Optimal Mappings of the Spectrum of BPSK/QPSK Sequences to Finite Polynomial Fields and Rings

Extended Abstract
M.G.Parker, S.J.Shepherd, S.K.Barton, Telecommunications Research Group, Department of Electronic and Electrical Engineering,
University of Bradford, Bradford, BD7 1DP, UK.
e-mail: mgparker@bradford.ac.uk

Abstract

It is shown how each bin of the Discrete Fourier Transform (DFT) of a Phase Shift Keyed (PSK) sequence can be optimally mapped to a finite polynomial field or ring. This suggests novel solutions to the VLSI implementation of DFTs, and may also help in the search for spectrally-flat PSK sequences.

I Introduction

Consider the N-point DFT of a P-PSK sequence, $d=\left(d_{0}, d_{1}, \ldots, d_{N-1}\right)$, given by,

$$
\begin{equation*}
v(n)=\sum_{k=0}^{N-1} d_{k} e^{j 2 \pi \frac{k n}{N}} \quad 0 \leq n<N \tag{1}
\end{equation*}
$$

where $d_{k} \in\left\{1, e^{j \frac{2 \pi}{P}}, e^{j \frac{4 \pi}{P}}, \ldots, e^{j \frac{(P-1) 2 \pi}{P}}\right\}$. With $r=$ $\operatorname{lcm}(N, P)$ and $x=e^{j \frac{2 \pi}{r}}$, (1) can be expressed as,

$$
\begin{equation*}
v_{n}(x)=\sum_{k=0}^{N-1} d_{k}(x) x^{\frac{r n k}{N}} \bmod \Phi_{r}(x) \quad 0 \leq n<N \tag{2}
\end{equation*}
$$

where $\Phi_{r}(x)$ is the $r^{\text {th }}$ cyclotomic polynomial of degree $\phi(r)$ (ϕ is Euler's Totient Function) [1], and $\operatorname{deg}\left(v_{n}(x)\right)<\phi(r)$. The constellation of polynomials, $\mathbf{V}_{n}=\left\{v_{n}(x)\right\}$, represent mutually unique points in the complex plane for each bin, n. The 'Pols' column of Tables 1 and 2 shows the constellation size for each bin. Bins, n, which have the same value of $\operatorname{gcd}(N, n)$, generate identical constellations in the complex plane. Therefore only one representative from each class of $\operatorname{gcd}(N, n)$ is tabulated. Note:

- The number of polynomials for bin 0 are,
- For BPSK : $N+1$. For QPSK : $(N+1)^{2}$.
- The number of polynomials for bin 1 when N is prime are,
- For BPSK : $2^{N}-1$. For QPSK : $\left(2^{N}-1\right)^{2}$.

II Mapping Constellations to Finite Polynomial Fields/Rings

Firstly, the polynomial degree of the constellation representation will be minimised by converting to a polynomial in y. Let $t=\operatorname{lcm}\left(\frac{N}{\operatorname{gcd}(n, N)}, P\right)$. Then substituting $y=x^{\frac{r}{t}}, \exists w_{n}(y)$ such that,

$$
\begin{equation*}
w_{n}(y) \bmod \Phi_{t}(y)=w_{n}\left(x^{\frac{r}{t}}\right) \bmod \Phi_{r}(x)=v_{n}(x) \tag{3}
\end{equation*}
$$

where $\operatorname{deg}\left(w_{n}(y)\right)<\phi(t)$. One can further map the constellation for bin n from the set $\mathbf{W}_{n}=\left\{w_{n}(y)\right\}$, (or $\left.\mathbf{V}_{n}=\left\{v_{n}(x)\right\}\right)$ to the field or ring of finite polynomials, $\mathbf{F}_{n}=\left\{f_{n}(u)\right\}, \bmod M(u), \bmod m$, (i.e. the finite polynomial field/ring, $\left.Z_{m}[u] / M(u)\right)$. One of the conditions for each element of \mathbf{W}_{n} to map to a unique element of \mathbf{F}_{n} is,
$\exists \alpha(u) \in Z_{m}[u] / M(u), \alpha(u)^{t}=1, \alpha(u)^{s} \neq 1,0<s<t$
To find a suitable $Z_{m}[u] / M(u)$ that, for a given n, gives a unique mapping from \mathbf{W}_{n} to \mathbf{F}_{n} and satisfies (4), the following procedure was adopted.

1. Assign P and N.
2. Assign bin number, n.
3. Compute \mathbf{V}_{n} using (2), for all d.
4. Re-express \mathbf{V}_{n} as \mathbf{W}_{n} using (3).
5. Choose a $Z_{m}[u] / M(u)$ that satisfies (4). (Ideally $Z_{m}[u] / M(u)$ should have as few elements as possible but this must be at least equal to the constellation size).
6. Compute $\mathbf{F}_{n}=\left\{f_{n}(u)=\right.$ $\left.w_{n}(\alpha(u)) \bmod M(u) \bmod m\right\}$.
7. If there is a one-to-one mapping from \mathbf{W}_{n} to \mathbf{F}_{n}, then bin n of the N-point DFT of a length $N P$-PSK sequence can be
computed using $Z_{m}[u] / M(u)$. Go to step 2. Otherwise go to step 5 .

Tables 1,2 present finite integer or polynomial mappings for BPSK and QPSK, respectively. The mappings are one-to-one (apart from bin 0 when N is odd), and are therefore optimal. Observe that, for bin 1, N prime, $P=2, \alpha(u)$ must be a root of 2 , $\bmod m$.

III Conclusion

The mappings shown suggest efficient hardware solutions for the DFT inherent to OFDM systems $[2,3]$. (For example, to compute bins 1 and 2 of a 3-point QPSK DFT: $f_{n}(u)=$ $\sum_{k=0}^{2} d_{k}^{\prime}(u)(2 u)^{4 n k}, \bmod \left(u^{2}+1\right), \bmod 7$, where $d_{k}^{\prime}(u) \in\{1,6 u, 6, u\}$ and $2 u$ has order 12 over $Z_{7}[u] /\left(u^{2}+1\right)$.) Moreover, the allocation of different mappings for different bin numbers suggests a prime-factor decomposition of the DFT over different finite polynomial fields/rings [1]. Finally, it is hoped these mappings will help to categorise PSK sequences by spectral shape [4].

P	N	n	Pols	m	$M(u)$	t	$\alpha(u)$
2	3	0	4	5	-	2	4
		1	7	7	-	6	3
	4	0	5	5	-	2	4
		1	9	3	$u^{2}+1$	4	u
		2	5	5	-	2	4
	5	0	6	7	-	2	6
		1	31	31	-	10	27
	6	0	7	7	-	2	6
		1	19	19	-	6	8
		2	19	19	-	6	8
		3	7	7	-	2	6
	7	0	8	9	-	2	8
		1	127	127	-	14	63
	8	0	9	9	-	2	8
		1	81	3	$u^{4}+1$	8	u
		2	25	5	$u^{2}+1$	4	u
		4	9	9	-	2	8
	9	0	10	11	-	2	10
		1	$343=7^{3}$	7	$u^{3}+2$	18	u
		3	37	37	-	6	11
	10	0	11	11	-	2	10
		1	211	211	-	10	23
		2	211	211	-	10	23
		5	11	11	-	2	10
	11	0	12	13	-	2	12
		1	$2047=23.89$	2047	-	22	1983

Table 1: Finite Polynomial Mappings for BPSK DFT Output Bins

P	N	n	Pols	m	$M(u)$	t	$\alpha(u)$
4	2	0	9	3	$u^{2}+1$	4	u
		1	9	3	$u^{2}+1$	4	u
	3	0	16	17	-	4	4
		1	49	7	$u^{2}+1$	12	$2 u$
	4	0	25	5	$u^{2}+1$	4	u
		1	25	5	$u^{2}+1$	4	u
		2	25	5	$u^{2}+1$	4	u
	5	0	36	37	-	4	6
		1	$961=31^{2}$	31	$u^{2}+1$	20	$2 u$
	6	0	49	7	$u^{2}+1$	4	u
		1	$361=19^{2}$	19	$u^{2}+1$	12	$7 u$
		2	361	19	$u^{2}+1$	12	$7 u$
		3	49	7	$u^{2}+1$	4	u
	7	0	64	$65=5.13$	-	4	8
		1	$16129=127^{2}$	127	$u^{2}+1$	28	$2 u$
	8	0	81	$9=3^{2}$	$u^{2}+1$	4	u
		1	$625=5^{4}$	5	$u^{4}+1$	8	u
		2	81	$9=3^{2}$	$u^{2}+1$	4	u
		4	81	$9=3^{2}$	$u^{2}+1$	4	u
	9	0	100	101	-	4	10
		1	$117649=7^{6}$	7	$u^{6}+2$	36	u
		3	$1369=37^{2}$	37	$u^{2}+1$	12	$10 u$
	10	0	$121=11^{2}$	11	$u^{2}+1$	4	u
		1	$44521=211^{2}$	211	$u^{2}+1$	20	$55 u$
		2	$44521=211^{2}$	211	$u^{2}+1$	20	$55 u$
		5	$121=11^{2}$	11	$u^{2}+1$	4	u

Table 2: Finite Polynomial Mappings for QPSK DFT Output Bins

References

[1] R.E.Blahut, Fast Algorithms for Digital Signal Processing, Reading, Addison-Wesley, '85
[2] M.G.Parker, "VLSI Algorithms and Architectures for the Implementation of NumberTheoretic Transforms, Residue and Polynomial Residue Number Systems," PhD thesis, School of Eng, University of Huddersfield, March '95
[3] W.Y.Zou,Y.Wu, "COFDM: An Overview", IEEE Trans on Broadcasting, Vol 41, No 1, pp 1-8, March '95
[4] M.G.Parker,S.J.Shepherd,S.K.Barton, "MultiFunction Coding for Minimisation of Peak Envelope Power and Error Control in Multitone Modulation Systems", 2nd Annual Conference of the Communications Signal Processing and Coding Programme, Sheffield, 22/23 Jan, '97

