over GF(p). Therefore the PP, C(x) = A(x).B(x), can be embedded in two, nested PRNS,

C(x) = C(x, y) =
〈

〈A(x, y).B(x, y)〉M1(x)

〉

M2(y)
(25)

and, from (11),

C ′(x) =

〈

〈

〈A(x, y).B(x, y)〉M1(x)

〉

M2(y)

〉

I(x)

(26)

All operations in the computation of C(x) occur in GF(p) iff M1(x) and M2(y) are FFD over GF(p).

This is true if S1 and S2 ≤ p − 1. As S1 ≥ 2.m1 − 1 and S2 ≥ 2.m2 − 1,

m1, m2 ≤ (p − 1)/2 (27)

and, combining (20) and (27),

1 ≤ m ≤ (p − 1)2/4 (28)

Thus, a 2-D PRNS GF(pm) multiplier, using only GF(p) products, can be implemented, for 1 ≤ m ≤

(p − 1)2/4, (as long as xm − k is irreducible over GF(p), k ∈ GF(p)).

4.2 N-Dimensional PRNS

The FFD PRNS technique can be generalised to the N -D case, given,

m1.m2.mN ≥ m (29)

mi ≤ (p − 1)/2 for 1 ≤ i ≤ N (30)

enabling multiplication over GF(pm) for,

1 ≤ m ≤ [(p − 1)/2]N (31)

Consider multiplication over GF(58). The minimum value of N , for which (31) is satisfied is 3. Thus,

FFD, N-D, PRNS can be used to implement a GF(58) multiplier, where N ≥ 3. For instance, (29) and

(30) are satisfied by choosing m1 = m2 = m3 = 2. Moreover, I(x) = x8 − 3 is irreducible over GF(5) so

the final I(x) reduction is simplified. Finally, (30) specifies a lower limit on p for which the method of

this paper is feasible, as, for p = 2 or 3, the mi cannot be > 1, rendering a reduction in m impossible.

Table 1 shows examples where N -D PRNS is necessary (dimension > 1).

5 GF(pm) Multiplication Using GF(pm2) Operations, m2|m

This section notes a subset of the N -Dimensional PRNS of Section 4. With reference to (20) and (21),

if m1.m2 = m, the polynomials in y, Ai1(y) and Bi1(y), are elements of the sub-field, GF(pm2), and

GF(pm2) is defined over I2(y).

if I(x) = xm − k then I2(y) = ym2 − k I(x), I2(y) irreducible over GF(p) (32)

6

(22) can be interpreted as a PRNS in x, over M1(x), where all coefficients are ∈ GF(pm2). The subsequent

PRNS in y is not performed. This change in base field allows the GF(pm) multiplier to be implemented

using GF(pm2) hardware. In [13], linear convolution of complex data is performed by embedding data

in a polynomial ring. For the GF(pm) multiplier of this paper, a similar scenario occurs when m2 = 2

and M1(x) = xm1.m2 − k = I(x). GF(p2) is suitable for complex arithmetic but, unlike [13], it is not

QRNS, as I2(y) is irreducible. Similarly, M1(x) = I(x) is not suitable for PRNS as it, too, is irreducible.

Although GF(pm) computation contains sub-field linear convolution, it is not amenable to the solution

of [13].

6 Prime-Factor Multi-Dimensional Techniques

Another multi-dimensional decomposition exists. The Agarwal-Cooley algorithm decomposes a 1-D PP,

mod xS − α, into a N-D PP, mod xS1 − α, mod xS2 − α, . . etc. (The FFD modulus must be of the

form xS − α, α ∈ GF(p), S ≥ m, for this method to work). For the 2-D case,

y = xm1 z = xm2 where m1.m2 ≥ m, and gcd(m1, m2) = 1 (33)

The PP is decomposed, mod xm1.m2 − α, into two nested PPs, mod zm1 − α and ym2 − α, respectively.

However, this technique is of no benefit for cases where m > (p − 1)/2 as, from (9), xm1.m2 − α is only

FFD if m1.m2|p − 1. If m > (p − 1)/2, then m1.m2 6 |p − 1. This suggests a hybrid solution, where

the N-Dimensional method of Section 4 reduces the problem so that all mi ≤ (p − 1)/2. Prime-factor

techniques may then be preferable for further decomposition.

7 A Comparison with Conventional GF(pm) Multipliers

In the following, only 1-D PRNS is assessed, assuming the PRNS is defined over a FFD M(x), mod

p, where conversion to the PRNS requires two S-point NTTs, mod p, (for A(x) and B(x)) and, for

conversion from the PRNS to C(x), one S-point Inverse NTT, mod p. Also, S residue products, mod

p, are required, and for the final reduction by I(x), S − m fixed mults and adds, mod p. Each NTT

normally requires S2 fixed mults and adds, mod p but, for efficient NTTs [15], this figure approaches the

equivalent of S general mults, mod p. Using this figure, the total operation count is,

4.S general mults, mod p, S − m fixed mults, mod p, and S − m adds, mod p

In comparison, an ’optimal’ dual-basis multiplier, defined over an irreducible trinomial [7], requires,

m2 general mults, mod p, 2.m fixed mults, mod p, and m2 adds, mod p

Comparing general mults only, the PRNS design becomes competitive when 4.S ≤ m2. Assuming

S = 2.m − 1, this requires m ≥ 8. The PRNS has the equivalent of a general multiplier count less than

O(m2), as opposed to the dual-basis multiplier, which requires O(m2) general multipliers, and one can

7

expect the PRNS to compete for large m and p. The elimination of interleaved modular reduction gives

the PRNS multiplier a lower latency and higher throughput potential than conventional solutions and

the residue form allows the incorporation of redundant-residue-based fault-tolerance [8, 14]. One can

evisage a Reed-Solomon (RS) encoder/decoder over GF(pm), where the inherent PRNS-based GF(pm)

multipliers are, themselves, protected by a shorter-length RS code over GF(p).

8 Conclusion

Multiplication over GF(pm) has been implemented using PRNS, followed by a final reduction by the

irreducible polynomial, I(x), over which GF(pm) is defined. It is shown how, by appropriate choice of

PRNS and I(x), all operations occur over GF(p), and reduction by an irregular polynomial modulus

is eliminated. In comparison to conventional solutions, potential throughput is enhanced, and a high-

speed VLSI implementation is possible which is symmetric, parallel and fault-tolerant. For large m

one can also expect a reduction in area. An iterative method for finding suitable M(x) and I(x), of

the form xT − k, k ∈ GF(p) has also been presented. Solutions for large m and small p are possible

using multi-dimensional PRNS, and an equation evaluating the minimum PRNS dimensionsionality is

given. It is noted that prime-factor PRNS may be beneficial for m ≤ (p − 1)/2 but not applicable for

m > (p − 1)/2. The multiplier can be incorporated in spectral-based cyclic convolvers, and also has

application to error-correction and multi-valued logic-based systems.

References

[1] J.H.McClellan,C.M.Rader, Number Theory in Digital Signal Processing, Prentice Hall, ’79

[2] J-B.Martens, ”Polynomial Products by Means of Generalized Number Theoretic Transforms”, IEEE

Trans on Acoustics, Speech and Signal Processing, Vol 32, No 3, pp 668-670, June ’84

[3] R.E.Blahut, Fast Algorithms for Digital Signal Processing, Reading, Addison-Wesley, ’85

[4] R.E.Blahut, ”Algebraic Fields, Signal Processing, and Error Control”, Proc of IEEE, Vol 73, No 5,

pp 874 - 893, May ’85

[5] R.Lidl,H.Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ

Press, ’86

[6] A.Pincin, ”A New Algorithm for Multiplication in Finite Fields”, IEEE Trans on Computers, Vol

38, No 7, pp 1045 - 1049, July ’89

[7] M.Wang,I.F.Blake, ”Bit Serial Multiplication in Finite Fields,” SIAM J. Disc. Math, Vol 3, No 1,

pp 140 - 148, Feb ’90

[8] A.Shiozaki,T.K.Truong,K.M.Cheng,I.S.Reed, ”Fast Transform Decoding of Nonsystematic Reed-

Solomon Codes”, IEE Proc-E, Vol 137, No 2, pp 139 - 143, March ’90

8

[9] A.Skavantzos,F.J.Taylor, ”On the Polynomial Residue Number System”, IEEE Trans on Signal

Processing, Vol 39, No 2, pp 376-382, Feb ’91

[10] C-L Wang,J-L Lin, ”Systolic Array Implementation of Multipliers for Finite Fields GF(2m)”, IEEE

Trans on Circuits and Systems, Vol 38, No 7, pp 796-800, July ’91

[11] A.Skavantzos,N.Mitash, ”Computing Large Polynomial Products using Modular Arithmetic,” IEEE

Trans on Circuits and Systems - II, Vol 39, No 4, pp 252 - 254, April ’92

[12] A.Skavantzos,N.Mitash, ”Implementation Issues of 2-Dimensional Polynomial Multipliers for Signal

Processing Using Residue Arithmetic,” IEE Proc-E, Vol 140, No 1, pp 45 - 53, Jan ’93

[13] A.Skavantzos,T.Stouraitis, ”Polynomial Residue Complex Signal Processing,” IEEE Trans on Cir-

cuits and Systems - II, Vol 40, No 5, pp 342 - 344, May ’93

[14] M.G.Parker,M.Benaissa, ”Fault-Tolerant Linear Convolution using Residue Number Systems,” Proc

of ISCAS ’94, London, Vol 2, pp 441 - 445, May ’94

[15] M.G.Parker,M.Benaissa, ”VLSI Structures for Bit Serial Modular Multiplication Using Basis Con-

version,” IEE Proc-Comput.Digit.Tech, Vol 141,No 6,pp 381-390, Nov ’94

9

