
Optimal Mappings of the
Spectrum of BPSK/QPSK

Sequences to Finite Polynomial
Fields and Rings

Extended Abstract

M.G.Parker, S.J.Shepherd, S.K.Barton,

Telecommunications Research Group,

Department of Electronic and Electrical

Engineering,

University of Bradford,

Bradford, BD7 1DP, UK.

e-mail: mgparker@bradford.ac.uk

Abstract

It is shown how each bin of the Discrete Fourier

Transform (DFT) of a Phase Shift Keyed (PSK)

sequence can be optimally mapped to a finite poly-

nomial field or ring. This suggests novel solutions

to the VLSI implementation of DFTs, and may also

help in the search for spectrally-flat PSK sequences.

I Introduction

Consider the N -point DFT of a P -PSK sequence,

d = (d0, d1, . . . , dN−1), given by,

v(n) =
N−1
∑

k=0

dke
j2π kn

N 0 ≤ n < N (1)

where dk ∈ {1, ej 2π

P , ej 4π

P , . . . , ej
(P−1)2π

P }. With r =

lcm(N,P ) and x = ej 2π

r , (1) can be expressed as,

vn(x) =
N−1
∑

k=0

dk(x)x
rnk

N mod Φr(x) 0 ≤ n < N

(2)

where Φr(x) is the rthcyclotomic polynomial of de-

gree φ(r) (φ is Euler’s Totient Function) [1], and

deg(vn(x)) < φ(r). The constellation of polynomi-

als, Vn = {vn(x)}, represent mutually unique points

in the complex plane for each bin, n. The ’Pols’ col-

umn of Tables 1 and 2 shows the constellation size

for each bin. Bins, n, which have the same value

of gcd(N,n), generate identical constellations in the

complex plane. Therefore only one representative

from each class of gcd(N,n) is tabulated. Note:

• The number of polynomials for bin 0 are,

– For BPSK : N +1. For QPSK : (N +1)2.

• The number of polynomials for bin 1 when N

is prime are,

– For BPSK : 2N−1. For QPSK : (2N−1)2.

II Mapping Constellations to Fi-

nite Polynomial Fields/Rings

Firstly, the polynomial degree of the constellation

representation will be minimised by converting to a

polynomial in y. Let t = lcm
(

N
gcd(n,N) , P

)

. Then

substituting y = x
r

t , ∃wn(y) such that,

wn(y) mod Φt(y) = wn(x
r

t ) mod Φr(x) = vn(x)

(3)

where deg(wn(y)) < φ(t). One can further map the

constellation for bin n from the set Wn = {wn(y)},

(or Vn = {vn(x)}) to the field or ring of finite poly-

nomials, Fn = {fn(u)}, mod M(u), mod m, (i.e.

the finite polynomial field/ring, Zm[u]/M(u)). One

of the conditions for each element of Wn to map to

a unique element of Fn is,

∃α(u) ∈ Zm[u]/M(u), α(u)t = 1, α(u)s 6= 1, 0 < s < t

(4)

To find a suitable Zm[u]/M(u) that, for a given n,

gives a unique mapping from Wn to Fn and satisfies

(4), the following procedure was adopted.

1. Assign P and N .

2. Assign bin number, n.

3. Compute Vn using (2), for all d.

4. Re-express Vn as Wn using (3).

5. Choose a Zm[u]/M(u) that satisfies (4).

(Ideally Zm[u]/M(u) should have as few

elements as possible but this must be at

least equal to the constellation size).

6. Compute Fn = {fn(u) =

wn(α(u)) mod M(u) mod m}.

7. If there is a one-to-one mapping from Wn

to Fn, then bin n of the N -point DFT

of a length N P -PSK sequence can be



computed using Zm[u]/M(u). Go to step

2. Otherwise go to step 5.

Tables 1,2 present finite integer or polynomial map-

pings for BPSK and QPSK, respectively. The map-

pings are one-to-one (apart from bin 0 when N is

odd), and are therefore optimal. Observe that, for

bin 1, N prime, P = 2, α(u) must be a root of 2,

mod m.

III Conclusion

The mappings shown suggest efficient hardware

solutions for the DFT inherent to OFDM sys-

tems [2, 3]. (For example, to compute bins

1 and 2 of a 3-point QPSK DFT: fn(u) =
∑2

k=0 d′k(u)(2u)4nk, mod (u2 + 1), mod 7, where

d′k(u) ∈ {1, 6u, 6, u} and 2u has order 12 over

Z7[u]/(u2 + 1).) Moreover, the allocation of differ-

ent mappings for different bin numbers suggests a

prime-factor decomposition of the DFT over differ-

ent finite polynomial fields/rings [1]. Finally, it is

hoped these mappings will help to categorise PSK

sequences by spectral shape [4].

P N n Pols m M(u) t α(u)

2 3 0 4 5 − 2 4

1 7 7 − 6 3

4 0 5 5 − 2 4

1 9 3 u
2 + 1 4 u

2 5 5 − 2 4

5 0 6 7 − 2 6

1 31 31 − 10 27

6 0 7 7 − 2 6

1 19 19 − 6 8

2 19 19 − 6 8

3 7 7 − 2 6

7 0 8 9 − 2 8

1 127 127 − 14 63

8 0 9 9 − 2 8

1 81 3 u
4 + 1 8 u

2 25 5 u
2 + 1 4 u

4 9 9 − 2 8

9 0 10 11 − 2 10

1 343 = 73 7 u
3 + 2 18 u

3 37 37 − 6 11

10 0 11 11 − 2 10

1 211 211 − 10 23

2 211 211 − 10 23

5 11 11 − 2 10

11 0 12 13 − 2 12

1 2047 = 23.89 2047 − 22 1983

Table 1: Finite Polynomial Mappings for BPSK

DFT Output Bins

P N n Pols m M(u) t α(u)

4 2 0 9 3 u
2 + 1 4 u

1 9 3 u
2 + 1 4 u

3 0 16 17 − 4 4

1 49 7 u
2 + 1 12 2u

4 0 25 5 u
2 + 1 4 u

1 25 5 u
2 + 1 4 u

2 25 5 u
2 + 1 4 u

5 0 36 37 − 4 6

1 961 = 312 31 u
2 + 1 20 2u

6 0 49 7 u
2 + 1 4 u

1 361 = 192 19 u
2 + 1 12 7u

2 361 19 u
2 + 1 12 7u

3 49 7 u
2 + 1 4 u

7 0 64 65 = 5.13 − 4 8

1 16129 = 1272 127 u
2 + 1 28 2u

8 0 81 9 = 32
u
2 + 1 4 u

1 625 = 54 5 u
4 + 1 8 u

2 81 9 = 32
u
2 + 1 4 u

4 81 9 = 32
u
2 + 1 4 u

9 0 100 101 − 4 10

1 117649 = 76 7 u
6 + 2 36 u

3 1369 = 372 37 u
2 + 1 12 10u

10 0 121 = 112 11 u
2 + 1 4 u

1 44521 = 2112 211 u
2 + 1 20 55u

2 44521 = 2112 211 u
2 + 1 20 55u

5 121 = 112 11 u
2 + 1 4 u

Table 2: Finite Polynomial Mappings for QPSK

DFT Output Bins
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