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Abstract. Boolean functions which are simultaneously bent and ne-
gabent are studied. Transformations that leave the bent-negabent prop-
erty invariant are presented. A construction for infinitely many bent-
negabent Boolean functions in 2mn variables (m > 1) and of algebraic
degree at most n is described, this being a subclass of the Maiorana–
McFarland class of bent functions. Finally it is shown that a bent-
negabent function in 2n variables from the Maiorona–McFarland class
has algebraic degree at most n− 1.

1 Introduction

Bent Boolean functions are the class of Boolean functions whose spectral values
have equal magnitude with respect to the Hadamard transform [1]. The con-
struction and classification of bent functions is of significant and active interest
to designers of cryptographic primitives [2], as such functions have maximum
distance to the set of affine functions and, therefore, are not well-approximated
by affine functions. It is natural also to consider spectral values with respect to
the nega-Hadamard transform. If these spectral values of a Boolean function are
all equal in magnitude, then we call the function negabent.

In this paper we consider how to construct Boolean functions that are simul-
taneously bent and negabent. Such a problem has been previously considered
in [3], providing constructions for quadratic functions. Here we present a new
and infinite construction for functions of more general algebraic degree, thereby
answering and generalizing a conjecture made in [3]. More precisely, we con-
struct a subclass of the Maiorana–McFarland class of bent functions in which
all functions are also negabent. This construction generalizes the construction
of quadratic bent-negabent functions described in [4, 5]. These functions are in
2mn variables and have algebraic degree at most n, where m > 1.
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We also enlarge the class of symmetry operations over which the bent-
negabent property of a Boolean function is preserved. In particular, we show
that the bent-negabent property is an invariant with respect to the action of
the orthogonal group on the input vector space. Finally we provide an upper
bound on the algebraic degree of any bent-negabent Boolean function from the
Maiorana-McFarland class.

2 Notation

Let Vn be an n-dimensional vector space over F2. Let f : Vn → F2 be a Boolean
function. The Hadamard transform of f is defined to be

H(f)(u) := (−1)−
n
2

∑
x∈Vn

(−1)f(x)+u·x, u ∈ Vn.

The nega-Hadamard transform of f is defined to be

N (f)(u) := (−1)−
n
2

∑
x∈Vn

(−1)f(x)+u·xiwt(x), u ∈ Vn,

where i :=
√
−1 and wt(.) denotes the Hamming weight. The function f is called

bent if
|H(f)(u)| = 1 for all u ∈ Vn.

Similarly, f is called negabent if

|N (f)(u)| = 1 for all u ∈ Vn.

If f is both bent and negabent, we say that f is bent-negabent.
Now let f : Vn ⊕ Vn → F2 be a Boolean function of the form

f(x, y) = σ(x) · y + g(x),

where σ : Vn → Vn and g : Vn → F2. It is well known that this function is bent
if and only if σ is a permutation. The whole set of such bent functions forms the
Maiorana–McFarland class.

In the remainder of this section we will introduce some further notation and
a useful lemma. Write Vn = U ⊕ W , where dimW = k and k ≤ n, so that
dimU = n− k. Let f : Vn → F2 be a Boolean function. For each fixed x ∈ U we
may view f(x, ·) as a Boolean function on W . We define the partial Hadamard
transform of f with respect to W as

HW (f)(x, v) := 2−
k
2

∑
y∈W

(−1)f(x,y)+v·y, v ∈W.

We say that f is bent with respect to W if

|HW (f)(x, v)| = 1 for each x ∈ U, v ∈W.
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If f is bent with respect to W , the partial dual f̃W of f with respect to W is
defined by the relation

HW (f)(x, v) = (−1)f̃W (x,v).

Note that in the special case where n = k, f̃W is the usual dual of f , which we
will denote by f̃ .

In the remainder if this paper we shall make frequent use of the following
lemma.

Lemma 1. For any u ∈ Vn we have∑
x∈Vn

(−1)u·xiwt(x) = 2
n
2 ωni−wt(u),

where ω = (1 + i)/
√

2 is a primitive 8th root of unity.

Proof. Write u = (u1, u2, . . . , un). By successively factoring out terms, we obtain

∑
x∈Vn

(−1)u·xiwt(x) =
n∏
k=1

(1 + i(−1)uk)

= 2
n
2

n∏
k=1

ω(−1)uk

= 2
n
2 ωn−2 wt(u)

= 2
n
2 ωni−wt(u).

ut

Note that the preceding lemma shows that all affine functions f : Vn → F2

are negabent (see also [3, Prop. 1]).

3 Transformations Preserving Bent-Negabentness

Several transformations that preserve the bent-negabent property have been
presented in [3]. Here we provide two new transformations.

It is known that, if f : Vn → F2 is a bent function, then the function given
by

f(Ax+ b) + c · x+ d, where A ∈ GL(2, n), b, c ∈ Vn, d ∈ V1,

is also bent. Here, GL(2, n) is the general linear group of n×n matrices over F2.
These operations define a group whose action on f leaves the bent property of f
invariant. Counterexamples show that these operations generally do not preserve
the negabent property of a Boolean function. It is therefore interesting to find
a subgroup of the bent-preserving operations that preserves also the negabent
property. The following theorem shows that, if we replace GL(2, n) by O(2, n),
the orthogonal group of n× n matrices over F2, we obtain such a subgroup.
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Theorem 2. Let f, g : Vn → F2 be two Boolean functions. Suppose that f and
g are related by

g(x) = f(Ax+ b) + c · x+ d, where A ∈ O(2, n), b, c ∈ Vn, d ∈ V1.

Then, if f is bent-negabent, g is also bent-negabent.

Proof. As discussed above, g is bent if f is bent. It remains to show that g is
negabent. From [3, Lem. 2] we know that, if f(Ax) is negabent, so is f(Ax +
b) + c · x+ d. It is therefore sufficient to assume that b and c are all-zero vectors
and d = 0. Observe that

wt(x) = xT Ix,

where I is the n × n identity matrix and the matrix operations are over Z. We
therefore have

N (g)(u) = 2−
n
2

∑
x∈Vn

(−1)f(Ax)+u·xix
T Ix.

Now, since A is invertible by assumption, there exists B such that AB = I.
Moreover, when x ranges over Vn, so does Bx. Thus,

N (g)(u) = 2−
n
2

∑
x∈Vn

(−1)f(x)+u·Bxi(Bx)
T I(Bx).

Since A ∈ O(2, n), we have B ∈ O(2, n) and so BT IB = I. Hence,

(Bx)T I(Bx) = xT (BT IB)x = xT Ix.

We conclude

N (g)(u) = 2−
n
2

∑
x∈Vn

(−1)f(x)+u·Bxix
T Ix

= 2−
n
2

∑
x∈Vn

(−1)f(x)+BTu·xiwt(x)

= N (f)(BTu),

which proves the theorem. ut

It is known that the dual of a bent function is again a bent function, and
it was proved in [3, Thm. 11] that the dual of a bent-negabent function is also
bent-negabent. The following theorem generalizes this concept by showing that,
if a bent-negabent function is bent with respect to certain subspaces, then the
corresponding partial duals are also bent-negabent.

Theorem 3. Write Vn = U⊕W , where dimW = k and k ≤ n, so that dimU =
n − k. Let f : Vn → F2 be a bent-negabent function that is bent with respect to
U and bent with respect to W . Then f̃W is also bent-negabent.
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Proof. We first prove that f̃W is bent. By direct calculation,

H(f̃W )(u,w) = 2−
n
2

∑
x∈U

∑
v∈W

(−1)f̃W (x,v)+u·x+v·w

= 2−
n+k

2

∑
x∈U

∑
v∈W

∑
y∈W

(−1)f(x,y)+v·y+u·x+v·w

= 2−
n+k

2

∑
x∈U

∑
y∈W

(−1)f(x,y)+u·x
∑
v∈W

(−1)v·(y+w).

The inner sum is zero unless y = w, in which case it is 2k. Hence,

H(f̃W )(u,w) = 2−
n−k

2

∑
x∈U

(−1)f(x,w)+u·x

= HU (f)(u,w).

By assumption, |HU (f)(u,w)| = 1 for each u ∈ U and each w ∈ W . Therefore,
f̃W is bent.

Next we prove that f̃W is negabent. We have

N (f̃W )(u,w) = 2−
n
2

∑
x∈U

∑
v∈W

(−1)f̃W (x,v)+u·x+v·wiwt(v)+wt(x)

= 2−
n+k

2

∑
x∈U

∑
v∈W

∑
y∈W

(−1)f(x,y)+v·y+u·x+v·wiwt(v)+wt(x)

= 2−
n+k

2

∑
x∈U

∑
y∈W

(−1)f(x,y)+u·xiwt(x)
∑
v∈W

(−1)v·(y+w)iwt(v).

The inner sum can be computed with Lemma 1. We therefore obtain

N (f̃W )(u,w) = 2−
n
2 ωk

∑
x∈U

∑
y∈W

(−1)f(x,y)+u·xiwt(x)i−wt(y+w)

= 2−
n
2 ωki−wt(w)

∑
x∈U

∑
y∈W

(−1)f(x,y)+u·x+y·wiwt(x)−wt(y)

= ωki−wt(w)N (f)(u, w̄),

where ω = (1 + i)/
√

2 and w̄ is the complement of w. Since f is negabent, this
shows that f̃W is also negabent. ut

4 Constructions

Throughout this section we use the following notation. Define V to be an mn-
dimensional vector space over F2, so that

V = Vn ⊕ Vn ⊕ · · · ⊕ Vn︸ ︷︷ ︸
m times

.



6 Schmidt, Parker, Pott

Let the Boolean function f : V ⊕ V → F2 be given by

f(x1, . . . , xm, y1, . . . , ym) = σ(x1, . . . , xm) · (y1, . . . , ym) + g(x1, . . . , xm), (1)

where σ : V → V is of the form

σ(x1, . . . , xm) = (ψ1(x1), φ1(x1) + ψ2(x2), . . . , φm−1(xm−1) + ψm(xm))

and g : V → F2 is defined by

g(x1, . . . , xm) = h1(x1) + h2(x2) + · · ·+ hm(xm).

Here, ψ1, . . . , ψm, φ1, . . . , φm−1 are permutations on Vn and h1, . . . , hm : Vn →
F2 are arbitrary Boolean functions. Explicitly, f reads

f(x1, . . . , xm, y1, . . . , ym)

= ψ1(x1) · y1 + h1(x1) +
m∑
j=2

(yj · [φj−1(xj−1) + ψj(xj)] + hj(xj)).

Since σ is a permutation, f belongs to the Maiorana–McFarland class, and is
therefore bent. In the next theorem, we will identify configurations of σ and g
so that f is also negabent.

Theorem 4. Let m be a positive integer satisfying m 6≡ 1 (mod 3), and let k
be an integer satisfying 0 < k < m and k ≡ 0 (mod 3) or (m− k) ≡ 1 (mod 3).
Let f be as in (1), where

σ(x1, . . . , xm) = (x1, x1 + x2, . . . , xk−1 + ψ(xk), φ(xk) + xk+1, . . . , xm−1 + xm)
g(x1, . . . , xm) = h(xk),

ψ, φ are permutations on Vn, and h : Vn → F2 is an arbitrary Boolean function.
(In other words, ψ1, . . . , ψm, φ1, . . . , φm−1 are identity maps except for ψ := ψk
and φ := φk, and h1, . . . , hm are zero except for h := hk.) Then f is bent-
negabent.

A lemma is required to prove the theorem.

Lemma 5. Let s be a nonnegative integer. For any u1, . . . , us, zs+1 ∈ Vn define

Es(zs+1) :=
s∏
j=1

∑
zj∈Vn

(−1)(zj+1+uj)·zj iwt(zj),

where an empty product is defined to be equal to 1. Then we have

Es(zs+1) =


2sn/2ωc(−1)a·zs+1 if s ≡ 0 (mod 3)
2sn/2ωc(−1)a·zs+1i−wt(zs+1) if s ≡ 1 (mod 3)
2(s+1)n/2ωcδzs+1+a if s ≡ 2 (mod 3)

for some c ∈ Z8 and a ∈ Vn. Here δa denotes the Kronecker delta function, i.e.,
δa equals 1 if a = 0 and is zero otherwise.
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Proof. The lemma is certainly true for s = 0. We proceed by induction on s,
where we use the lemma as a hypothesis. Observe that for s > 0 we have

Es(zs+1) =
∑
zs∈Vn

(−1)(zs+1+us)·zsiwt(zs)Es−1(zs).

Now assume that the lemma is true for s ≡ 0 (mod 3). Using Lemma 1, we have
for s ≡ 1 (mod 3)

Es(zs+1) = 2(s−1)n/2ωc
∑
zs∈Vn

(−1)(zs+1+us+a)·zsiwt(zs)

= 2sn/2ωc+ni−wt(zs+1+us+a)

= 2sn/2ωc
′
(−1)a

′·zs+1i−wt(zs+1),

where c′ = c+n−2 wt(us+a) and a′ = a+us. This proves the lemma for s ≡ 1
(mod 3) provided that it holds for s ≡ 0 (mod 3). Now assume that the lemma
is true for s ≡ 1 (mod 3). Then for s ≡ 2 (mod 3) we obtain

Es(zs+1) = 2(s−1)n/2ωc
∑
zs∈Vn

(−1)(zs+1+us+a)·zs

= 2(s+1)n/2ωc
′
δzs+1+a′ .

where c′ = c and a′ = a + us. Assuming that the lemma is true for s ≡ 2
(mod 3), we have for s ≡ 0 (mod 3)

Es(zs+1) = 2sn/2ωc
∑
zs∈Vn

(−1)(zs+1+us)·zsiwt(zs)δzs+a

= 2sn/2ωc
′
(−1)a

′·zs+1 ,

where c′ = c+ 2 wt(a) + 4a · us and a′ = a. This completes the induction. ut
Proof (of Theorem 4). We define the relabeling z2j := xj and z2j−1 := yj for
j = 1, 2, . . . ,m, so that we have

f(x1, . . . , xm, y1, . . . , ym) =

h(z2k) +
2k−2∑
j=1

zj · zj+1 + z2k−1 · ψ(z2k) +
2m∑

j=2k+2

zj−1 · zj + z2k+1 · φ(z2k).

Write

N (f)(u1, . . . , u2m) = 2−mn
∑

z2k∈Vn

(−1)h(z2k)+z2k·u2k iwt(z2k)P (z2k)Q(z2k), (2)

where

P (z2k) =
2k−2∏
j=1

∑
zj∈Vn

(−1)(zj+1+uj)·zj iwt(zj)
∑

z2k−1∈Vn

(−1)(ψ(z2k)+u2k−1)·z2k−1iwt(z2k−1)

Q(z2k) =
2m∏

j=2k+2

∑
zj∈Vn

(−1)(zj−1+uj)·zj iwt(zj)
∑

z2k+1∈Vn

(−1)(φ(z2k)+u2k+1)·z2k+1iwt(z2k+1).
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In what follows, we treat the case k ≡ 0 (mod 3), the case (m − k) ≡ 1
(mod 3) can be proved similarly (essentially, the roles of P (z2k) and Q(z2k) are
exchanged). If k ≡ 0 (mod 3), we have 2k − 1 ≡ 2 (mod 3) and from Lemma 5

P (z2k) = 2knωcδψ(z2k)+a (3)

for some c ∈ Z8 and a ∈ Vn. Now k ≡ 0 (mod 3) implies m − k ≡ m (mod 3),
so 2(m− k) ≡ 0 (mod 3) or 1 (mod 3). Hence by Lemma 5

Q(z2k) =

{
2(m−k)nωd(−1)b·φ(z2k) if m ≡ 0 (mod 3)
2(m−k)nωd(−1)b·φ(z2k)i−wt(ψ(z2k)) if m ≡ 2 (mod 3)

(4)

for some d ∈ Z8 and b ∈ Vn. Combining (2), (3), and (4), we arrive at

N (f)(u1, . . . , u2m)

=


ωc+d

∑
z2k∈Vn

(−1)h(z2k)+z2k·u2k+b·φ(z2k)iwt(z2k)δψ(z2k)+a if m ≡ 0 (mod 3)

ωc+d
∑

z2k∈Vn

(−1)h(z2k)+z2k·u2k+b·φ(z2k)δψ(z2k)+a if m ≡ 2 (mod 3).

In either case the term inside the sum is zero unless z2k = ψ−1(a). Therefore,
|N (f)(u1, . . . , u2m)| = 1, as was claimed. ut

Example 6. Take m = 2 and k = 1 in Theorem 4. Then f reads

f(x1, x2, y1, y2) = y1 · ψ(x1) + φ(x1) · y2 + y2 · x2 + h(x1).

In this way we can construct bent-negabent functions in 4n variables of degree
ranging from 2 to n.

In general, whenever m 6≡ 1 (mod 3), we can use Theorem 4 to construct
bent-negabent functions in 2mn variables of degree ranging from 2 to n. This
yields bent-negabent functions in 2t variables for every t ≥ 2 and t 6≡ 1 (mod 6);
if t 6≡ 1 (mod 3), we can take n = 1 and m = t, and if t ≡ 1 (mod 3) and t 6≡ 1
(mod 6), we can take n = 2 and m = t/2.

In the remainder of this section we apply Theorem 3 to construct further
bent-negabent functions by taking a partial dual of f given in (1). We therefore
have to prove that the partial dual of f exists with respect to certain subspaces
of V and to find an explicit expression for this function.

Write V = U ⊕W , where dimW = k and k ≤ mn. Suppose that we have a
function τ : V → V . We can separate τ on U and W by defining |W | functions
τz : U → U and |U | functions τx : W →W such that

τ(x, z) = (τz(x), τx(z)), x ∈ U, z ∈W.

Lemma 7. With the notation as above, define a : V ⊕ V → F2 by

a(x, z, y, w) = τ(x, z) · (y, w) + c(x, z), x, y ∈ U, z, w ∈W,
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where c : V → F2. Then a is bent with respect to W ⊕W if for every x ∈ U the
map τx is a permutation on W . Moreover, in this case, the partial dual of a with
respect to W ⊕W is given by

ãW⊕W (x, u, y, v) = τz(x) · y + u · z + c(x, z), where z = τ−1
x (v).

Proof. We have

HW⊕W (a)(x, u, y, v) = 2−k
∑

z,w∈W
(−1)τ(x,z)·(y,w)+c(x,z)+u·z+v·w

= 2−k
∑

z,w∈W
(−1)τz(x)·y+τx(z)·w+c(x,z)+u·z+v·w

= 2−k
∑
z∈W

(−1)τz(x)·y+c(x,z)+u·z
∑
w∈W

(−1)(τx(z)+v)·w.

The inner sum is zero unless z = τ−1
x (v), in which case the sum is equal to 2k.

Therefore
HW⊕W (a)(x, u, y, v) = (−1)ãW⊕W (x,u,y,v),

where ãW⊕W is given in the lemma. ut

Now partition the set {1, 2, . . . ,m} into the two subsets

S = {s1, . . . , sk} and T = {t1, . . . , tm−k}.

Given x ∈ V , we shall write xS = (xs1 , . . . , xsk
) and xT = (xt1 , . . . , xtm−k

). As
before, let U and W be vector spaces over F2 such that V = U ⊕ W and, if
(x1, . . . , xm) ∈ V , we have xS ∈W and xT ∈ U .

Theorem 8. With the notation as above, f , given in (1), is bent with respect
to U ⊕ U and bent with respect to W ⊕W . Moreover, the partial dual of f with
respect to W ⊕W is given by

f̃W⊕W (xT , xS , yT , yS) = wT · yT + xS · zS + g(xT , zS),

where

zj =

{
xj if j 6∈ S
ψ−1
j (yj + φj−1(zj−1)) if j ∈ S,

and
wj = φj−1(zj−1) + ψj(xj) for j ∈ T.

By convention, x0 is the all-zero vector and φ0 is the identity map.

Proof. Observe that for every xS ∈ W the function σxS
(xT ) is a permutation

on U . Similarly, for every xT ∈ U the function σxT
(xS) is a permutation on W .

Hence, by Lemma 7, f is bent with respect to U ⊕ U and bent with respect to
W ⊕W . Using Lemma 7, the partial dual of f with respect to W ⊕W can be
written as

f̃W⊕W (xT , xS , yT , yS) = σzS
(xT ) · yT + xS · zS + g(xT , zS), zS = σ−1

xT
(yS).



10 Schmidt, Parker, Pott

Now we first find zS by solving the system of k equations implied by

σxT
(zS) = yS .

Then zS can be used to find σzS
(xT ). The solution is given in the theorem. ut

Starting from Theorem 4, the preceding theorem together with Theorem 3
can be used to construct further bent-negabent functions of the form (1). If
m = 2, it is easy to check that we do not obtain any new bent-negabent functions.
But for larger m the function f and a partial dual of f generally have a different
structure. However, explicit expressions for the partial dual of f can look rather
cumbersome, so we illustrate the application of Theorem 8 by an example.

Example 9. Take m = 3 and k = 2 in Theorem 4. Then f reads

f(x1, x2, x3, y1, y2, y3) = σ(x1, x2, x3) · (y1, y2, y3) + g(x1, x2, x3),

where

σ(x1, x2, x3) = (x1, x1 + ψ(x2), φ(x2) + x3)
g(x1, x2, x3) = h(x2).

Now set S = {0, 1, 2}, so that W = V , and apply Theorem 8. Then f̃W⊕W is
the usual dual of f and given by

f̃(x1, x2, x3, y1, y2, y3) = σ′(y1, y2, y3) · (x1, x2, x3) + g′(y1, y2, y3),

where

σ′(y1, y2, y3) = (y1, ψ−1(y1 + y2), y3 + φ(ψ−1(y1 + y2)))

g′(y1, y2, y3) = h(ψ−1(y1 + y2)).

The function f̃ is by Theorem 3 negabent.

5 A Bound on the Degree

It is well known that, if n > 1, bent Boolean functions in 2n variables have
a maximum algebraic degree of n [1]. If n ∈ {2, 3}, the maximum degree of a
bent-negabent function in 2n variables is also equal to n. For example, the cubic
function f : V6 → F2

f(x1, x2, x3, y1, y2, y3) =
y1(x1x2 + x2x3 + x1 + x2) + y2(x1x2 + x2x3 + x3) + y3(x1 + x3)

is bent-negabent. Note that f belongs to the Maiorana–McFarland class. In this
section we prove that the degree of a Maiorana–McFarland-type bent-negabent
function in 2n variables is at most n− 1 for n > 3.
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Theorem 10. Let σ be a permutation on Vn and let g : Vn → F2 be an arbitrary
Boolean function. Suppose that the function f : Vn ⊕ Vn → F2 given by

f(x, y) = σ(x) · y + g(x)

is negabent. Then, if n > 3, the degree of f is at most n− 1.

The proof of the theorem requires a lemma.

Lemma 11. The nega-Hadamard transform of a negabent function on Vn con-
tains only values of the form ωnik, where ω = (1 + i)/

√
2 and k ∈ Z4.

Proof. Let 2−
n
2 S denote an arbitrary value of the nega-Hadamard transform of

a negabent function on Vn. Then <(S) or =(S) must be integers and |S|2 = 2n

must be a sum of two squares (one of them may be zero). From Jacobi’s two-
square theorem we know that 2n has a unique representation as a sum of two
squares, namely 2n = (2n/2)2 +02 if n is even, and 2n = (2(n−1)/2)2 +(2(n−1)/2)2

if n is odd. Hence, if n is even, either <(S) or =(S) must be zero. If n is odd,
we must have |<(S)| = |=(S)|, which proves the lemma. ut

Proof (of Theorem 10). Using Lemma 1, we obtain

N (f)(u, v) = 2−n
∑

x,y∈Vn

(−1)σ(x)·y+g(x)+u·x+v·yiwt(x)+wt(y)

= 2−n
∑
x∈Vn

(−1)g(x)+u·xiwt(x)
∑
y∈Vn

(−1)(σ(x)+v)·yiwt(y)

= 2−
n
2 ωn

∑
x∈Vn

(−1)g(x)+u·x iwt(x)−wt(σ(x)+v)

= 2−
n
2 ωni−wt(v)

∑
x∈Vn

(−1)g(x)+u·x+v·σ(x) iwt(x)−wt(σ(x))

= 2−
n
2 ωni−wt(v)

∑
x∈Vn

(−1)g(x)+u·x+v·σ(x) iw(x),

where

w(x) =
n∑
j=1

(xj + 3σj(x)) (mod 4)

and σj(x) is the jth component of σ(x), so that σ(x) = (σ1(x), . . . , σn(x)). Now
write w(x) in 2-adic expansion, viz w(x) = l(x) + 2q(x) with

l(x) =
n∑
j=1

(xj + σj(x)) (mod 2)

q(x) =
n∑
j=1

σj(x) +
∑

1≤j<k≤n

[(xjxk + σj(x)σk(x)] +
∑

1≤j,k≤n

xjσk(x) (mod 2).
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Then we have

<(ω−niwt(v)N (f)(u, v)) = 2−
n
2−1

∑
x∈Vn

(−1)g(x)+q(x)+v·σ(x)+u·x[1 + (−1)l(x)]

=
1
2
[H(hv)(u) +H(hv̄)(ū)], (5)

where hv(x) = g(x) + q(x) + v · σ(x) and ū is the complement of u. Similarly we
obtain

=(ω−niwt(v)N (f)(u, v)) =
1
2
[H(hv)(u)−H(hv̄)(ū)]. (6)

By assumption, |N (f)(u, v)| = 1, and by Lemma 11, either the real part or the
imaginary part of N (f)(u, v) must be zero. First suppose that n is even. Then
ω−n is a 4th root of unity and either (5) or (6) must be zero. Hence hv must
be bent for every v ∈ Vn, which implies that for n > 2 the degree of hv can
be at most n/2 [1]. Now let n be odd. Then ω−n is an 8th root of unity and
the absolute values of (5) and (6) must be equal. This can only happen if the
Hadamard spectrum of hv contains only the values 0 and ±

√
2 (such functions

are called almost-bent functions [2]). It is known [2, Thm. 1] that the degree of
such a function is at most (n+ 1)/2.

For either n ≥ 3 we conclude that the degree of hv(x) is at most dn/2e for
every v ∈ Vn. This implies that the degree of v · σ(x) is bounded by dn/2e for
every v ∈ Vn and n ≥ 3. Note that, since σ is a permutation, σj(x)σk(x) = 1 has
exactly 2n−2 solutions in Vn, so for n ≥ 3 each of the terms σj(x)σk(x) cannot
have degree equal to n (see, e.g., [6, Ch. 13, Thm. 1]). Therefore, the degree of
q is at most max{n− 1, dn/2e+1}. It follows that, if n > 3, the degree of q and,
therefore, the degree of g is bounded by n− 1, which proves the theorem. ut
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