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Abstract

We derive a spectral interpretation of the pivot operation on a graph
and generalise this operation to hypergraphs. We enumerate the number of
inequivalent pivot orbits for small numbers of vertices. We also construct a
family of Boolean functions of degree higher than two with a large number
of flat spectra with respect to the {I,H}n set of transforms, and compute
a lower bound on this number. We establish lower bounds on the number
of flat spectra of a function w.r.t. {I, H}n and {I,H, N}n depending on
internal structures.

1 Introduction

Define the n-vertex graph, G, by its n × n symmetric adjacency matrix, Γ.
Identify G with a quadratic Boolean function p(x0, x1, . . . , xn−1), where p(x) =∑

i<j Γijxixj [10]. Let s = (−1)p be a length 2n n-dimensional vector such that
si = (−1)p(x=i). In this paper we characterise the pivot operation on graphs us-
ing algebraic normal form (ANF). We also generalise pivot to hypergraphs (i.e.
to boolean functions of degree ≥ 2), and state the (necessary and sufficient)
condition that a function of degree higher than quadratic must fulfill in order
to allow such an operation. Then we show how the pivot operation on a (hy-
per)graph can be written as a transform on the bipolar vector of the function
associated to it. We construct a family of Boolean functions that have a large
number of flat spectra w.r.t. {I, H}n, and compute this number. We study
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the pivot orbit trajectory of structures that include a clique and develop lower
bounds on the number of flat spectra of a graph w.r.t. {I, H}n and {I,H, N}n.

Let H = 1√
2

(
1 1
1 −1

)
be the Walsh-Hadamard kernel, N = 1√

2

(
1 i
1 −i

)
,

where i2 = −1, be the Negahadamard kernel, and I the 2× 2 identity matrix.
The boolean function p is defined to have a flat spectra with respect to an
arbtirary unitary matrix U iff s = U(−1)p satisfies |si| = |sj |, ∀i 6= j. Define
{I,H, N}n as the set of unitary transforms comprising all 2n × 2n transform
matrices, U , of the form U =

⊗
j∈RI

Ij
⊗

j∈RH
Hj

⊗
j∈RN

Nj , where RI,RH

and RN partition the set of vertices. In this paper we consider mainly the
(sub)set {I, H}n of the transforms U ∈ {I, H, N}n where RN = ∅.

2 Pivot

Definition 1 [2, 6, 7] The action of local complementation (LC) (or vertex-
neighbour-complement (VNC)) on a graph G at vertex v is defined as the graph
transformation obtained by replacing the subgraph G[N (v)] (i.e., the induced
subgraph of the neighbourhood of the vth vertex of G) by its complement.

Definition 2 [1] The action of pivot on a graph, G, at two connected vertices,
u and v, (i.e. where G contains the edge uv), is given by LC(v)LC(u)LC(v) -
that is the action of LC at vertex v, then vertex u, then vertex v again.

Lemma 1 Let p be a quadratic Boolean function. If we write p = xixj +
xiNi + xjNj + R, where Ni, Nj, and R are not functions of xi or xj. Then,
after pivoting its associated graph on the edge ij, p becomes (equivalent1 to)

piji = xixj + xiNj + xjNi +NiNj + R = p + (xi + xj)(Ni +Nj) +NiNj .

Definition 3 Let p = xixj + q(x0, . . . , xn−1) be a function of any degree (≥ 2)
in the variables {x0, . . . , xn−1} such that xixj is not a multiplying term in q

(that is, such that ∂2

∂xixj
q = 1). Then define the pivot operation in the associated

hypergraph on the edge ij by its ANF as piji = xixj +xiNj +xjNi+NiNj +R =
p + (xi + xj)(Ni +Nj) +NiNj, where p = xixj + xiNi + xjNj + R as before.

Remarks: Note that now there is no restriction in the degree of Ni,Nj ,
and also that due to the condition on p (and equivalently to it) Ni and Nj

are independent of both xi and xj and so the formula is well-defined, while if
we don’t have this condition the definition is ambiguous. When p is quadratic

1By ’equivalent’ we understand here that the graph associated to piji is the same as the
graph obtained from the associated graph of p by pivoting on the edge ij.

2



and the vertices i and j are connected, the condition is always fulfilled and the
definition is consistent.

Lemma 2 Let G be a bipartite (hyper)graph (i.e., associated to a function of
the type X · g(Y ), with g(Y ) a Boolean function of any degree). Then, after
pivoting on any edge of G, the resultant (hyper)graph is bipartite.

Theorem 1 Let p be a function that fulfills the condition of definition 3. Then
the pivot of its associated (hyper)graph lies in the orbit of {I, H}n. Concretely,
if we call piji the function result of pivoting on the edge ij of the (hyper)graph
associated with p, then (−1)piji = (

⊗
k 6=i,j

Ik ⊗Hi ⊗Hj)(−1)p .

Corollary 1 Let p be a Boolean function of any degree such that it satisfies
the conditions of definition 3. Then p has a flat spectrum with respect to the
transform U =

⊗
k 6=i,j Ik ⊗Hi ⊗Hj.

3 Enumeration of pivot orbits

We enumerate the number of orbits of connected graphs of n vertices, which
are inequivalent with respect to pivot, both for the unlabelled and labelled
case, as shown in Table 1. It follows from Definition 2 that each LC orbit is
partitioned into a set of pivot orbits so that, given a list of all LC orbits over n
vertices, we can generate and enumerate all pivot orbits over n vertices. For the
unlabelled case we make use of the classification of self-dual quantum codes,
which is isomorphic to the classification of LC graph orbits, as described in [4, 5]
and available at [3]. This classification used nauty [8] to deal efficiently with
graph isomorphism. The subsequent enumeration of pivot orbits of unlabelled
connected graphs is shown in Table 1 up to n = 11. We have also classified and
enumerated all pivot orbits for labelled connected graphs as shown in Table 1.
A list of pivot orbit representatives for both labelled and unlabelled connected
graphs is available at http://www.ii.uib.no/˜matthew/pivotorbits/files.html.

Each (k, n− k)-bipartite graph simultaneously represents systematic forms
of the generator matrix for both a binary [n, k, d] linear code, C, and its dual
[n, n − k, d] code, C⊥. Moreover, indicator vectors for both C and C⊥ can
be obtained from (−1)p via transforms from the set of {I, H}n transforms [9].
The action of pivot on a bipartite graph generates, in general, new bipartite
graphs (Lemma 2) which can be interpreted as alternative systematic generator
matrices for C and C⊥. It follows that C and C⊥ are invariant under pivot
of the associated bipartite graph. It is therefore of interest to enumerate the
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number of pivot orbits of bipartite graphs. Table 1 enumerates all pivot orbits of
unlabelled and labelled connected bipartite graphs, and a list of bipartite pivot
orbit representatives for unlabelled and labelled connected graphs is available
at http://www.ii.uib.no/˜matthew/bipivotorbits/files.html 2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
in 1 1 2 4 10 35 134 777 6702 104825 3370317
jn 1 1 2 11 119 2303 80923
kn 1 1 1 2 3 8 15 43 110 370 1260 5366 25684
ln 1 1 1 4 26 251 3412

Table 1: Number of pivot-inequivalent labelled/unlabelled connected graphs,
in: unlabelled, jn: labelled, kn: unlabelled-bipartite, ln: labelled-bipartite

4 Construction and bounds

We now design a family of Boolean functions in n variables of degree less or
equal to max{t, 2}, where 0 ≤ t ≤ n − 1, and that have a large number of flat
spectra w.r.t. {I,H}n.

• fn,t =
t−1∑
i=0

n−1∑
j=t

xixj+
n−2∑
i=t

n−1∑
j=i+1

xixj+a(x0, x1, . . . , xn−1), where deg(a) ≤ 1.

• Family Fn,t: Fn,t = {fn,t + h(x0, x1, . . . , xt−1)}, where h is an arbi-
trary boolean function in t variables.

Conjecture 1 Let f ∈ Fn,t. Then the pivot orbit of f occurs within
n−1⋃
k=0

Fn,k.

Theorem 2 Let f ∈ Fn,t. Then the number of flat spectra of f w.r.t. {I,H}n

is at least (t + 1)2n−t−1, where the bound is tight if f has degree t.

Remark: If f has degree t then all the (t+1)2n−t−1 flat spectra correspond
to restrictions of f down to residual quadratic functions.

Lemma 3 Let f ∈ Fn,t. Then the number of flat spectra of f w.r.t. {I, H, N}n

is at least (n + 1)(t + 1)2n−t−1 .

2Let dn be the number of binary linear codes isomorphic to their dual. Let cn be the
number of inequivalent binary linear codes. Then it appears that cn = 2kn − dn, although it
remains to prove this rigorously.
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5 Number of flat spectra w.r.t. {I, H}n

The clique in n variables (or complete graph) is defined as
∑

0≤i<j≤n−1 xixj .

Lemma 4 [11] The clique has 2n−1 flat spectra w.r.t. {I, H}n, and thus max-
imises the number of flat spectra w.r.t. {I,H}n.

We study here the behaviour of a graph that contains a clique. We consider
3 cases, depending on the positions of the vertices A and B, where we pivot
on the edge AB. Let Cr be the clique in r variables contained in the graph.
We denote by NA and NB the neighbourhoods of A and B respectively, and by
NAB the intersection of the neighbourhoods.

• A,B ∈ Cr: The clique remains invariant.

• A ∈ Cr, B /∈ Cr: Let m be the number of variables of Cr that are in
NAB. Then Cr splits and we get the cliques Cr−m, Cm+2, connected just
by B. Moreover A /∈ Cr−m, B ∈ Cr−m and A,B ∈ Cm+2.

• A,B /∈ Cr: In this case, Cr remains invariant, independently of whether
A or B are connected to it or not.

We give lower bounds on the number of flat spectra w.r.t. {I,H}n and
{I,H, N}n depending on internal structures:

Lemma 5 Consider a graph G and two unconnected subgraphs G1 and G2.
The number of flat spectra of G w.r.t. {I, H}n, KIH , has as lower bound:
KIH(G) ≥ KIH(G1) ·KIH(G2)

Corollary 1 If we decompose the graph in unconnected subgraphs G1, . . . , Gt,
then KIH(G) ≥

∏t
i=1 KIH(Gi). For instance, if we decompose the graph in

unconnected cliques Cr1 , . . . , Crt, then KIH(G) ≥
∏t

i=1 2ni−1 .

Lemma 6 This is also true for the number of flat spectra w.r.t. {I,H, N}n:
If we decompose the graph in unconnected subgraphs G1, . . . , Gt, then we have
that KIHN (G) ≥

∏t
i=1 KIHN (Gi) .
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