Optimal Mappings of the Spectrum of BPSK/QPSK Sequences to Finite Polynomial Fields and Rings

Extended Abstract M.G.Parker, S.J.Shepherd, S.K.Barton, Telecommunications Research Group, Department of Electronic and Electrical Engineering, University of Bradford, Bradford, BD7 1DP, UK. e-mail: mgparker@bradford.ac.uk

Abstract

It is shown how each bin of the Discrete Fourier Transform (DFT) of a Phase Shift Keyed (PSK) sequence can be optimally mapped to a finite polynomial field or ring. This suggests novel solutions to the VLSI implementation of DFTs, and may also help in the search for spectrally-flat PSK sequences.

I Introduction

Consider the N-point DFT of a P-PSK sequence, $d = (d_0, d_1, \ldots, d_{N-1})$, given by,

$$v(n) = \sum_{k=0}^{N-1} d_k e^{j2\pi \frac{kn}{N}} \qquad 0 \le n < N \qquad (1)$$

where $d_k \in \{1, e^{j\frac{2\pi}{P}}, e^{j\frac{4\pi}{P}}, \dots, e^{j\frac{(P-1)2\pi}{P}}\}$. With $r = \operatorname{lcm}(N, P)$ and $x = e^{j\frac{2\pi}{r}}$, (1) can be expressed as,

$$v_n(x) = \sum_{k=0}^{N-1} d_k(x) x^{\frac{rnk}{N}} \mod \Phi_r(x) \qquad 0 \le n < N$$
(2)

where $\Phi_r(x)$ is the r^{th} cyclotomic polynomial of degree $\phi(r)$ (ϕ is Euler's Totient Function) [1], and $\deg(v_n(x)) < \phi(r)$. The constellation of polynomials, $\mathbf{V}_n = \{v_n(x)\}$, represent mutually unique points in the complex plane for each bin, n. The 'Pols' column of Tables 1 and 2 shows the constellation size for each bin. Bins, n, which have the same value of $\gcd(N, n)$, generate identical constellations in the complex plane. Therefore only one representative from each class of $\gcd(N, n)$ is tabulated. Note: • The number of polynomials for bin 0 are,

- For BPSK : N + 1. For QPSK : $(N + 1)^2$.

• The number of polynomials for bin 1 when N is prime are,

- For BPSK : $2^N - 1$. For QPSK : $(2^N - 1)^2$.

II Mapping Constellations to Finite Polynomial Fields/Rings

Firstly, the polynomial degree of the constellation representation will be minimised by converting to a polynomial in y. Let $t = \text{lcm}\left(\frac{N}{\text{gcd}(n,N)}, P\right)$. Then substituting $y = x^{\frac{r}{t}}, \exists w_n(y)$ such that,

$$w_n(y) \mod \Phi_t(y) = w_n(x^{\frac{r}{t}}) \mod \Phi_r(x) = v_n(x)$$
(3)

where $\deg(w_n(y)) < \phi(t)$. One can further map the constellation for bin *n* from the set $\mathbf{W}_n = \{w_n(y)\}$, (or $\mathbf{V}_n = \{v_n(x)\}$) to the field or ring of finite polynomials, $\mathbf{F}_n = \{f_n(u)\}$, mod M(u), mod *m*, (i.e. the finite polynomial field/ring, $Z_m[u]/M(u)$). One of the conditions for each element of \mathbf{W}_n to map to a unique element of \mathbf{F}_n is,

$$\exists \alpha(u) \in Z_m[u]/M(u), \alpha(u)^t = 1, \alpha(u)^s \neq 1, 0 < s < t$$
(4)

To find a suitable $Z_m[u]/M(u)$ that, for a given n, gives a unique mapping from \mathbf{W}_n to \mathbf{F}_n and satisfies (4), the following procedure was adopted.

- 1. Assign P and N.
- 2. Assign bin number, n.
- 3. Compute \mathbf{V}_n using (2), for all d.
- 4. Re-express \mathbf{V}_n as \mathbf{W}_n using (3).
- 5. Choose a $Z_m[u]/M(u)$ that satisfies (4). (Ideally $Z_m[u]/M(u)$ should have as few elements as possible but this must be at least equal to the constellation size).
- 6. Compute $\mathbf{F}_n = \{f_n(u) = w_n(\alpha(u)) \mod M(u) \mod m\}.$
- 7. If there is a one-to-one mapping from \mathbf{W}_n to \mathbf{F}_n , then bin *n* of the *N*-point DFT of a length *N P*-PSK sequence can be

computed using $Z_m[u]/M(u)$. Go to step 2. Otherwise go to step 5.

Tables 1,2 present finite integer or polynomial mappings for BPSK and QPSK, respectively. The mappings are one-to-one (apart from bin 0 when N is odd), and are therefore optimal. Observe that, for bin 1, N prime, P = 2, $\alpha(u)$ must be a root of 2, mod m.

III Conclusion

The mappings shown suggest efficient hardware solutions for the DFT inherent to OFDM systems [2, 3]. (For example, to compute bins 1 and 2 of a 3-point QPSK DFT: $f_n(u) =$ $\sum_{k=0}^2 d'_k(u)(2u)^{4nk}$, mod $(u^2 + 1)$, mod 7, where $d'_k(u) \in \{1, 6u, 6, u\}$ and 2*u* has order 12 over $Z_7[u]/(u^2 + 1)$.) Moreover, the allocation of different mappings for different bin numbers suggests a prime-factor decomposition of the DFT over different finite polynomial fields/rings [1]. Finally, it is hoped these mappings will help to categorise PSK sequences by spectral shape [4].

P	N	n	Pols	m	M(u)	t	$\alpha(u)$
2	3	0	4	5	-	2	4
		1	7	7	-	6	3
	4	0	5	5	_	2	4
		1	9	3	$u^2 + 1$	4	u
		2	5	5	-	2	4
	5	0	6	7	-	2	6
		1	31	31	-	10	27
	6	0	7	7	-	2	6
		1	19	19	-	6	8
		2	19	19	-	6	8
		3	7	7	-	2	6
	7	0	8	9	-	2	8
		1	127	127	-	14	63
	8	0	9	9	_	2	8
		1	81	3	$u^{4} + 1$	8	u
		2	25	5	$u^2 + 1$	4	u
		4	9	9	-	2	8
	9	0	10	11	_	2	10
		1	$343 = 7^3$	7	$u^{3} + 2$	18	u
		3	37	37	-	6	11
	10	0	11	11	-	2	10
		1	211	211	-	10	23
		2	211	211	-	10	23
		5	11	11	-	2	10
	11	0	12	13	-	2	12
		1	2047 = 23.89	2047	-	22	1983

Table 1: Finite Polynomial Mappings for BPSKDFT Output Bins

D	A.T.	r	Dili		M	· ,	
Ρ	IN	n	Pols	m	M(u)	t	$\alpha(u)$
4	2	0	9	3	$u^2 + 1$	4	u
		1	9	3	$u^2 + 1$	4	u
	3	0	16	17	-	4	4
		1	49	7	$u^2 + 1$	12	2u
	4	0	25	5	$u^2 + 1$	4	u
		1	25	5	$u^2 + 1$	4	u
		2	25	5	$u^2 + 1$	4	u
	5	0	36	37	_	4	6
		1	$961 = 31^2$	31	$u^2 + 1$	20	2u
	6	0	49	7	$u^2 + 1$	4	u
		1	$361 = 19^2$	19	$u^2 + 1$	12	7u
		2	361	19	$u^2 + 1$	12	7u
		3	49	7	$u^2 + 1$	4	u
	7	0	64	65 = 5.13	-	4	8
		1	$16129 = 127^2$	127	$u^2 + 1$	28	2u
	8	0	81	$9 = 3^2$	$u^2 + 1$	4	u
		1	$625 = 5^4$	5	$u^4 + 1$	8	u
		2	81	$9 = 3^2$	$u^2 + 1$	4	u
		4	81	$9 = 3^2$	$u^2 + 1$	4	u
	9	0	100	101	_	4	10
		1	$117649 = 7^6$	7	$u^{6} + 2$	36	u
		3	$1369 = 37^2$	37	$u^2 + 1$	12	10u
	10	0	$121 = 11^2$	11	$u^2 + 1$	4	\overline{u}
		1	$44521 = 211^2$	211	$u^2 + 1$	20	55u
		2	$44521 = 211^2$	211	$u^2 + 1$	20	55u
		5	$121 = 11^2$	11	$u^2 + 1$	4	u

Table 2: Finite Polynomial Mappings for QPSKDFT Output Bins

References

- R.E.Blahut, Fast Algorithms for Digital Signal Processing, Reading, Addison-Wesley, '85
- [2] M.G.Parker, "VLSI Algorithms and Architectures for the Implementation of Number-Theoretic Transforms, Residue and Polynomial Residue Number Systems," *PhD thesis, School* of Eng, University of Huddersfield, March '95
- [3] W.Y.Zou,Y.Wu, "COFDM: An Overview", *IEEE Trans on Broadcasting*, Vol 41, No 1, pp 1-8, March '95
- [4] M.G.Parker,S.J.Shepherd,S.K.Barton, "Multi-Function Coding for Minimisation of Peak Envelope Power and Error Control in Multitone Modulation Systems", 2nd Annual Conference of the Communications Signal Processing and Coding Programme, Sheffield, 22/23 Jan, '97