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Abstract

We derive a spectral interpretation of the pivot operation on a graph and

generalise this operation to hypergraphs. We establish lower bounds on the

number of flat spectra of a Boolean function, depending on internal struc-

tures, with respect to the {I, H}n and {I, H, N}n sets of transforms. We

also construct a family of Boolean functions of degree higher than two with

a large number of flat spectra with respect to {I,H}n, and compute a lower

bound on this number. The relationship between pivot orbits and equivalence

classes of error-correcting codes is then highlighted. Finally, an enumeration

of pivot orbits of various types of graphs is given, and it is shown that the

same technique can be used to classify codes.

1 Introduction

The pivot operation on a graph G was used by Arratia, Bollobás and Sorkin [1, 2] to

define the interlace polynomial q(G, z), as a variant of the Tutte and Tutte-Martin

polynomials [4]. It was also described by Van den Nest [20], under the name of

edge-local complementation. In [17], we related the interlace polynomials of a graph

to the spectra of a quadratic Boolean function with respect to a strategic subset of

local unitary transforms. Our main motivation in doing this was to establish links

between graph theory, cryptography, coding theory, and quantum entanglement.
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Let the graph G = (V, E), with vertex set, V , and edge set, E, of order n be

represented by its n× n adjacency matrix, Γ. Identify G with a quadratic Boolean

function p(x0, x1, . . . , xn−1), where p(x) =
∑

i<j Γijxixj [15], i.e., the term xixj

occurs in p(x) if and only if ij ∈ E. This identification allows us to interpret q(G, 1)

as the number of flat spectra of p(x) with respect to (w.r.t.) the set of transforms

{I, H}n. In this paper we characterise the pivot operation using algebraic normal

form (ANF). We also generalise pivot to hypergraphs, and state the (necessary

and sufficient) condition that a function of degree higher than two must fulfil in

order to allow such an operation. Then we show how the pivot operation on a

(hyper)graph can be written as a transform from {I, H}n on the bipolar vector of

the function associated to it. We then prove that all (not necessarily all) flat spectra

of a quadratic (general) Boolean function, p, w.r.t. {I, H}n, can be realised via a

series of pivot operations on the graph (hypergraph) associated to p, respectively.

We then construct a family of Boolean functions that have a large number of flat

spectra w.r.t. {I, H}n, and compute this number. We also study the pivot orbit

of structures that include a clique and develop lower bounds on the number of flat

spectra of a graph w.r.t. {I,H}n and {I,H, N}n. It is shown that orbits of bipartite

graphs under the pivot operation correspond to equivalence classes of binary linear

codes, and that all information sets of a code can be found by pivoting on its

associated graph. We also give an enumeration of pivot orbits of all graphs on up

to 12 vertices, and of all bipartite graphs on up to 13 vertices.

To the best of our knowledge, the results mentioned above have not appeared in

the literature before.

2 Definitions and Notation

Let H = 1√
2

(
1 1

1 −1

)
be the Walsh-Hadamard kernel, N = 1√

2

(
1 i

1 −i

)
, where

i2 = −1, be the Negahadamard kernel, and let I the 2 × 2 identity matrix. Let

s = (s0, s1, ...., s2n−1)
t = (−1)p(x), where si = (−1)p(i) and p(x) : GF(2)n → GF(2)

is a Boolean function. With this notation, p is bent [19] if P = 2−
n
2 (
⊗n−1

i=0 H)(−1)p(x)

has a flat spectrum, or, in other words, if P = (Pk) ∈ C2n
is such that |Pk| = 1,

∀k ∈ GF(2)n, where ’⊗’ denotes the tensor product of matrices, also known as

the Kronecker product. If the function is quadratic, we associate to it a simple
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undirected graph, and in this case a flat spectrum is obtained if and only if Γ, the

adjacency matrix of the graph, has maximum rank as a binary matrix. In [15],

we generalised this concept, considering not only the Walsh-Hadamard transform⊗n−1
i=0 H, but the complete set of 3n unitary transforms {I, H, N}n, comprising all

transforms U of the form U =
∏

j∈RI
Ij

∏
j∈RH

Hj

∏
j∈RN

Nj, where the sets RI , RH

and RN partition the set of vertices {0, . . . , n− 1}, and Hj, say, is short for I ⊗ I ⊗
. . .⊗I⊗H⊗I⊗ . . .⊗I, with H in the jth position. For instance, if n = 4, RI = {1},
RH = {0, 3}, and RN = {2}, then U = H⊗I⊗N⊗H, where U is a 16×16 unitary

matrix. The orbit of a Boolean function p w.r.t. a set of transforms T comprises

all Boolean functions, p′, where s′i = (−1)p′(i), and where s′ can be obtained by the

application of any t ∈ T to s = (−1)p(x).

In [15, 18] we studied the number of flat spectra of a function w.r.t. {I,H, N}n,

or in other words the number of unitary transforms U ∈ {I,H, N}n such that

PU = (PU,k) ∈ C2n
has |PU,k| = 1, ∀k ∈ GF(2)n, where (PU,k) = U(−1)p(x) .

We also considered the number of flat spectra w.r.t. some subsets of {I,H, N}n,

namely {H, N}n (when RI = ∅) and {I,H}n (when RN = ∅). We also proved

that a quadratic Boolean function will have a flat spectrum w.r.t. a transform

U ∈ {I, H, N}n if and only if a certain modification of its adjacency matrix has

maximal binary rank.

As will be explained in the next section, the pivot orbit of a (hyper)graph G con-

sists of all graphs obtained by the application of any sequence of pivot operations

to G. Similarly, the LC orbit comprises all graphs obtained by applying local com-

plementations to G. In this paper, we will study the pivot orbits of (hyper)graphs,

and the subsets of their LC orbits that are associated to the pivot transform.

There are two names for the pivot operation on graphs that are currently in use in

the literature, namely pivot and edge-local complementation (ELC). The name“edge-

local complementation” comes from Bouchet’s original definition of “local comple-

mentation on the edge” in [3] and the name “edge-local complementation” has been

used recently by Van den Nest in [20]. The name “pivot” has a long history with

respect to Gaussian elimination and, in the context of graphs, would be the opera-

tion of ELC on a bipartite graph. A few authors [1, 2, 13, 16] have, since Bouchet,

extended the use of “pivot” to apply to all graphs, not just bipartite. We call the

ELC operation, “pivot”, in this paper, although we acknowledge that “edge-local

complementation” is equally valid. Note, however, that in this paper we further

3



generalise to hypergraphs the applicability of pivot.

3 Pivot

We recall the definition of two graph operations, local complementation (LC), also

known as vertex neighbourhood complementation (VNC), and pivot, also known as

edge-local complementation (ELC).

Definition 1 ([3, 4, 8, 10, 11]). Let G = (V, E) be a graph and i ∈ V be some

vertex. N (i) denotes the neighbourhood of i, i.e., the set of vertices adjacent to i.

The action of local complementation at vertex i, denoted LC(i), is defined as the

graph transformation obtained by replacing G[N (i)], i.e., the subgraph induced on

the neighbourhood of i, by its complement.

Definition 2 ([1, 2, 3]). Given a graph G = (V, E) and an edge ij ∈ E, the action of

pivot on ij is given by LC(i)LC(j)LC(i), the action of LC at vertex i, then vertex j,

then vertex i again.1 Note that the operations LC(j)LC(i)LC(j) would give exactly

the same result.

Definition 3 ([1, 2, 3]). Pivoting on ij ∈ E of G = (V, E) can equivalently be

defined as follows. Decompose V \ {i, j} into four disjoint sets, as visualised in

Fig. 1,

• N (i) \ N (j), the set of vertices adjacent to i, but not to j,

• N (j) \ N (i), the set of vertices adjacent to j, but not to i,

• N (i) ∩N (j), the set of vertices adjacent to both i and j,

• and the set of vertices adjacent to neither i nor j.

For any pair of vertices {x, y}, where x belongs to one of the first three classes listed

above, and y also belongs to one of the first three classes, but a different class than

x, ‘toggle’ the pair {x, y}, i.e., if xy ∈ E, delete the edge, and if xy 6∈ E, add the

edge xy to E. Finally, swap the labels of vertices i and j, or, equivalently, swap the

two sets N (i) and N (j).2

1Bouchet’s original definition of pivot, called complementation along an edge [3], includes a final

swapping of the vertices u and v.
2In Bouchet’s original definition of pivot, this swapping does not occur.
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i

N (i) \ N (j) N (j) \ N (i)

j

N (i) ∩N (j)

Fig. 1: Visualisation of the Pivot Operation

Let the vertex i of the graph G = (V, E) correspond to the variable xi in p(x),

the quadratic Boolean function associated to G. As defined above, N (i) is the set

of vertices that are adjacent to i. We identify N (i) with the linear Boolean function

Ni =
∑

k∈N (i) xk. Thus xiNi is the quadratic Boolean function corresponding to all

edges incident on i. We can now redefine the pivot operation in terms of Boolean

functions.

Lemma 1. Let p = xixj + xiNi + xjNj + R be a quadratic Boolean function, where

Ni, Nj, and R are not functions of xi or xj. p corresponds to the graph G =

(V, E), the linear function Ni corresponds to the neighbourhood of i ∈ V , Nj to

the neighbourhood of j ∈ V , and the quadratic function R to all edges in E that

are incident on neither i nor j. The Boolean function corresponding to the graph

obtained by pivoting on the edge ij ∈ E is

piji = xixj + xiNj + xjNi +NiNj + R

= p + (xi + xj)(Ni +Nj) +NiNj.
(1)

Note that both p and piji can contain linear terms which may be ignored. We consider

p and piji to be equivalent, since the corresponding graphs are equivalent up to pivot

operations.

3.1 A Generalisation to Hypergraphs

Let p be a function of degree at least two. Let Ni now be the Boolean function

comprising all terms which multiply xi in p, such that Ni is independent of xi. Note
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that there is no longer a restriction on the degree of Ni.

Definition 4. For Boolean functions, f and g, we say that g ∈ f or g /∈ f , when f

does or does not depend on g, respectively.

Definition 5. For Boolean functions, f and g, we say that g ∈t f or g /∈t f , when

g is or is not a term in the algebraic normal form of f , respectively.

Definition 6. For Boolean functions, f and g, we say that g ∈m f and g /∈m f

when g is or is not a multiplying term in f , respectively, where g is a multiplying

term in f iff ∃r such that gr ∈t f .

Definition 7. Let p = xixj + q(x0, . . . , xn−1) be a function of degree at least two

such that xixj /∈m q. The function p corresponds to the hypergraph G = (V, E),

and xixj corresponds to the edge ij ∈ E of degree two. The Boolean function

corresponding to the graph obtained by pivoting on ij ∈ E is defined as

piji = xixj + xiNj + xjNi +NiNj + R

= p + (xi + xj)(Ni +Nj) +NiNj,
(2)

where p = xixj + xiNi + xjNj + R as before.

As a visualisation of pivot on hypergraphs, consider Fig. 1, where hyperedges

can be added anywhere, with the exception that no edge of degree higher than two

can be incident on both i and j. Due to (and equivalently to) the condition on p

in Definition 7, Ni and Nj are independent of both xi and xj, and so the formula

is well-defined. If we did not have this condition, the definition would have been

ambiguous. When p is quadratic, and the vertices i and j of the corresponding graph

are connected, the condition is always fulfilled and the definition is consistent.

Lemma 2. Let G = (V, E) be a bipartite (hyper)graph. This means that V = X ∪Y

such that none of the induced subgraphs G[X] and G[Y ] contain any edges. If we

interpret x and y as vectors of variables, representing the sets X and Y , then G

corresponds to a Boolean function p = h(x) · g(y), where h(x) and g(y) are vectors

of Boolean functions of any degree. After pivoting on any permissible edge of G,

the resulting (hyper)graph always remains bipartite. Moreover, the sizes of the two

partitions will not change under pivot operations.
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Proof. It follows from the definition of a bipartite (hyper)graph that for any edge

ij ∈ E, i and j have no common neighbours, and the subgraphs of G induced on

N (i) and N (j) contain no edges. It follows from lemma 1 for graphs and definition 7

for hypergraphs that the (hyper)graph obtained by pivoting is also bipartite.

3.2 Pivot in Spectral Terms

In [15], we proved that local complementations on a graph can be realised via

the application of successive negahadamard (N) transforms on the bipolar vector,

s = (−1)p, of the associated function p. We here show that pivot operations on a

(hyper)graph also correspond to certain transformations from the set {I, H, N}n.

Let m : GF(2)n → GF(2). In the following, we shall embed the output of m in

the complex numbers by the operation [m] ∈ C, where [0] = 0, and [1] = 1.3

Let s = [m(x)](−1)p(x) be dependent on all binary variables xi, 0 ≤ i ≤ n − 1,

where m =
∏u−1

k=0 hk and the hk are Boolean functions in n variables 4 , and p is a

Boolean function of degree less or equal than two. In the sequel, expressions of the

form s = c[m](−1)p, with c ∈ C, shall always be written as s = [m](−1)p, i.e. we

ignore normalisation coefficients. For an index i, we write m = rv, where all the

terms in v =
∏

k∈V hk, for some V ⊆ {0, . . . , u − 1}, depend on xi, and r does not

depend on xi. We denote pa = p|xi=a, ma = m|xi=a, va = v|xi=a, for a ∈ GF(2).

From the conditions above, and by results of [14], we get the following theorems.

Theorem 1. Let s = [m](−1)p. Then

His = [r(v0 + v1)](−1)p0+v1(p0+p1+xi) + 2[rv0v1(p0 + p1 + xi + 1)](−1)p0 . (3)

Proof. s = [m](−1)p = [(1 + xi)m0](−1)p0 + [xim1](−1)p1 . Applying Hi gives,

s′ = [1 + xi]([m0](−1)p0 + [m1](−1)p1) + [xi]([m0](−1)p0 − [m1](−1)p1)

= [1 + xi]([m0(p0 + 1)] + [m1(p1 + 1)]− [m0p0]− [m1p1])

+[xi]([m0(p0 + 1)]− [m1(p1 + 1)]− [m0p0] + [m1p1])

(4)

By applying the following identity to (4), for Boolean functions A0, A1, B0, B1,

[A0] + [A1] + [B0] + [B1] = [A0 + A1 + B0 + B1](−1)A0A1+B0B1+B0+B1

+2[(A0 + A1 + B0 + B1)(A0A1 + B0B1)](−1)A0+1,

3Note that [1 + 1] = [0] = 0, while [1] + [1] = 1 + 1 = 2
4 Such a factorisation of m is not necessarily unique.
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we obtain, after a bit more manipulation, the theorem. 5

Theorem 2 (theorem 18 of [14]). Let s = [m](−1)p. If xi /∈ m, then

His = [m · (p0 + p1 + xi + 1)](−1)p0 . (5)

Theorem 3 (theorem 20 of [14]). Let s = [m](−1)p. If xi ∈ m and if there exists a

factorisation of v such that all hk ∈m v are linearly dependent on xi, then

His = [r · (v0 + v1)](−1)p0+hz,1(p0+p1+xi), (6)

where hz,1 = hz|xi=1 and v0 + v1 =
∏

k 6=j(hj + hk + 1), with hz and hj chosen

arbitrarily among the divisors of v.

Remark. Typically we will choose z = j.

Theorem 4. Let p be a Boolean function that fulfils the condition of definition 7.

Then any (hyper)graph obtained by pivoting on the (hyper)graph associated to p

corresponds to some member of the set of {I, H}n transforms of p. Concretely, if

piji is the function obtained by pivoting on the edge ij of the (hyper)graph associated

with p, then (−1)piji = (Hi ·Hj)(−1)p.

Proof. Let p = xixj + xiNi + xjNj + R, and let s = (−1)p. Then, by theorem 2,

s′ = His = [xj +Ni + xi + 1](−1)xjNj+R. (7)

Now, applying theorem 3, we get

s′′ = Hjs
′ = 1 · (−1)R+(Ni+xi)(Nj+xj) = (−1)xixj+xiNj+xjNi+NiNj+R, (8)

which is what we wanted. By the condition on p, Ni does not depend on xj, which

ensures that the conditions on m necessary to apply theorem 3 are fulfilled.

Corollary 1. Let p be a Boolean function of any degree that satisfies the conditions

of definition 7. Then p has a flat spectrum with respect to the transform U = Hi ·Hj.

Theorem 5. Each of the flat spectra of p with respect to the set of transforms

{Hi ·Hj | i, j ∈ Zn, i 6= j}, identifies an edge ij in the hypergraph associated with

p, and therefore can be obtained by pivoting on the hypergraph associated with p at

the edge ij.

5 Theorem 1 and its proof relate to theorem 17 of [14]. However, we have included a new proof

as the proof of theorem 17 was incorrect in [14]. We have also simplified the statement of the

theorem.
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Proof. We will show that, given some arbitrary spectrum, Hi(−1)p, the only way

one can obtain a flat spectrum, Hj ·Hi(−1)p, i 6= j, is when

xixj ∈t p, xixj /∈m p− xixj.

In such a case, theorem 4 states that Hj · Hi(−1)p always corresponds to a pivot

operation on the hypergraph associated to p at the edge ij.

From theorem 2, for arbitrary i,

Hi(−1)p = [p0 + p1 + xi + 1](−1)p0 = [m̃](−1)p0 ,

for some m̃. In order that Hj · Hi(−1)p = (−1)p′ , for some p′, we must transform

the factor, [p0 + p1 + xi + 1], back to 1. This is trivially possible if j = i, but the

theorem excludes the case where i = j. Let

Hj ·Hi(−1)p = [m′](−1)p′ ,

for some m′ and p′, where i and j are arbitrary, i 6= j. We wish to choose j such

that m′ = 1. There are three possible scenarios:

• xj /∈ m̃: In this case, from theorem 2, (p0 + p1 + xi + 1) ∈m m′ so m′ 6= 1.

• xj ∈ m̃: There are three subcases. Let

p00 = p0|xj=0, p10 = p1|xj=0, p01 = p0|xj=1, p11 = p1|xj=1.

Considering theorem 1 acting on [m̃](−1)p0 , then m′ can be 1 iff one or more

of the following three conditions are met:

v0 + v1 = 1, v0v1(p00 + p01 + xj + 1) = 0 (9)

v0 + v1 = 0, v0v1(p00 + p01 + xj + 1) = 1 (10)

v0 + v1 = 1, v0v1(p00 + p01 + xj + 1) = 1 (11)

As, in this case, v = p0 + p1 + xi + 1, v0 = v|xj=0, v1 = v|xj=1, then we observe

that

v0 + v1 = p00 + p10 + p01 + p11,

v0v1 = (p00 + p10 + xi + 1)(p01 + p11 + xi + 1).

The three subcases for xj ∈ m̃ are:
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– xixj /∈m p: In this case v0 + v1 = 0 so (9) and (11) are not satisfied.

Furthermore, deg(v0v1(p00+p01+xj +1)) > 0 as v0v1 = p00+p10+xi+1 =

p01 + p11 + xi + 1, so xi ∈ v0v1, xj /∈ v0v1, and xi /∈ p00 + p01 + xj + 1,

xj ∈ p00 + p01 + xj + 1, so (10) is not satisfied.

– xixj ∈t p, xixj /∈m p−xixj: In this case v0+v1 = 1. Moreover, p00+p10 =

p01 + p11 + 1, so v0v1 = 0. Therefore (9) is satisfied.

– xixj ∈t p, xixj ∈m p − xixj: In this case deg(v0 + v1) > 0 so none of

(9),(10), or (11) are satisfied.

From the above analysis, m′ = 1 iff xixj ∈t p and xixj /∈m p−xixj. This is precisely

the condition required to ensure pivot at the edge ij on the hypergraph associated

to p, as stated by definition 7.

Theorem 6. Let p be a quadratic Boolean function over n variables. Then all flat

spectra of p with respect to transforms fron the set {I, H}n, other than the identity,

can be obtained via a sequence of pivot operations on the graph associated to p.

Proof. Consider the following hypothesis:

Let X be a fixed subset of {0, 1, . . . , n − 1}, where |X| > 2. Let U =
∏

i∈X Hi.

Then it is possible for U(−1)p to be flat, and for U ′(−1)p not to be flat ∀ U ′ satisfying

U ′ =
∏

i∈Z Hi, where Z ⊂ X and Z 6= ∅.
The theorem is proved if the hypothesis is proven false, as H(−1)p is never flat.

If the hypothesis is true for some X, then @ i, j ∈ X such that Hi · Hj(−1)p is

flat. We know, from theorem 4 that, therefore, the set of vertices, X, forms an

independent set6 in the graph, G, associated to p. But U(−1)p cannot be flat if X is

an independent set in G as, applying H to (−1)p at all index positions in X requires

|X| invocations of theorem 2, each of which contributes a new linear factor to m.

Therefore the final m cannot be 1 and the hypothesis is false. But, for |X| = 2, we

know from theorem 5 that all flat spectra are obtained via pivot operations. It is

trivial to show that U(−1)p is never flat if |X| = 1.

Lemma 3. Let p be a Boolean function of any degree over n variables. Then there

may exist flat spectra of p with respect to transforms fron the set {I, H}n, other

6If X is not an independent set, then there is an edge ij between vertices of X, and thereby we

can pivot on it, and Hi ·Hj(−1)p is flat.
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than the identity, that cannot be obtained via a sequence of pivot operations on the

hypergraph associated to p.

Proof. By example, the Boolean function,

p(x) = x0x1x2 + x0x1x3 + x0x1x5 + x0x2x4 + x0x2x5 + x0x3x4 + x0x3x5 + x0x4x5

+x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x4x5 + x2x3x4 + x2x3x5 + x3x4x5,

has two flat spectra w.r.t. the set {I, H}6. Apart from the identity transform, (−1)p

is also flat w.r.t. H⊗H⊗H⊗H⊗H⊗H. Such a flat spectrum cannot be obtained

via a series of pivot operations as p does not contain any quadratic terms.

Remark. The example used in the proof of lemma 3 was taken from an interesting

catalogue of homogeneous bent functions, as provided by [5].

Let p : GF(2)n → Z4, m : GF(2)n → GF(2), and let s ∈ C2n
be such that

s = (s0, s1, . . . , s2n−1)
t = [m(x)]ip(x), where sj = [m(j)]ip(j). Sometimes, for brevity,

we write the above as s = [m]ip, when it is clear from the context what we mean.

Let ma : GF(2)n → GF(2) represent ma = m|xj=a. Similarly, let pa : GF(2)n → Z4

represent pa = p|xj=a.

Theorem 7. Let m : GF(2)n → GF(2) and p : GF(2)n → Z4. Then,

Nj[m]ip =
1√
2
([m0]i

p0 + [m1]i
p1+2xj+1). (12)

Proof. Without loss of generality, we set j = n−1. Then, we can write the complex

vector [m]ip (seen as a 2n × 1 matrix) as

[m]ip =

 [m0]i
p0

[m1]i
p1

 ,
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where [m0]i
p0 and [m1]i

p1 are 2n−1 × 1 complex matrices. Then,

Nn−1[m]ip =


N 0 . . . 0

0 N . . . 0
...

...
. . .

...

0 0 . . . N


 [m0]i

p0

[m1]i
p1



=



[m(0, . . . , 0)]ip(0,...,0) + i[m(0, . . . , 1)]ip(0,...,1)

[m(0, . . . , 0)]ip(0,...,0) − i[m(0, . . . , 1)]ip(0,...,1)

[m(0, . . . , 1, 0)]ip(0,...,1,0) + i[m(0, . . . , 1, 1)]ip(0,...,1,1)

[m(0, . . . , 1, 0)]ip(0,...,1,0) − i[m(0, . . . , 1, 1)]ip(0,...,1,1)

...

[m(1, . . . , 1, 0)]ip(1,...,1,0) + i[m(1, . . . , 1)]ip(1,...,1,1)

[m(1, . . . , 1, 0)]ip(1,...,1,0) − i[m(1, . . . , 1, 1)]ip(1,...,1,1)


= [m0]i

p0 + [m1]i
p1+2xn−1+1.

In [15], we proved that local complementation can be realised via the application

of successive Ns on the bipolar vector of the function, s = (−1)p. Let D be the

set of (unitary) diagonal or anti-diagonal 2 × 2 matrices. Define δ, γ ∈ {D}n as

δ =
√

2
1+i

∏
k=l,j

(
1 0

0 i

)
k

and γ = −
∏
k=l,j

(
0 −1

1 0

)
k

. Then,

Theorem 8. Let p be a function that fulfils the condition of definition 7. Then

the local complementation of its associated (hyper)graph, seen as a weighted (hy-

per)graph, lies in the orbit of p w.r.t. {I, H, N}n to within a post-multiplication

by a tensor product of members of D. Concretely, if pl, pjl, and pljl are the func-

tions obtained by local complementations on the vertices l, j, then l again, of the

(hyper)graph associated with p, then

ipl = δNl(−1)p,

ipjl = δNjδNl(−1)p,

(−1)pljl = γδNlδNjδNl(−1)p.

(13)

Remark. We do not distinguish between l and j, so one can obtain the hypergraphs

associated to the functions, pl, pj, pjl, plj, and pljl, via local complementation. Note

that pjlj = pljl.

12



Proof. Let p = xlxj + xlNl + xjNj + R, and s = (−1)p. Let Nl =
∑ρ

r=0 ur, and

Nj =
∑τ

t=0 vt, (note that they are not necessarily linear). Then, applying theorem 77

(or by the results on [15]), Nls = 1+i√
2
ip

′
, where p′ : GF(2)n → Z4, with explicit

formula8

p′ = 2

(
p(x) + xj

ρ∑
r=0

ur +
∑
r 6=s

urus

)
+ 3

(
xl + xj +

ρ∑
r=0

ur

)
. (14)

Applying δ to Nls, we get s′ = δNls = ipl , where

pl = 2

(
p(x) + xj

ρ∑
r=0

ur +
∑
r 6=s

urus

)
+ 3

ρ∑
r=0

ur. (15)

This is the result of the action of LC(l). Now we apply LC(j); that is, we first apply

Nj to s′. By theorem 7, the result is Njs
′ = 1+i√

2
ip

′′
, where p′′ : GF(2)n → Z4, with

explicit formula

p′′ = 2

(
xlxj + xl

τ∑
t=0

vt + xj

(
ρ∑

r=0

ur +
τ∑

t=0

vt

)

+
∑
t6=u

vtvu +
∑
r,t

urvt +

ρ∑
r=0

ur + R

)

+ 3(xl + xj +
τ∑

t=0

vt)

(16)

Then we apply δ to Njs
′ to get s′′ = δNjs

′ = iplj , where

plj = 2

(
xlxj + xl

τ∑
t=0

vt + xj

(
ρ∑

r=0

ur +
τ∑

t=0

vt

)

+
∑
t6=u

vtvu +
∑
r,t

urvt +

ρ∑
r=0

ur + R

)
+ 3

τ∑
t=0

vt

(17)

Now we apply LC(l) again; that is, we first apply Nl to s′′. By theorem 7, the result

is Nls
′′ = 1+i√

2
ip

′′′
, where p′′′ : GF(2)n → Z4, with explicit formula

p′′′ = 2

(
xlxj + xl

τ∑
t=0

vt + xj

ρ∑
r=0

ur

+
∑
r,t

urvt +

ρ∑
r=0

ur +
τ∑

t=0

vt + R

)
+ 3(xl + xj)

(18)

7One can lift the Boolean function p to a function q : GF(2)n → Z4, with q(x) = 2p(x).
8We denote as λ0φ0+λ1φ1 or, more generally, as

∑
λiφi, with λi ∈ Z4 and φi Boolean functions,

the result of embedding the output of the φi’s into Z4, multiplying them by a scalar λi ∈ Z4, and

then adding the result mod 4. For instance, for x0 = x1 = 1, we have 2[x0 + x1] + 3x1 + 2 = 1.
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Then we apply δ to Nls
′′ to get s′′′ = δNls

′′ = (−1)p′ljl , where

p′ljl = xlxj + xl

τ∑
t=0

vt + xj

ρ∑
r=0

ur +
∑
r,t

urvt +

ρ∑
r=0

ur +
τ∑

t=0

vt + R (19)

If we now apply γ to s′′′, we get

pljl = xlxj + xl

τ∑
t=0

vt + xj

ρ∑
r=0

ur +
∑
r,t

urvt + R, (20)

which is, by definition 7, the formula for pivot on the hypergraph associated to p.

Note that this gives as well an alternative proof of theorem 4: Let d =

(
1 0

0 i

)
,

and let d′ =

(
0 −1

1 0

)
. We see that we have applied:

• In position l: d′dNddN = d′

(
0 1

−1 0

)
H = H

• In position j: −1
e3πi/4 d

′ddNd = (−1)d′

(
0 −1

1 0

)
H = H

• Remaining positions: I

4 Number of Flat Spectra w.r.t. {I, H}n

In this section, we first study the behaviour of a graph that contains a certain inner

structure, namely a clique. Then we give bounds on the number of flat spectra of

graphs based on their subgraphs, specifically in the case where some of the subgraphs

are cliques.

In order to provide some context for the results, we first state the results of

some computer experiments. Table 1 shows the expected number of flat spectra

w.r.t. {I,H}n for a random Boolean function, and for a random Boolean function

of degree ≤ 2. Table 1 demonstrates, empirically 9 that, for n large enough, the

expected number of flat spectra w.r.t. {I, H}n for a random Boolean function, and

for a random Boolean function of degree ≤ 2, respectively, is 1.0 and approximately

9 Exhaustive search for random, n ≤ 4, and random quad., n ≤ 7, otherwise 100000 samples

were taken.
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Table 1: Average # flat spectra w.r.t. {I,H}n

n

2 3 4 5 6 7 8 9

random 1.500 1.750 1.390 1.039 1.000 1.000 1.000 1.000

random quad 1.500 2.500 4.438 8.188 15.486 29.726 57.918 113.227

2n−2, respectively. The structures and constructions considered in this section will

be seen to produce (hyper)graphs with relatively high numbers of flat spectra w.r.t.

{I, H}n, in comparison to the average.

4.1 Cliques

The complete graph or clique on n vertices corresponds to the Boolean function

p =
∑

0≤i<j≤n−1 xixj.

Lemma 4 ([18]). The Boolean function corresponding to the complete graph on n

vertices has 2n−1 flat spectra w.r.t. {I, H}n, and maximises over the set of Boolean

functions of n variables the number of flat spectra w.r.t. {I, H}n.

We now study the behavior of a graph that contains a clique, i.e., a complete

subgraph. We consider three cases, depending on the positions of the vertices a and

b, where we pivot on the edge ab. Let Cr be the clique on r vertices contained in

the graph. We denote by N (a) and N (b) the neighbourhoods of a and b.

• a, b ∈ Cr: The clique remains invariant.

• a ∈ Cr, b /∈ Cr: Let m be the number of variables of Cr that are inN (a)∩N (b).

Then, Cr splits and we get the cliques Cr−m, Cm+2, connected just by b.

Moreover a /∈ Cr−m, b ∈ Cr−m, and a, b ∈ Cm+2.

– Particular case: Two connected cliques: a ∈ Cra , b /∈ Cra , and b ∈ Crb
.

Let ma be the number of vertices of the clique Cra that are inN (a)∩N (b),

and mb the number of vertices of the clique Crb
that are in N (a)∩N (b).

Then, both cliques split and we get the cliques Cra−ma , Cma+2, Crb−mb
,

and Cmb+2.
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• a, b /∈ Cr: In this case, Cr remains invariant, independently of whether a or b

are connected to it or not.

4.2 Bounds on the Number of Flat Spectra

We give lower bounds on the number of flat spectra w.r.t. {I, H}n and {I,H, N}n

depending on internal structures:

Lemma 5. Consider an unconnected graph G, composed of two connected compo-

nents, G1 and G2. The number of flat spectra of G w.r.t. {I, H}n, KIH , has as

lower bound: KIH(G) ≥ KIH(G1) ·KIH(G2)

Corollary 2. If we decompose an unconnected graph into connected its components

G1, . . . , Gt, then KIH(G) ≥
∏t

i=1 KIH(Gi). For instance, if we can decompose

the graph into cliques Cr1 , . . . , Crt, of respective sizes r1, . . . , rt, then KIH(G) ≥∏t
i=1 2ni−1.

Lemma 6. Consider the number of flat spectra w.r.t. {I, H, N}n. If we decom-

pose an unconnected graph into connected components G1, . . . , Gt, then we have that

KIHN(G) ≥
∏t

i=1 KIHN(Gi).

Corollary 3. The maximum clique size, nx, of any member of the pivot orbit of G

is upper-bounded by nx ≤ blog2(KIH)c.

5 A Construction of Boolean Functions with High

Number of Flat Spectra

We now design a family of Boolean functions in n variables of degree less than or

equal to max{t, 2}, where 0 ≤ t ≤ n − 1, whose members have a large number of

flat spectra w.r.t. {I, H}n. Let

fn,t =
t−1∑
i=0

n−1∑
j=t

xixj +
n−2∑
i=t

n−1∑
j=i+1

xixj + a(x0, x1, . . . , xn−1), (21)

where deg(a) ≤ 1. We then define the family Fn,t,

Fn,t = {fn,t + h(x0, x1, . . . , xt−1)}, (22)

where h is an arbitrary Boolean function of t variables.

16



Conjecture 1. Let f ∈ Fn,t. Then the pivot orbit of f is contained in
n−1⋃
k=0

Fn,k.

Theorem 9. Let f ∈ Fn,t. Then the number of flat spectra of f w.r.t. {I,H}n is

at least (t + 1)2n−t−1, where the bound is tight if f has degree t.

Proof. Let f ∈ Fn,t. Then it fulfils the condition of definition 7 for every edge ij

such that t ≤ i, j ≤ n. We showed in Section 4.1 that pivoting on any of these edges

leaves the clique invariant. This means that the number of flat spectra of f will be at

least the number of times we can pivot on the clique on the last n− t variables times

the number of times we can pivot on the complete bipartite graph
∑t−1

i=0

∑n−1
j=t xixj

(not counting repetitions), plus the identity transform. The number of times we can

pivot on the clique of the hypergraph is the same as the number of times we can pivot

on a clique of size n− t. By lemma 4, this number is 2n−t−1. We can pivot on each

edge of the complete bipartite graph, but note that the pivoting now changes the

graph, so a new pivot may not be possible (depending on h(x0, . . . , xt−1)). Avoiding

repetitions, that makes one pivot for every vertex on the first t variables, plus the

identity transform. In total we get the lower bound (t + 1)2n−t−1.

Let f ∈ Fn,t such that its degree is t. Take h(x0, x1, . . . , xt−1) = x0x1 · · ·xt−1.

Then, it is easy to see that after doing pivot on any edge mentioned above, the

obtained function does not fulfil the condition of definition 7.

Lemma 7. Let f ∈ Fn,t. Then the number of flat spectra of f w.r.t. {I,H, N}n is

at least (n + 1)(t + 1)2n−t−1.

Proof. Let f ∈ Fn,t. By theorem 9, its number of flat spectra w.r.t. {I, H}n is at

least (t + 1)2n−t−1; furthermore, we can see that all the flat spectra correspond to

graph operations, so the resulting state is associated to a graph. It can be shown [15]

that local complementation at vertex j is realised by the application of Nj to the

bipolar vector of the function, followed by a diagonal transform, which implies that

the result of applying Nj to the bipolar vector of a function associated to a (simple,

undirected) graph is always flat (this also follows as a special case of theorem 7). On

the other hand, the result of applying the identity transform to the bipolar vector

of a function associated to a graph is always flat. Therefore, the number of flat

spectra of f w.r.t. {I,H, N}n is at least n+1 times its number of flat spectra w.r.t.

{I, H, N}n; i.e. (n + 1)(t + 1)2n−t−1.
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6 Pivot Orbits and Codes

A binary linear [n, k] code C is a linear subspace of GF(2)n of dimension k. The 2k

elements of C are called codewords. We define the dual of the code C with respect

to the standard inner product, C⊥ = {u ∈ GF(2)n | u · c = 0,∀c ∈ C}. The code

C can be defined by a k × n generator matrix, C, whose rows span C. Two codes,

C and C ′, are considered to be equivalent if one can be obtained from the other by

some permutation of the coordinates, or equivalently, a permutation of the columns

of the generator matrix. C is called self-dual if C = C⊥, and isodual if C is equivalent

to C⊥. Self-dual and isodual codes must be even, i.e., all codewords must have even

weight. A set of k independent columns of C is called an information set of C. The

remaining n−k columns is called a redundancy set. We can permute the columns of

C such that an information set makes up the first k columns. This matrix can now be

transformed, by elementary row operations, into a matrix of the form C ′ = (I | P ),

where I is a k × k identity matrix, and P is some k × (n − k) matrix. The matrix

C ′ generates a code equivalent to C and is said to be of standard form. It follows

that every code is equivalent to a code with generator matrix of standard form. The

matrix H = (PT | I), where I is an (n − k) × (n − k) identity matrix is called the

parity check matrix of C. Observe that GHT = 0, where 0 is the all-zero vector. It

follows that H must be the generator matrix of C⊥. A code is decomposable if it can

be written as the direct sum of two smaller codes. For example, let C be an [n, k]

code and C ′ an [n′, k′] code. The direct sum, C ⊕ C ′ = {u||v | u ∈ C, v ∈ C ′}, where

|| means concatenation, is an [n + n′, k + k′] code.

It has previously been discovered that the LC orbits of simple undirected graphs

corresponds to the equivalence classes of self-dual additive codes over GF(4) [3, 7, 10,

21]. We now show that pivot orbits of bipartite graphs correspond the equivalence

classes of binary linear codes.

Definition 8. Let C be a binary linear [n, k] code. Let C = (I | P ) be a generator

matrix of standard form that generates a code equivalent to C. Then the code C
corresponds to the (k, n− k)-bipartite graph on n vertices with adjacency matrix

Γ =

0k×k P

PT 0(n−k)×(n−k)

 ,

where 0 denote all-zero matrices of the specified dimensions. Note that the graph
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corresponding to a code, like the generator matrix, is not uniquely defined.

An alternative description of the relationship between bipartite graphs and codes

was given by Parker and Rijmen [14]. We have previously shown how a graph corre-

sponds to a Boolean function. Applying the Hadamard transform, H, to all variables

corresponding to vertices in one partition of the graph (and I to the other variables)

produces, to within normalisation, the binary indicator vector of the corresponding

code C, i.e., a vector (sc), c ∈ Zn
2 , where sc = 1 if c ∈ C, and sc = 0 otherwise.

More explicitly, for s = (−1)p, and p a quadratic Boolean function representing the

bipartite graph of the code C, we have (sc) = µ(I⊗· · ·⊗I⊗· · ·⊗H⊗· · ·⊗H)s, with

µ some normalisation constant. Similarly, applying the H transform to the vertices

of the other partition will give the indicator vector of C⊥

Lemma 8. Let G = (V, E) be a (k, n− k)-bipartite graph derived from the standard

form generator matrix C of the [n, k] code C. Let G′ be the graph obtained by pivoting

on the edge uv ∈ E, followed by a swapping of vertices u and v. Both G and G′

have generator matrices of the form given in definition 8, with submatrices P and

P ′, respectively. Let the rows of P be labelled 1, 2, . . . , k, and let the columns of P

be labelled k + 1, k + 2, . . . , n. Assuming, without loss of generality, that u ≤ k and

v > k, P can be transformed into P ′ by the following steps.

1. Store the current value of column v for later.

2. Add row u to all rows in N (v) \ {u}, i.e., all rows that have 1 in coordinate v,

except row u. (Observe that column v is now the basis vector eu, i.e., it has 0

in all coordinates except coordinate u.)

3. Reset column v to the value that was stored initially.

Proof. According to lemma 2, G′ will remain (k, n−k)-bipartite. The transformation

of P ′ follows from definition 3. Pivoting on the edge ij of the bipartite graph

G is done by ‘toggling’ all pairs of vertices {x, y}, where x ∈ N (u) \ {v} and

y ∈ N (v) \ {u}. This is obtained by step 2 above, since row u of P defines N (u),

and column v defines N (v). But in step 2 we have also ‘toggled’ the pairs {u, y},
where y ∈ N (v) \ {u}, and we need steps 1 and 3 to correct this.

Theorem 10. Let G = (V, E) be the bipartite graph derived from the standard form

generator matrix C = (I | P ) of the code C. The graph G′ obtained by pivoting on
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the edge uv ∈ E and then swapping vertices u and v corresponds to the standard

form generator matrix C ′ = (I | P ′) of the code C ′. The code C ′ is equivalent to C,
and can be obtained by interchanging coordinates u and v of C.

Proof. Assume that u ≤ k and v > k. The effect of pivoting on the submatrix P

was described in lemma 8. Now consider the following operations on C = (I | P ),

where rows are labelled 1, 2, . . . , k, and columns are labelled 1, 2, . . . , n.

1. Observe that column u is the basis vector eu.

2. Add row u to all rows in N (v) \ {u}.

3. Column v is now the basis vector eu, and column u has the value that column

v had initially.

4. Swap columns u and v.

Comparing this with the algorithm for pivoting on P , it is easy to see that the

resulting matrix is C ′ = (I | P ′), i.e., the generator matrix corresponding to G′.

The operations we have performed on C preserve the equivalence of linear codes,

namely row additions and the swapping of columns u and v.

Corollary 4. Applying any sequence of pivot operations to the graph G correspond-

ing to the code C will produce a graph corresponding to a code equivalent to C.

Consider a code C. It is possible to go from a generator matrix of standard form,

C = (I | P ), to a generator matrix of standard form, C ′, of any code equivalent to

C by one of the n! possible permutations of the columns of C. More precisely, we

can get from C to C ′ via a combination of the following operations.

1. Permuting the columns of P .

2. Permuting the columns of I, followed by the same permutation on the rows of

P , to restore standard form.

3. Swapping columns from I with columns from P , such that the first k columns

of the generator matrix is an information set, followed by some row additions

to restore standard form.
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Theorem 11. Let C and C ′ be equivalent codes. Let C and C ′ be any matrices of

standard form generating C and C ′. Let G and G′ be the bipartite graphs correspond-

ing to C and C ′. G′ must be isomorphic to a graph obtained by performing some

sequence of pivot operations on G.

Proof. C and C ′ must be related by a combination of the operations 1, 2, and 3

listed above. It is easy to see that operations 1 and 2 applied to G produce a graph

isomorphic to G. It remains to prove that operation 3 always correspond to some

sequence of pivot operations. We know from theorem 10 that swapping columns u

and v of C, where u is part of I and v is part of P , corresponds to pivoting on the

edge uv of G and then swapping vertices u and v. When uv is not an edge of G,

we can not swap columns u and v of C via pivoting. In this case, coordinate v of

column u is 0, and column u is the basis vector eu. Swapping these columns would

result in a generator matrix where the first k columns have 0 at coordinate u. These

columns can not correspond to an information set. It follows that if uv is not an

edge of G, swapping columns u and v is not a valid operation of type 3 in the above

list. Thus graph pivoting covers all possible permutations that map standard form

generator matrices of equivalent codes to each other.

Let us now consider the labelled graphs in the pivot orbit of G = (V, E), i.e.,

graph isomorphism is not considered when the pivot orbit is generated. G is the

bipartite graph representing the code C. When we pivot on the edge uv ∈ E, without

swapping vertices u and v afterwards, the resulting adjacency matrix will not be of

the type we saw in definition 8. We can think of G as a graph corresponding to

the information set {1, 2, . . . , k} of C. Pivoting on the edge uv ∈ E, where u ≤ k

and v > k, produces a graph representing another information set of C, namely

{1, 2, . . . , k} \ {u} ∪ {v}. With this interpretation, the next corollary follows from

theorem 11.

Corollary 5. Let G be the bipartite graph representing the code C. Each labelled

graph in the pivot orbit of G corresponds to an information set of C. Moreover, the

number of information sets of C equals the number of labelled graphs in the pivot

orbit of G.
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Table 2: Numbers of LC Orbits of Graphs on n Vertices

n

1 2 3 4 5 6 7 8 9 10 11 12

iLC
n 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068

tLC
n 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

7 Enumeration of Pivot Orbits

We have previously classified all self-dual additive codes over GF(4) of length up

to 12 [6, 7], by classifying orbits of simple undirected graphs with respect to local

complementation and graph isomorphism. In Table 2, the sequence (iLC
n ) gives

the number of LC orbits of connected graphs on n vertices, while (tLC
n ) gives the

total number of LC orbits of graphs on n vertices. A database containing one

representative from each LC orbit is available at http://www.ii.uib.no/~larsed/

vncorbits/.

By recursively applying pivot operations to all edges of a graph, whilst checking

for graph isomorphism using the program nauty [12], we can quickly find all members

of the pivot orbit. Let Gn be the set of all unlabelled simple undirected connected

graphs on n vertices. Let the set of all distinct pivot orbits of connected graphs on

n vertices is a partitioning of Gn into iPn disjoint sets. Our previous classification

of the LC orbits of all graphs of up to 12 vertices helps us to classify pivot orbits,

since it follows from definition 2 that each LC orbit can be partitioned into some set

of disjoint pivot orbits. We have used this fact to classify all pivot orbits of graphs

on up to 12 vertices. In Table 3, the sequence (iPn ) gives the number of pivot orbits

of connected graphs on n vertices, while (tPn ) gives the total number of pivot orbits

of graphs on n vertices. A database containing one representative from each pivot

orbit can be found at http://www.ii.uib.no/~larsed/pivot/.

We are particularly interested in bipartite graphs, because of their connection

to binary linear codes. For the classification of the orbits of bipartite graphs with

respect to pivot and graph isomorphism, the following technique is helpful. If G is an

(a, b)-bipartite graph, it has 2a+2b−2 possible extensions. Each extension is formed

by adding a new vertex and joining it to all possible combinations of at least one of

the old vertices. Let P n be a set containing one representative from each pivot orbit
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Table 3: Numbers of Pivot Orbits of Graphs on n Vertices

n iPn tPn iP,B
n tP,B

n

1 1 1 1 1

2 1 2 1 2

3 2 4 1 3

4 4 9 2 6

5 10 21 3 10

6 35 64 8 22

7 134 218 15 43

8 777 1,068 43 104

9 6,702 8,038 110 250

10 104,825 114,188 370 720

11 3,370,317 3,493,965 1,260 2,229

12 231,557,290 235,176,097 5,366 8,361

13 25,684 36,441

of all connected bipartite graphs on n vertices. The set En be formed by making

all possible extensions of all graphs in P n−1. It can then be shown that P n ⊂ En,

i.e., that the set En will contain at least one representative from each pivot orbit of

connected bipartite graphs on n vertices. The set En will be much smaller than Gn,

so it will be more efficient to search for a set of pivot orbit representatives within

En.

In Table 3, the sequence (iP,B
n ) gives the number of pivot orbits of connected

bipartite graphs on n vertices, and (tP,B
n ) gives the total number of pivot orbits of

bipartite graphs on n vertices. A database containing one representative from each

of these orbits can be found at http://www.ii.uib.no/~larsed/pivot/.

It follows from theorem 11 that the orbits of simple undirected graphs with

respect to pivot and graph isomorphism correspond to equivalence classes of binary

linear codes. Note that the codes C and C⊥ correspond to isomorphic graphs. This

means that the pivot orbit of an [n, k] code is simultaneously the pivot orbit of a non-

equivalent [n, n− k] code, with the exception of isodual codes, which are equivalent

to their duals.
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Table 4: Numbers of Pivot Orbits and Binary Linear Codes

n iP,B
n iCn iCiso

n

1 1 1 -

2 1 1 1

3 1 2 -

4 2 3 1

5 3 6 -

6 8 13 3

7 15 30 -

8 43 76 10

9 110 220 -

10 370 700 40

11 1,260 2,520 -

12 5,366 10,503 229

13 25,684 51,368 -

Theorem 12. Let k 6= n
2
. Then the number of inequivalent binary linear [n, k]

codes, which is also the number of inequivalent [n, n− k] codes, is equal to twice the

number of pivot orbits of (n− k, k)-bipartite graphs.

When n is even and k = n
2
, the number of inequivalent binary linear [n, k] codes is

equal to twice the number of pivot orbits of (k, k)-bipartite graphs minus the number

of isodual codes of length n.

Note that if we only consider connected graphs on n vertices, we get the number

of indecomposable codes of length n, iCn . The total number of codes can easily be

derived from the values of (iCn ). Table 4 gives the number of pivot orbits of connected

bipartite graphs on n vertices (iP,B
n ), the number of indecomposable binary linear

codes of length n (iCn ), and the number of indecomposable isodual codes of length n

(iCiso
n ).

The number of linear codes of high length can be calculated by using computer

algebra tools [9], and a complete classification has been carried out for codes of

length up to 14 [22] by using a different graph based approach. We hope, however,

that our method will be more efficient than existing algorithms for classifying special
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Table 5: Numbers of Pivot Orbits of Labelled Graphs on n Vertices

n iP,L
n tP,L

n iP,B,L
n tP,B,L

n

1 1 1 1 1

2 1 2 1 2

3 2 6 1 5

4 11 29 4 18

5 119 240 26 92

6 2,303 3,623 251 693

7 80,923 105,564 3,412 7,613

types of codes.

Finally, we have also enumerated the orbits of labelled graphs with respect to

the pivot operation only, i.e., not considering graph isomorphism. In Table 5, the

sequence (iP,L
n ) gives the number of pivot orbits of connected labelled graphs on

n vertices, while (tP,L
n ) gives the total number of pivot orbits of labelled graphs

on n vertices. Similarly (iP,B,L
n ) and (tP,B,L

n ) give the numbers for connected and

unconnected bipartite labelled graphs.
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