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Abstract. Bent functions f : Fm
2 → F2 achieve largest distance to all linear functions. Equiv-

alently, their spectrum with respect to the Hadamard-Walsh transform is flat (i.e. all spectral
values have the same absolute value). That is equivalent to saying that the function f has opti-
mum periodic autocorrelation properties. Negaperiodic correlation properties of f are related to
another unitary transform called the nega-Hadamard transform. A function is called negabent if
the spectrum under the nega-Hadamard transform is flat. In this paper, we consider functions f
which are simultaneously bent and negabent, i.e. which have optimum periodic and negaperiodic
properties. Several constructions and classifications are presented.
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1 Introduction

Boolean functions f : Fm
2 → F2 play an important role in cryptography. They should sat-

isfy several properties, which are quite often impossible to be satisfied simultaneously. One
property is the nonlinearity of a Boolean function, which means that the function is as far
away from all linear functions as possible. Functions which achieve this goal are called bent
functions. Equivalently, all Hadamard-Walsh coefficients of f are equal in absolute value.

There is another criteria which may be viewed as the negaperiodic analogue of the bent cri-
teria. In spectral terms, it may be formulated as follows: Find functions whose nega-Hadamard
spectrum is flat, i.e. all spectral values under the nega-Hadamard transform are equal in ab-
solute value. Many bent functions are known, and also many negabent functions are known:
It turns out that every linear function is negabent! In this paper, we are going to investigate
the intersection of these two sets, i.e. we are searching for bent functions which are simulta-
neously negabent. At first view, it is not clear that such objects exist. An infinite series of
bent-negabent functions has been found in [1, 2].

We give necessary and sufficient conditions for quadratic bent functions to be both bent
and negabent, which is based on [2]. It turns out that such quadratic bent-negabent functions
exist for all even m, which generalizes the series in [2].

More generally, we can describe all Maiorana-McFarland type bent functions which are
simultaneously negabent. It seems to be difficult to exploit this condition in general.

The concept of a dual bent function is well known. If f is bent-negabent, then the dual has
the same property. There is another interesting transformation which turns a bent-negabent
function into a bent-negabent function. We call this Schmidt complementation since it is based
on a construction in [3]. Therefore, we can construct orbits of bent-negabent functions starting
from just one example. We may repeatedly apply dualization and Schmidt complementation.
We will report some computational results.

This paper is organized as follows. In Section 2 we summarize some of the main results
on bent and negabent functions which are needed throughout this paper.

In Section 3, we consider quadratic bent-negabent functions. In Section 4 we investigate
Maiorana-McFarland bent functions. Transformations which preserve bent-negabentness are
investigated in Section 5, in particular the Schmidt complementation. Finally, computational
results are contained in the last Section 6.



2 Preliminaries

Let Vm denote the m-dimensional vector space Fm
2 . We consider functions f̃ : Vm → C.

In many cases, the image set is just {±1}. Then we say that the function is Boolean. If
f : Vm → F2, we may easily turn it into a “complex-valued” Boolean function:

f̃(x) := (−1)f(x).

Conversely, any function f̃ : Vm → {±1} determines a function f : Vm → F2 by replacing
−1 by 1 and 1 by 0. We also call f Boolean. The set of Boolean functions f̃ : Vm → C is
embedded in a 2m-dimensional unitary vector space V with an inner product

(1) (f̃ , g̃) =
∑

x∈Vm

f̃(x)g̃(x).

A function f̃ : Vm → C is determined by the values f̃(x). It will be useful to interpret
this vector of “function values” as a polynomial in C[ξ1, . . . , ξm]: We define the multivariate
polynomial

(2) F =
∑

x∈Vm

axξx,

where ξx := ξx1
1 · · · ξxm

m , and ax = f̃(x) for x ∈ Vm. We call F the indicator polynomial of f̃ .
If f : Vm → F2, we first have to turn f into a complex-valued function (−1)f , as described
above.

Note that f : Vm → F2 itself may also be defined as a multivariate polynomial. Both
polynomials, f and its indicator F , describe the same object of interest (the Boolean function
f), but in a completely different way. Therefore, we will write x when we deal with f : Vm →
F2, and ξ when dealing with the indicator.

The set of polynomials
∑

x∈Vm
axξx forms a complex vector space L of dimension 2m. On

this vector space, we define the usual inner product:

(F,G) :=
∑

x∈Vm

axbx,

where F =
∑

axξx, G =
∑

bxξx. If F and G are the indicator polynomials of two functions
f̃ and g̃, then

(F,G) :=
∑

x∈Vm

f̃(x)g̃(x),

which is the same as (1). This shows that the indicator map I : V → L which maps f̃ to
F (as defined in (2)) is a unitary transform. Now we describe two important and interesting
unitary transforms L → L. Let F :=

∑
x axξx be a polynomial in L. We define the Hadamard

transform
Hm(F ) =

∑
u∈Vm

âuξu,

where
âu =

1√
2m

∑
x∈Vm

ax(−1)(x,u),

i.e. we evaluate the polynomial F (now considered as a mapping) at the vector (ξ1, . . . , ξm)
with ξi = (−1)ui , and divide by 2m/2. We will also denote âu by Hm(F )(u). By (·, ·), we
denote the standard inner product on Vm.



It is well known and easy to see that the transform Hm is unitary, and it can be described
(after fixing an appropriate basis of L) by the following matrix:

1√
2m

(H⊗ · · · ⊗H)

where

H =
(

1 1
1 −1

)
.

We call this tensor product Hm. If F is the indicator function of a Boolean function f : Vm →
F2, then

Hm(F )(u) =
1√
2m

∑
x∈Vm

(−1)f(x)+(u,x).

This is the classical Hadamard-Walsh transform of f . The function f is called bent if |Hm(F )(u)| =
1 for all u ∈ Vm. Since

∑
x(−1)f(x)+(u,x) ∈ Z, bent functions may exist only if

√
2m is an

integer, hence if m is even. Actually, for all even m bent functions do exist, see [4], for in-
stance. That article [4] includes an excellent survey on bent functions. Another good source
for classical material on bent functions is [5] or [6], for instance.

The transform Hm is an involution, hence we have the following well known result:

Theorem 1. If f : Vm → F2 is a bent function, then Hm((−1)f ) is a Boolean function, which
is again bent. We call this the dual of f , denoted by f⊥.

Example 1. The Boolean function f : V4 → F2 defined by f(x) = x1x2 + x3x4 is bent: The
indicator polynomial of (−1)f is

F = 1 + ξ1ξ2ξ3ξ4 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ1 + ξ2 + ξ3 + ξ4

−(ξ1ξ2 + ξ3ξ4 + ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4).

Using just the definition of H, we obtain

H4(F ) = 1 + ξ1ξ2ξ3ξ4 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ1 + ξ2 + ξ3 + ξ4

−(ξ1ξ2 + ξ3ξ4 + ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4).

This is the indicator function of the dual of f . In general, it is less straightforward to compute
the function f⊥ that corresponds to this indicator, but it turns out that

f⊥ = x1x2 + x3x4,

so, in this case, f is self-dual with respect to H.

Let I =
√
−1 be the complex unit. Another unitary transform Nm is obtained if we evaluate

F at all ±I-vectors (I · (−1)u1 , . . . , I · (−1)um) of length m. We define

Nm(F ) =
∑

u∈Vm

ãuξu,

where
ãu =

1√
2m

∑
x∈Vm

ax

∏
i:xi=1

I2ui+1,

where we compute 2ui + 1 modulo 4.
Again, we write Nm(F )(u) instead of ãu.



We call this transform the nega-Hadamard transform Nm. In matrix terms, it is described
by the m-fold tensor product

1√
2m

(N⊗ · · · ⊗N)

where

N =
(

1 I
1 −I

)
.

Another way to compute Nm(F )(u) is

(3) Nm(F )(u) =
1√
2m

∑
x∈Vm

ax · (−1)(u,x) · Iweight(x).

where weight(x) is the number of nonzero xi in x. If F is the indicator function of (−1)f , this
becomes

(4) Nm(F )(u) =
1√
2m

∑
x∈Vm

(−1)f(x)+(u,x) · Iweight(x).

A Boolean function f is called negabent if |Nm(F )(u)| = 1 for all u ∈ Vm. In contrast to
bent functions, negabent functions also exist if m is odd, see Proposition 1, for instance. The
difference to the case of bent functions is that there are elements 1± I of absolute value

√
2

in Z[I], which is impossible in Z.
The set of values Hm(F )(u) (resp. Nm(F )(u)) is called the spectrum of F with respect to

Hm (resp. Nm).

Example 2. The function f(x) = x1x2 + x2x3 + x3x4 is bent and negabent, see Theorem 4.

Like H, the nega-Hadamard transform is unitary: Since the polynomials ξx, x ∈ Vm,
form an orthonormal basis of L, it is sufficient to show that the polynomials Nm(ξx) are
orthonormal in L:

|(Nm(ξx),Nm(ξy))| = 1
2m

∣∣∣∣∣ ∑
u∈Vm

(−1)(u,x)Iweight(x) · (−1)(u,y)(−I)weight(y)

∣∣∣∣∣
=

∣∣∣∣∣ 1
2m

∑
u∈Vm

(−1)(u,x+y)Iweight(x)−weight(y)

∣∣∣∣∣
=
{

1 if x = y
0 otherwise.

Surprisingly, affine functions are negabent:

Proposition 1. All affine functions f : Vm → F2 are negabent.

Proof. If f(x) = (a,x) is linear, then the nega-Hadamard transform of the indicator of (−1)f

is
Nm((−1)f )(u) =

1√
2m

∑
x∈Vm

(−1)(u+a,x) · Iweight(x).

We define
α :=

1√
2m−1

∑
x∈Vm:x1=0

(−1)(u+a,x) · Iweight(x).



This is Nm−1((−1)g)(u′), u′ = (u2, . . . , um), for the linear function g on Vm−1 which is the
restriction of f to {x ∈ Vm : x1 = 0}. By induction, we may assume |α| = 1. Depending on
u1 + a1, we get

Nm((−1)f )(u) =
1√
2
(α + α · I) or

1√
2
(α− α · I).

Both numbers have absolute value 1. Since the function f(x) = 1 is also negabent, affine
linear functions are negabent, too.

The next proposition will also be of interest:

Proposition 2. NmHmN−1
m = Bm, where

Bm =
(

0 ω
ω 0

)
⊗ · · · ⊗

(
0 ω
ω 0

)
,

and ω = 1√
2
(1 + I) is a primitive 8-th root of unity.

Proof. Note(
1 I
1 −I

)
·
(

1 1
1 −1

)
·
(

1 1
−I I

)
=
(

0 2(1 + I)
2(1− I) 0

)
= 2

√
2 ·
(

0 ω
ω 0

)
and “tensoring”.

In this paper, we address the following problem:

Problem 1. Find Boolean functions f that are both bent and negabent.

The main results about these objects are the following:

– For all even m, there are examples of quadratic bent-negabent functions.
– Adding a certain polynomial, c, to a bent function gives a negabent function. Adding the

same polynomial, c, to a negabent function if m is even gives a bent function.
– The dual of a bent-negabent function is again bent-negabent.
– We can characterize all Maiorana-McFarland bent functions which are bent-negabent.
– We give examples of bent-negabent functions which are not quadratic.

At the end of this section, we would like to explain the connection between the transforms
Nm and Hm of F and correlation properties of f , where F is the indicator polynomial of
f : Vm → F2 in C[ξ1, . . . , ξm]. Note that the polynomial ring C[ξ1, . . . , ξm] is an algebra by
the usual multiplication ∗ of polynomials.

If x ∈ Cm, then obviously F (x) · G(x) = (F ∗ G)(x). Note that both the Hadamard
transform and the nega-Hadamard transform are nothing else than “evaluating F at certain
vectors”. Therefore, knowing the (nega-)Hadamard transform of F should give some informa-
tion about F ∗G. We do not get full information about F ∗G, but only modulo some ideals, as
we will explain now: Let I− be the ideal in C[ξ1, . . . , ξn] generated by ξ2

1 − 1, . . . , ξ2
m − 1, and

I+ be the ideal generated by ξ2
1 + 1, . . . , ξ2

m + 1. Let H (resp. N) be the unique polynomial in
L with H ≡ (F ∗ F ) mod I− (resp. N ≡ (F ∗ F ′) mod I+, where F ′ is the polynomial in L
whose nega-Hadamard transform is the complex-conjugate of the nega-Hadamard transform
of F ).

Let y ∈ Vm. The coefficient cy of ξy in H is the periodic autocorrelation coefficient

cy =
∑

x∈Vm

(−1)f(x)+f(x+y).



If f is bent, then H(x) = (F ∗ F )(x) = F (x) · F (x) = 2m for all x ∈ Vm. Therefore, H is a
polynomial such that all values in its spectrum are

√
2m (note the normalization factor 1√

2m ).
The only such polynomial is 2mξ0, hence cy = 0 if y 6= 0, and c0 = 2m, where 0 = (0, 0, . . . , 0).

Similarly, the coefficients ny of F ∗F ′ are all 0 (if y 6= 0) provided f is negabent. They are
called the negaperiodic autocorrelation coefficients of f . Note that F ′ =

∑
x∈Vm

ax(−1)weight(x)ξx

if F =
∑

x∈Vm
axξx. Therefore, one may compute these negaperiodic autocorrelation coeffi-

cients as follows:

ny =
∑

x∈Vm

(−1)f(x)+f(x+y) · (−1)weight(x+y) · (−1)(x,y).

We need the term (−1)(x,y) since our computations are modulo I+: The inner product (x,y)
counts the number of i ∈ {1, . . . ,m} with xi = yi = 1, which is the number of “reductions”
modulo ξ2

i + 1. Every such reduction yields a “−1” since ξ2
i = −1.

The coefficient of 0 in F ∗ F ′ (resp. F ∗ F ) is called the trivial autocorrelation coefficient.
The following Theorem summarizes this discussion:

Theorem 2. A Boolean function is negabent if and only if all its nontrivial negaperiodic
autocorrelation coefficients are 0. It is bent, if and only if all the nontrivial periodic autocor-
relation coefficients are 0.

3 Quadratic bent-negabent functions

We begin our investigation with the determination of quadratic bent-negabent functions. Let
M = (ai,j)i,j=1,...,m be a symmetric matrix in F(m,m)

2 with zero diagonal. Then M defines a
quadratic function

(5) p(x1, . . . , xn) =
∑
i<j

ai,jxixj .

Conversely, any quadratic function (5) defines a symmetric matrix M. Note that M may be
viewed as the adjacency matrix of a graph with m vertices. If this graph is a path graph or
complete (clique) graph, then we also call the corresponding quadratic function p a “path”
or a “clique” function.

The following result is well known:

Theorem 3. A quadratic function p is bent if and only if the corresponding matrix M has
full rank.

Similarly, one can characterize quadratic negabent functions. Actually, [2] contains a much
more general result.

Theorem 4 ([2]). A quadratic function p is negabent if and only if the matrix M + I has
full rank, where I is the identity matrix and M is the matrix corresponding to p.

This theorem is the main ingredient to construct quadratic bent-negabent functions. Using
a recursive formula for the determinants of matrices of the type

(6) L(v1, . . . , vm) :=



v1 1
1 v2 1

1 v3 1
. . . . . . . . .

1 vm−1 1
1 vm


∈ F(m,m)

2



(“empty” entries are 0) contained in [2], it can be shown that

det(L(1, . . . , 1)) = 1

if and only if m 6≡ 2 mod 3, and

det(L(0, . . . , 0)) = 1

if and only if m is even. Hence the quadratic function

(7) p(x1, . . . , xm) = x1x2 + x2x3 + . . . xm−1xm

is a bent-negabent pair if m 6≡ 2 mod 6.
Theorem 5 shows that the case m 6≡ 2 mod 6 is not really exceptional. For proof, we need

the following recursive construction:

Lemma 1. Let A be a symmetric matrix in F(m,m)
2 such that A and A + I have rank m.

Then the matrix

A′ =


A

1
1

B

 ∈ F(m+6,m+6)
2

with
B = L(0, 0, 0, 0, 0, 0) ∈ F(6,6)

2

(the matrix of the path graph, see (6)) has rank m + 6, and A′ + I has also rank m + 6.

Proof. Just do Gaussian elimination.

Theorem 5. For all even m ≥ 2, there exists a quadratic bent-negabent function f : Vm →
F2.

Proof. For m = 4, 6 and 8, we take the quadratic functions corresponding to the matrices


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 ,



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


and 

0 1 0 1 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


It is easy to check that these three quadratic forms are bent-negabent since the matrices as
well as the matrices plus I have full rank, see Theorems 3 and 4. Lemma 1 finishes the proof.

The following Theorem may also serve as a basic ingredient to construct many bent-
negabent functions. Here J denotes the matrix all of whose entries are 1, and 0 denotes the
0-matrix.



Theorem 6. Let M ∈ F(n,n)
2 be a symmetric matrix such that rank(M) = rank(M + J) = n.

Then both

M′ =
(

0 M
M J + I

)
and M′ + I have rank 2n. Therefore, the quadratic function f corresponding to M′ is bent-
negabent.

Proof. The matrix M′ has maximum rank since M has maximum rank. Therefore, f is bent,
see Theorem 3. If we add the (2n× 2n) identity matrix to it, we obtain(

I M
(M + J) J

)
.

This matrix has the same rank as

M′′ =
(

J + I M + J
(M + J) 0

)
.

But since we assume rank(M) = rank(M + J) = n, the rank of M′′ is 2n, which shows that
f is also negabent (see Theorem 4).

The following Theorem gives a huge family of matrices M of rank n such that M + I
has rank n, too. Unfortunately, n is even in this Theorem, hence we can only construct
bent-negabent functions in Vm with m ≡ 0 mod 4:

Theorem 7. Let n be even, and let M ∈ F(n,n)
2 be a matrix where all rows and columns have

odd weight (in other words, MJ = JM = J). If M has maximum rank, then M + J also has
maximum rank.

Proof. Observe that (M + J)2 = M2 and, more generally, (M + J)2s = M2s, (M + J)2s+1 =
M2s+1+J. If M has even multiplicative order, then there exists s such that M2s = (M+J)2s =
I. Therefore, in this case M + J has maximum rank. If M has odd multiplicative order, then
there exists s such that M2s+1 = I, therefore (M + J)2s+1 = I + J. But (I + J)2 = I, since n
is even. So, in this case, M + J has maximum rank, too.

We will show that “adding a clique” c(x) =
∑

i<j xixj (see Theorem 12) turns a bent func-
tion into a negabent function and vice versa. For quadratic functions, this has the following
interpretation:

Theorem 8. Let M be a symmetric matrix in F(m,m)
2 , where the diagonal of M is zero. Then

the corresponding quadratic function is bent-negabent if and only if M and M + I + J have
full rank.

Proof If f is bent, then rank(M) = m. If f is negabent, then f + c is bent. The symmetric
matrix that describes f + c is M + I + J, which must have full rank.

This shows that the classification of all quadratic bent-negabent functions is equivalent to
the determination of all simple graphs on m vertices such that the adjacency matrix of the
graph and its complement both have F2-rank m.

Problem 2. Determine the number of quadratic bent-negabent functions with m variables.



4 Maiorana-McFarland bent-negabent functions

In this section, we briefly recall the Maiorana-McFarland construction of bent functions, and
we characterize those functions which are both bent and negabent.

Let π : Vn → Vn be a permutation, and let g : Vn → F2 be an arbitrary Boolean function.
Then the function

fπ,g : Vm → F2

[x,y] 7→ (x, π(y)) + g(y)
,

where m = 2n, is bent. Here [·, ·] denotes the concatenation of vectors, and (·, ·) is the standard
inner product.

Note that we are free to choose g. If we take g(y) = y1 · · · yn, bent functions of degree
m/2 (if they are written as a multivariate polynomial) do exist. It is well known that this is
the maximum degree. There exist bent-negabent functions of degree m/2 when m = 6 (for
instance, f(x,y) = x1y1y2 + x1y2y3 + x2y1y2 + x2y2y3 + x1y1 + x1y2 + x2y3 + x3y1 + x3y3 is
bent-negabent), but we do not know whether bent-negabent functions of degree m/2 exist for
all even m.

Problem 3. Find the maximum degree of bent-negabent functions.

Note that all quadratic bent functions can be transformed by linear transformations
to Maiorana-McFarland bent functions. This is a simple consequence of the fact that any
quadratic function on Vm, m = 2n, of full rank can be transformed into x′1x

′
n+1 + x′2x

′
n+2 +

. . . + x′nx′2n by a linear transformation

(x1, . . . , x2n) → L(x1, . . . , x2n) = (x′1, . . . , x
′
2n).

However, such linear transformations do not preserve the bent-negabent property. For in-
stance, x1x2 + x3x4 is bent, but not negabent, however x1x2 + x2x3 + x3x4 is bent-negabent,
see Theorem 7. These two quadratic functions are equivalent via a linear coordinate transfor-
mation.

Therefore, we cannot say that all bent-negabent quadratic functions are “equivalent” to
Maiorana-McFarland bent functions.

The next theorem gives a characterization of Maiorana-McFarland bent-negabent func-
tions fπ,g in terms of the permutation π and the function g:

Theorem 9. Let {y1, . . . ,y2n} = Vn, where the vectors are numbered such that

Hn = ((−1)(yi,yj))i,j=1,...,n

is the matrix corresponding to the n-dimensional Hadamard-Walsh transform. Then fπ,g is
bent-negabent on Vm with m = 2n, if and only if all the entries in the matrix

NnPDNt
n

have absolute value 1, where D and P are defined as follows:

– D is a diagonal matrix whose (i, i)-entry is (−1)g(yi).
– P is a permutation matrix such that the 1-entry in row i occurs in column j where π(yi) =

yj.



Proof. We have

Nm((−1)f )[u,v] =
∑

[x,y]∈V2n

(−1)(x,π(y))+g(y)(−1)([u,v],[x,y])Iweight([x,y])

=
∑
y∈Vn

Iweight(y)(−1)g(y)(−1)(v,y)

(∑
x∈Vn

(−1)(u,x)(−1)(x,π(y))Iweight(x)

)
.

This is an entry of NnHnPDNt
n. We have NnHn = BnNn, where Bn is a diagonal matrix

with all diagonal entries of absolute value 1 (see 2)), the matrix NnHnPDNt
n has all entries

of absolute value 1 iff NnPDNt
n has this property.

It seems difficult to apply this Theorem in order to construct Maiorana-McFarland bent-
negabent functions.

We say that a quadratic function p is Maiorana-McFarland if we can split the coordinates
into two sets x1, . . . , xm/2 and x1+m/2, . . . , xm, say, such that no term xixj with i ≤ m/2 and
j > m/2 is contained in p. The following construction shows that quadratic bent-negabent
functions of Maiorana-McFarland type do exist:

Theorem 10. Let m = 4n, and let P and Q be permutation matrices of size n. Then the
matrix

M =


0 0 P 0
0 0 Q I
Pt Qt 0 0
0 I 0 0


describes a quadratic function p of Maiorana-McFarland type which is bent and negabent.

Proof. Gaussian elimination both on M and M + I.

Let p(x1, . . . , x4n) be the quadratic function in Theorem 10. Numerical experiments indi-
cate that we may always add a Boolean function g(x2n+1, . . . , x3n) to p to obtain another bent-
negabent pair. More generally still, experiments indicate that p(x1, . . . , x4n) = (y, φ(z)) +
(θ(z),u) + (u,v) + g(z), where y = (x1, . . . , xn), z = (xn+1, . . . , x2n), u = (x2n+1, . . . , x3n),
v = (x3n+1, . . . , x4n), and where φ, θ : Vn → Vn are both permutations, will always give
examples of bent-negabent pairs on m variables from degree 2 up to degree m/4.

5 Transformations which preserve bent-negabentness

Theorem 11. If f is a bent-negabent function, then its dual is again bent-negabent.

Proof. This is an immediate consequence of Proposition 2.

Ther are a few more transformations which produce new bent-negabent functions from a
given bent-negabent function.

Lemma 2. Let f : Vm → F2 be a bent-negabent function. Then

1. The Boolean function f ′(x) = f(x) + (
∑m

i=1 aixi) + b, where (a1, . . . , am) ∈ Vm, b ∈ F2, is
bent-negabent.

2. The Boolean function f ′(x) = f(x1 + h1, x2 + h2, . . . , xm + hm) is bent-negabent.
3. If π denotes a permutation on the set of indices {1, . . . ,m}, then f(xπ(1), . . . , xπ(m)) is

bent-negabent.



Proof. We just look at (1). This is well known and also easy to see for bent functions f .
The same reasoning shows that negabentness is preserved: Let l(x) =

∑m
i=1 aixi + b, and let

a = (a1, . . . , am). Then

Nm(f ′)(u) =
∑

x∈Vm

(−1)f(x)+(a,x)+bIweight(x)(−1)(u,x) = (−1)bNm((−1)f )(u + a).

The following construction is more interesting. It is implicitly contained in Theorem 4.6
of [3].

Theorem 12. Let f : Vm → F2 be a bent function. Then f+c is negabent, where c(x1, . . . , xn) =∑
i<j xixj. Conversely, if m is even and f is negabent, then f + c is bent.

Proof. Let f : Vm → F2 be a bent function. Then

Nm(f + c)(u) =
∑

x∈Vm

(−1)f(x)+
P

i<j xixj (−1)(u,x)Iweight(x)

=
∑

x∈Vm

(−1)f(x)(−1)(u,x)I2c(x)+weight(x),

where we compute the exponents on the right-hand side modulo 4. We note∑
i

xi + 2
∑
i<j

xixj = (
∑

i

xi)2 in integers Z

where
∑

xi = weight(x). Moreover,

(
∑

i

xi)2 ≡
{

0 mod 4 if weight(x) is even
1 mod 4 if weight(x) is odd.

Let Em denote the set of vectors of even weight, and let Om be the set of vectors of odd
weight. We define

xe =
∑

x∈Em

(−1)f(x)(−1)(u,x)

xo =
∑

x∈Om

(−1)f(x)(−1)(u,x).

Note that both these numbers are integers. We write Nm(f + c)(u) as follows:

Nm(f + c)(u) = xe + Ixo

Now we use that f is bent, therefore

1 = |Hm(f)(u)| = |xe + xo|

and
1 = |Hm(f)(u + j)| = |xe − xo|,

where j = (1, . . . , 1) is the all-one-vector. This is only possible if xe = 0 and |xo| = 1, or vice
versa. Therefore, |Nm(f + c)(u)| = 1.

Now let us assume that a function g is negabent. We put f = g + c, hence, by assumption,

|Nm(f + c)(u)| = 1 = x2
e + x2

o.



Moreover, xe = ne/
√

2m, and xo = no/
√

2m for some integers ne and no. Therefore, n2
e +n2

o =
2m. If m is even, one easily shows that this is possible only if one of the two integers ne, no is
±2m/2, and the other is 0. Therefore, |Hm(f)(u)| = 1, i.e. f = g + c is bent.

Corollary 1. If f is a bent-negabent function, then f + c is also bent-negabent.

Remark 1. Assume that g is negabent, and m is odd. Then the proof above shows that the
Hadamard-Walsh coefficients of g + c are in {0,±2(m+1)/2}, since in this case the possible
solutions of n2

e + n2
o = 2m are ne, no = ±2(m−1)/2. Therefore, it is possible that n2

e + n2
o = 0.

6 Orbits of bent-negabent functions

One can view the operations that preserve the bent-negabent property, as discussed in the
previous section, as generators of a group, where the action of any member of the group
preserves the bent-negabent property. The two particularly interesting symmetry operations,
described in Theorem 11 and Corollary 1, are involutary and, in combination with the symme-
try operations of Lemma 2, generate a group of symmetries, G, whose application on a single
bent-negabent function generates an orbit of bent-negabent functions. We also consider the
more trivial group, E , generated just by the symmetries of Lemma 2. In table 1 we enumerate
the number of orbits generated by the action of E and by G on the (homogeneous) quadratic
Boolean functions for small numbers of variables. Note that, for quadratics, symmetry 2 of
Lemma 2 is contained in symmetry 1 and does not contribute new functions to the orbit.

Table 1. Enumeration of bent-negabent quadratic coset leaders over n variables with respect to the bent-
negabent symmetry groups, E and G

n number of orbits generated by E number of orbits generated by G
2 0 0
4 1 1
6 10 2
8 1272 161
10 1727780 144861

In a future paper we shall investigate and characterise these orbits in more detail.
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