
Adaptive Soft-Decision Iterative Decoding Using

Edge Local Complementation

Joakim Grahl Knudsen, Constanza Riera, Matthew G. Parker and Eirik Rosnes

Dept. of Informatics, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
{joakimk, riera, matthew, eirik}@ii.uib.no

Abstract. We describe an operation to dynamically adapt the structure
of the Tanner graph used during iterative decoding. Codes on graphs–
most importantly, low-density parity-check (LDPC) codes–exploit ran-
domness in the structure of the code. Our approach is to introduce a sim-
ilar degree of controlled randomness into the operation of the message-
passing decoder, to improve the performance of iterative decoding of
classical structured (i.e., non-random) codes for which strong code prop-
erties are known. We use ideas similar to Halford and Chugg (IEEE
Trans. on Commun., April 2008), where permutations on the columns
of the parity-check matrix are drawn from the automorphism group of
the code, Aut(C). The main contributions of our work are: 1) We main-
tain a graph-local perspective, which not only gives a low-complexity,
distributed implementation, but also suggests novel applications of our
work, and 2) we present an operation to draw from Aut(C) such that
graph isomorphism is preserved, which maintains desirable properties
while the graph is being updated. We present simulation results for the
additive white Gaussian noise (AWGN) channel, which show an improve-
ment over standard sum-product algorithm (SPA) decoding.

1 Introduction

Inspired by the success of iterative decoding of LDPC codes, originally intro-
duced by Gallager [1] and later rediscovered in the mid 1990’s by MacKay and
Neal [2], on a wide variety of communication channels, the idea of iterative, soft-
decision decoding has recently been applied to classical algebraically constructed
codes in order to achieve low-complexity Belief Propagation decoding [3–5]. Both
Reed-Solomon and Bose-Chaudhuri-Hocquenghem (BCH) codes have been con-
sidered in the context of iterative decoding. Certain algebraically constructed bi-
partite graphs are known to exhibit good code properties, such as large minimum
distance and a non-trivial automorphism group. However, these typical ‘classical
properties’ do not necessarily lend themselves well to modern graph-based cod-
ing theory. Factors which influence the performance of iterative, soft-decision
decoders are pseudo-codewords [6], stopping and trapping sets [7, 8], sparsity,
girth, and degree distributions [9]. Structural weaknesses of graphical codes are
inherent to the particular parity-check matrix, H , which can be said to imple-
ment the code in the decoder. This matrix is a non-unique (n − k)-dimensional

basis for the null space of the code, C, which, in turn, is a k-dimensional subspace
of {0, 1}n. Although any basis (for the dual code, C⊥) is a parity-check matrix
for C, their performance in decoders is not uniform. In this work, we assume that
H is of full rank and in ‘standard’ [I |P]-form, where I is the identity matrix.

We propose a class of adaptive decoders which facilitate message-passing on
classical linear codes, by taking advantage of (non-trivial) graph structure. It
is well known that H can be mapped into a bipartite (Tanner) graph, TG(H),

which is described by its adjacency matrix,

(

0 H
HT 0

)

. With H being in stan-

dard form, a specific information set (on the codeword positions) is implied. We
will refer to bit nodes (i.e., columns of H) corresponding to I and P as ‘parity’
and ‘information’ nodes, respectively,1 and rows of H correspond to ‘constraint’
(check) nodes. Using a localized, low-complexity graph edge-operation, we up-
date the parity-check matrix, but still stay within the automorphism group of
the code, Aut(C). Thus, the graph update rule can be viewed as a particular rela-
belling (isomorphism) of the bit nodes. Furthermore, by selectively or randomly
shifting sensitive substructures (e.g., short cycles, or weight-1 nodes) within the
graph, we aim to influence the flow of extrinsic information through TG(H) in
a way helpful to the decoding process.

In a recent paper by Halford and Chugg, “random redundant iterative de-
coding” is achieved by applying permutations drawn at random from Aut(C)
[5]. Rather than applying these permutations to H , the same effect is achieved
by permuting the soft input vector. While their strategy is perceived to be a
series of global updates, our approach achieves a similar effect by using only
local updates on TG(H). In our characterization of locality, we assume that an
edge can not ‘see’ beyond a radius of a constant number of edges. Similarly to
[5], permutations can be drawn from a precomputed list input to the decoder.
However, our distributed approach also allows us to dispense with precompu-
tation, to realize a completely distributed and local graph update rule, which,
nevertheless, keeps the series of graphs generated within Aut(C).

2 Edge Local Complementation

The operation of edge local complementation (ELC) [10–12], also known as
Pivot, is a local operation on a simple graph. Fig. 1(a) shows GNu∪Nv

, the
local subgraph of a bipartite graph induced by nodes u, v, and their disjoint
neighborhoods which we denote N v

u , Nu \ {v} and N u
v , Nv \ {u}, respec-

tively.
Pivot on a bipartite graph is described as the complementation of edges

between these two sets; ∀ v′ ∈ N v
u , u′ ∈ N u

v , check whether edge (u′, v′) ∈ G, in
which case it is deleted (otherwise, it is created). Finally, the edges adjacent to
u and v are swapped. As such, Pivot updates the set of constraints (rows of H)
by changing the edges of TG(H), whereas nodes are invariant. The complexity

1 Note that these terms refer to the generator matrix of the code, GC ,
ˆ

P T | Ik

˜

.

(a) (b)

Fig. 1. Pivot (ELC) on edge (u, v) of a bipartite graph. Doubly slashed links mean the
edges connecting two sets have been complemented.

of the graph-based algorithm is O(deg(u) deg(v)). The fact that Pivot amounts
to row additions assures that the code is preserved. In the following, we use the
notation Gi to denote a graph G that has been subject to i Pivots (similarly for
Hi).

Consider the simple, n-node bipartite graph described by G =

(

0 P
PT 0

)

. This

graph is related to TG(H) by the abstraction of degree-1 parity nodes, as shown
in Figs. 2(a) - 2(b). Keeping track of the bipartition of G (which changes due to
the swap), means we can obtain an associated parity-check matrix, H1, for C by
mapping grey nodes onto rows (constraint nodes), and white nodes to columns
(bit nodes), with non-zero entries according to edges. While the mapping of bit
nodes must follow the prescription of the labelling of G (i.e., the code), the
ordering of rows is arbitrary.

The local application of Pivot has the global effect of row additions on the
associated H , thus preserving the bipartiteness and vector space (i.e., C) [12].
Consider again Fig. 1, where we choose u to be a constraint node, and v a bit
node. With this setup, Pivoting on edge (u, v) is equivalent to adding ‘row u’ to
rows u′ ∈ N u

v (as dictated by the non-zero entries of ‘column v’). Since H is in
standard form, an immediate effect of Pivoting on some edge (c, p) is that the
edges adjacent to information node, p, are swapped with that of the degree-1
parity node adjacent to the constraint node, c, as seen in Fig. 2 (b,e). As opposed
to [5], we are permuting H , whereas the soft input vector remains invariantly
connected to (the bit nodes of) TG(H). The indices of Fig. 2 show how the
order of the soft input vector is preserved. Extrinsic information is lost on edges
deleted in the local complementation. However, SPA update rules are such that
these messages remain stored in adjacent bit nodes as a posteriori probabilities

(APPs) [13].

As can be readily verified, although Pivot preserves the code, it can have a
negative impact on parameters of its implementation, H , as a decoder. Edges
complemented are at distance 2 from (u, v), so for a typical sparse, girth-6 graph,
many 4-cycles result, and density increases [14]. Pivot does not generally preserve
graph isomorphism (structure), so the operation will often given us a different
structure in the (Pivot) orbit of G [15]. The matrices Hi in this orbit are the

(a) G (b) TG(H) (c) Structure is a cube

(d) Pivot (0, 4) (e) Pivot (0, 4) (f) ...relabelled cube

Fig. 2. (a) through (c) are three equivalent representations of the (8, 4) extended Ham-
ming code. (d) through (e) show the corresponding representation after Pivot is applied
to edge (0, 4). Fig. 5 shows the parity-check matrices of (b) and (e), respectively.

set of structurally different parity-check matrices for the same code, as discussed
in the Introduction. We briefly mention that all information sets of C may be
enumerated by traversing this orbit of G [11].

2.1 Iso-Pivot

In this section we describe an application of Pivot to preserve key features of
the graph, to remedy the drawbacks enumerated in the previous section. We
define Iso-Pivot as a sequence of Pivot operations over which (global) graph
isomorphism is preserved. Such an operation will be in Aut(C), in that its action
has the appearance of a relabelling on the nodes of a graph, or–equivalently–a
permutation on the columns of a matrix (H). If there exist sequences of Pivots
which preserve the structure of G, then Aut(C) must be non-trivial. Isomorphism
is a certificate on the properties of the resulting graphs (matrices) used during
decoding; that these remain the same as for the initial G (H), which can be
assumed to have been carefully selected. The relabelling, however, alters the
flow of messages in TG(H), i.e., which nodes are exchanging information. Note
in particular how, after the Iso-Pivot in Fig. 2(f), node 4 is no longer part of a
4-cycle (whereas node 0 now is).

In the following, we derive three requirements for Pivot being an isomor-
phism.

(a) (b)

Fig. 3. Pivot on (0, 1) is (A) edge-count preserving and (B) a local isomorphism, but
not (C) a global isomorphism due to node 6. This node is not local to the Pivot edge.

A. Most generally, to have an isomorphism, the number of edges in G must
remain invariant under Pivot. Pivot is a local operation, so we only have
to consider the subgraph GNu∪Nv

. Edge complementation can then be
achieved by complementing the corresponding deg(u) × deg(v) submatrix,
Huv. Define wt(H) as the weight (number of non-zero entries) of H . In
order for wt(Huv) = wt(Huv), at least one of the dimensions must be an
even number, and wt(Huv) must equal uv/2. If these conditions are met,
we define the Pivot operation as edge-count preserving.

B. More specifically, we define a local isomorphism as an operation which pre-
serves the structure of subgraph GNu∪Nv

, without making any assumptions
on the overall (global) structure of G. We then define the Pivot operation
to be local Iso-Pivot iff Huv can be recovered from Huv by row/column
permutations only. Fig. 3 shows a small example.

C. Finally, most specifically, we say that Pivot is a (global) Iso-Pivot iff H can
be restored from H1, using only row/column permutations, considering the
entire matrix.

These requirements lead to the following observation,

C ⇒ B ⇒ A.

In the following, we will consider global isomorphisms only, and we will refer
to such sequences as as simply being Iso-Pivot operations, or sequences.

2.2 Iso-Orbit

The definitions of Iso-Pivot are naturally extended to the case where a single
Pivot can not by itself be an isomorphism. Consider, for instance, a girth-6
graph. Here, the local neighborhood (of any edge) must be empty, and, after a
single Pivot, this neighborhood becomes a complete (bipartite) (sub)graph at
distance 2 from the Pivot edge (all 4-cycles). This violates requirement A, and

the resultant graph can not be isomorphic to the initial one–neither locally, nor
globally.2

In the general case, Iso-Pivot is described as an ordered set of d edges on
which Pivot must be applied to achieve an isomorphism. This is referred to
as a d-iso sequence (or, a length-d iso sequence). The set of all isomorphisms
of G (reachable via Iso-Pivot, for d ≥ 1) is called the Iso-Orbit of G, which
corresponds to a subset of Aut(C). Pivot can be used, in a preprocessing stage, to
recursively search for Iso-Pivot sequences. For each such relabelling of G, we keep
the corresponding iso sequence leading to it. Since Pivot is reversible, identical
isomorphisms may be found via sequences of different length, and involving
different edges, where certain operations cancel each other out. As such, for each
unique labelling, we keep only the minimum length sequence in the Iso-Orbit.

From a decoding perspective, row permutations of H give the same TG(H).
By canonising the rows of H (in our case, sorting according to decimal value
of the binary rows), we ensure that the Iso-Orbit contains only non-trivial iso-
morphisms of G. The complexity of this search is O(n|Aut(C)|), where G has n
nodes, so for strongly structured (and large) graphs it may be necessary to bound
the recursion with a maximum depth, dmax. This possibly partial Iso-Orbit is
then simply referred to as the d-Iso-Orbit of G.

2.3 Local Iso Criterions

Although the message-passing decoder can be provided with TG(H) and a list of
iso-sequences, to facilitate adaptive decoding, our stated graph local approach
lends itself to ad hoc determination of iso-sequences during decoding. In this
subsection, we describe some 1-iso conditions which ensure that Pivoting on the
single edge (u, v) of G gives an isomorphism of G.

From a local perspective, an edge (u, v) can sometimes determine whether
or not (global) structure will be preserved if it applies a Pivot. This edge may
only examine its local subgraph, GNu∪Nv

. In this manner, we alleviate both the
potentially expensive preprocessing stage, as well as the overhead of storing and
permuting a list of sequences. Where a local criterion is satisfied, (u, v) may
remain unaware of the implicit (iso) permutations that occur–except from the
fact that (u, v) remains invariant–hence the term, Pivot.

We define ⊖ as the symmetric difference, i.e., for sets A and B, A ⊖ B ,

(A \ B) ∪ (B \ A).

Lemma 1. Pivoting on the edge (u, v) of a simple bipartite graph, G, preserves

G up to local graph isomorphism if and only if at least one of the sets N v
u and

N u
v satisfy one of the following conditions, with {α, α′} = {u, v},

– ∃ α, α′ such that Nα′

α = ∅, or

– ∃ α, α′ such that Nα′

α can be partitioned in pairs {wi, w
′
i}, where Nwi

⊖Nw′

i
=

Nα
α′ ∀i, {wi, w

′
i} ∩ {wj , w

′
j} = ∅, i 6= j.

2 This is also evident simply from the change in girth.

Fig. 4. Example of Lemma 1, where α = 0, α′ = 4, w0 = 5, and w′
0 = 6. These graphs

are isomorphic.

Global isomorphism can be ensured by the condition that the subgraphs induced

by Nα′

α and their neighbors, and Nα
α′ and their neighbors, are both bipartite

complete graphs. Less restrictive conditions will also ensure global isomorphism,

depending on the permutation of the vertices of the graph.

Proof. – Either N v
u = ∅, or N u

v = ∅. Let N v
u = ∅. Then Pivot on (u, v) has

the effect of disconnecting v from N u
v , while connecting u to N u

v . The per-
mutation that gives us the isomorphism is σ = (u v). The same permutation
applies when N u

v = ∅.
– For every wi ∈ Nα′

α , ∃ w′
i ∈ Nα′

α such that Nwi
⊖Nw′

i
= Nα

α′ : The permuta-
tion that gives us the isomorphism is σ = (u v)

∏

(wi w′
i). �

An example of Lemma 1 is found in Fig. 4.
As any individual Pivot operation complements edges local to u and v (i.e.,

4-cycles), we say that 1-iso ‘sequences’ can only exist for graphs of girth 4, or
locally acyclic (tree) graphs for which the first part of Lemma 1 applies. Similar
criteria have been identified for d = 2, but these were not applied in this initial
work.

3 Structure of the (8, 4) Extended Hamming Code

The (8, 4) extended Hamming code is a well-suited test case for adaptive de-
coding; it has strong classical properties (large automorphism group and mini-
mum distance), yet for any implementation H it is ill-suited for message-passing
(dense, and many 4-cycles). We acknowledge that this is a toy code, which
presents obvious difficulties in arguing any sense of ‘locality’ of such a small
graph. However, the positive nature of our results show that this code does suf-
fice as motivation for the proposed class of adaptive decoders, and we direct the
reader to the Future Work section of this article.

The associated graph has one structure in its (non-iso) orbit; the cube of Fig.
2(c), meaning that its structure is so strong that any edge of any Gi satisfies
Lemma 1 (is an Iso-Pivot). Starting from G as in Fig. 2(b), with parity-check
matrix in Fig. 5(a), we find the Iso-Orbit of the graph. Grouped by length,
d = 1 to 4, this orbit consists of 12, 30, 12, and 1 isomorphisms, respectively, all

(a) Standard form (b) Pivot (0, 4)

Fig. 5. The (8, 4) extended Hamming code, implemented by its standard form parity-
check matrix (a), and an isomorphism (b).

resembling a cube. Including the initial labelling, this sums up to 56 structurally
distinct, non-trivial parity-check matrices for the code.3 Necessarily, the 12 1-iso
sequences correspond to the 12 edges of G (P -part of H).

4 Simulation Results

The adaptive decoder has been tested in two instances, and compared against a
SPA decoder using standard flooding scheduling on output y from the AWGN
channel.4 During implementation we made sure that all decoders were allocated
an equal maximum number of iterations (T = 100). In the following description,
we assume an initial syndrome check has failed, so we have a vector to input to
the decoder.5

Due to the symmetry of the (8, 4) code in standard form, we know any
Pivot will preserve isomorphism. Thus, when considering the adaptive decoders
presented and analyzed in the following, the reader is encouraged to think of
these as truly localized (i.e., independent of preprocessing and input lists), as if
these were determined ad hoc. In comparison, Halford and Chugg [5] are applying
(non-local) permutations drawn at random from the full automorphism group
of the code. They also restrict to a cyclic subgroup of Aut(C)–we do not do this.
As discussed, our use of Iso-Pivot naturally gives a subgroup of Aut(C).

The random adaptive decoder (RAD) is a (flooding) SPA decoder, but which
is designed to adapt (via random Iso-Pivot) to another Gi, with regular iter-
ation interval, t. The decoder stops as soon as the syndrome check is satisfied
(valid codeword, though not necessarily the one sent), or when T iterations are
exhausted (detected frame error). In a localized manner, this decoder performs
a random walk (with repetitions) in the Iso-Orbit of G, taking advantage of the

3 Note that the full automorphism group of this code may be found by row permuta-
tions on these generators; 56 · 4! = 1344 = |Aut(C)|.

4 One flooding iteration consists of the SPA update of all bit (information and parity)
nodes, followed by the update of all constraint nodes.

5 For locality, we emphasize that constraint nodes of TG(H) can be viewed as [n, n−
1, 2] component parity-check codes, which can be computed (checked) concurrently
and distributively. However, a stopping criterion for the whole code is inherently a
global decision.

discussed symmetry. As such, the ‘range’–number of matrices available to this
decoder–includes all 56 non-trivial isomorphisms.

The list adaptive decoder (LAD) is an extension of this idea, but where
we apply Iso-Pivot operations from a precomputed list, L ⊆ Iso-Orbit(G). In
addition to the initial labelling, the range of this decoder is D = |L| + 1. A
pool of T flooding iterations is allocated. Graph Gi, 0 ≤ i < D, is allocated
hi = ⌈(T − I)/(D − i)⌉ iterations to come to a decoder decision, where I is
the total number of iterations used by previous decoders Gj , j < i. Depending
on T and L, hi may go to 0, so an overall minimum, hmin, should be set.
This means that, although the list L may not be employed in its entirety, we
ensure that the graphs used are doing useful work (more than 1 iteration). This
minium should reflect parameters of the graph and code. Before applying the
next Iso-Pivot from L, Gi compares its local decision to a running optimum kept
in the decoder, and overwrites if a better decoder output is found (in squared
Euclidean distance from y). This comparison is devised to favor valid decoder
states, in that distance measures of detected failures are only considered as long
as no valid state has been found. The LAD does not stop on reaching a valid
decoder state, but continues until “timeout” (T iterations). The final graph,
Gδ, ⌊T/hmin⌋ ≤ δ ≤ D − 1, outputs the optimum decision as the decoder
result. In case no graph found a valid syndrome, the error state nearest to y

(of the δ timeout states) was output. This is in an effort to reduce the bit-error
contribution.

Fig. 6 benchmarks the performance of RAD/LAD against standard SPA
and the optimal maximum likelihood decoder (MLD), in terms of bit-error rate
(BER) and frame-error rate (FER), where an improvement is seen. The LAD
plot is slightly nearer to the optimal MLD plot than the RAD, but the gain is not
significant compared to the complexity tradeoff (Fig. 7). A detailed look at the
(detected and undetected) frame errors, Fig. 6(b), reveals that adaptive decoders
outperform SPA in terms of detected errors (timeout), where RAD shows the
best gain. The RAD performs a random walk around the 56 sequences in the
Iso-Orbit of G, while, for the LAD, we chose the subset of 12 1-iso sequences
(defined by the 12 edges of the initial G) such that hmin = ⌈100/13⌉ = 7.

Only a small additional gain was achieved by using the full Iso-Orbit. In this
case, we used the same minimum as for the LAD; hmin = 7 iterations. This
means that not all 56 sequences were guaranteed to be used, so we permuted
the order of sequences in L before every decoding instance. As such, in the
cases where the graphs did non-negligible work (i.e., there were channel errors),
on average each graph ran all its hmin iterations. Hence, we may say that 13
random Iso-Pivot operations (sequences) were applied at random from the Iso-
Orbit of G. The simulation ‘LAD(56)’ in Fig. 6(a) demonstrates the benefit of
using the entire Iso-Orbit, albeit slim for this small code.

Fig. 7 shows the complexity (average number of flooding iterations used) of
the decoders, where we observe another improvement of RAD over SPA and
LAD decoding. At high Eb/N0, complexity averages go to 0, which is due to the
majority of received frames satisfying the initial syndrome check (which we do

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10

B
E

R

Eb/N0 (dB)

SPA
RAD
LAD

LAD (56)
MLD

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

FER = UND + DET

(a) Our class of decoders (both RAD and LAD) outperform SPA, both in BER and FER.
Only a small improvement was seen when using the entire Iso-Orbit, LAD(56).

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

F
E

R

Eb/N0 (dB)

UND, SPA
DET, SPA
UND, RAD
DET, RAD
UND, LAD
DET, LAD

(b) DETected (timeouts) and UNDetected frame errors compared separately. A significant
gain is found in the class of detected word errors.

Fig. 6. Simulations results on an AWGN channel. Maximum T = 100 iterations used.
t = 10 for RAD, and |L| = 12 for LAD. At least 100 detected and 100 undetected
frame errors were sampled for each Eb/N0 point.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

A
v.

 It
er

at
io

ns
 P

er
 F

ra
m

e

Eb/N0 (dB)

SPA
RAD
LAD

Fig. 7. The total number of iterations used (where timeout states contribute T iter-
ations, and error-free frames contribute 0) averaged over total number of simulated
frames.

not count as an iteration). While LAD expectedly uses a higher average number
of iterations, since it does not stop at the first valid syndrome, an interesting
observation is the complexity gain of RAD, which is linked to the reduction in
number of timeouts (detected frame errors–see Fig. 6(b)).

5 Conclusion and Future Work

We have described and tested a class of adaptive iterative decoders, which dy-
namically update the edge-space of the code implementation, TG(H), using
local decisions and operations. Concrete ‘iso-criterions’ are described and math-
ematically proven, and simulations on the AWGN channel show a gain when
using our ideas. Two related instances of our class of adaptive decoders are de-
scribed, where we conclude that, although LAD is slightly better than RAD in
terms of BER, that gain comes at a cost of increased complexity (average num-
ber of iterations used) and loss of locality. Furthermore, RAD outperforms LAD
in terms of FER, which gives an interesting latency reduction.

As Iso-Pivot rotates sensitive substructures in TG(H), we expect a gain
in selectively applying Iso-Pivot based on local convergence assessments (e.g.,
using entropy or reliability measures). We mention shifting short cycles away

from unreliable bit nodes–as seen in the cube of Fig. 2. Pivoting adjacent to
unreliable positions also causes these to become temporarily ‘isolated’ in terms
of message-passing (weight-1 node), such that these are set in a ‘listening
state,’ rather than confusing the adjacent nodes with its (presumed) unreliable
APP [16, 17, 3]. In our scheme, we achieve this effect without the overhead of
Gaussian elimination.

Local iso-criterions for d = 2 have been identified, and we are also working
on further generalizations. This is interesting, as, due to the link between Pivot
and 4-cycles, girth-6 graph isomorphisms can not be preserved with less than 2
Pivots. Our results on global isomorphisms indicate that it is not trivial to find
graphs which exhibit a non-empty Iso-Orbit, which simultaneously are good
codes (i.e., sparse and girth greater than 4). A reasonable next step is a more
methodical search through all codes up to some length, yet we are also looking
towards the use of local isomorphisms during decoding. For instance, when girth
is not preserved (see Section 2.1), cycle-splitting or cycle-reduction comes to
mind–as in the way two 4-cycles can sometimes be split into one 6-cycle.

We are working on a generalized Pivot operation, which does not depend on
the matrix (graph) being in standard form. With this tool, we expect to be able
to compare our results with the realistically sized BCH code of [5]. We anticipate
more significant results where larger Tanner graphs allow more true localization.
Euclidean geometry LDPC codes [18] are also potential, sufficiently structured
candidates for adaptive decoding.

Enforcing a strictly local perspective does present some practical difficulties,
most notably, decoder stopping criterion and optimum decoder state comparison
used in LAD. However, in the context of decoding–as in this work–this does not
present a problem, yet rather suggests potential implementations of the iterated
decoder where the graph nodes are distributed in space and/or time.

Acknowledgments

Thanks to Øyvind Ytrehus and Lars Eirik Danielsen, at the University of Bergen,
for helpful discussions.

References

1. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inform. Theory 8(1)
(January 1962) 21–28

2. MacKay, D.J.C., Neal, R.M.: Good codes based on very sparse matrices. In:
Cryptography and Coding 5th IMA Conf. (December 1995) 100–111

3. Jiang, J., Narayanan, K.R.: Iterative soft-input soft-output decoding of Reed-
Solomon codes by adapting the parity-check matrix. IEEE Trans. Inform. Theory
52(8) (August 2006) 3746–3756

4. Jiang, J., Narayanan, K.R.: Iterative soft decision decoding of Reed-Solomon codes.
IEEE Commun. Lett. 8(4) (April 2004) 244–246

5. Halford, T.R., Chugg, K.M.: Random redundant iterative soft-in soft-out decoding.
IEEE Trans. on Commun. 56(4) (April 2008) 513–517

6. Vontobel, P.O., Koetter, R.: Graph-cover decoding and finite-length analysis of
message-passing iterative decoding of LDPC codes. IEEE Trans. Inform. Theory,
submitted for publication (2005)

7. Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., Urbanke, R.L.: Finite-length
analysis of low-density parity-check codes on the binary erasure channel. IEEE
Trans. Inform. Theory 48(6) (June 2002) 1570–1579

8. Richardson, T.: Error floors of LDPC codes. In: Proc. 41st Annual Allerton Conf.
on Commun., Control, and Computing, Monticello, IL (October 2003) 1426–1435

9. Richardson, T.J., Urbanke, R.: The capacity of low-density parity-check codes
under message-passing decoding. IEEE Trans. Inform. Theory 47(2) (February
2001) 599–618

10. Bouchet, A.: Isotropic systems. European Journal of Combinatorics 8 (July 1987)
231–244

11. Danielsen, L.E., Parker, M.G.: Edge local complementation and equivalence of
binary linear codes. To appear in Des. Codes Cryptogr. (2008)

12. Riera, C., Parker, M.G.: On Pivot orbits of Boolean functions, optimal codes and
related topics. In: Fourth International Workshop on Optimal Codes and Related
Topics, Sofia, Institute of Mathematics and Informatics, Bulgarian Academy of
Sciences (June 2005) 248–253

13. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE. Trans. on Inform. Theory 47(2) (February 2001) 498–519

14. Knudsen, J.G.: Randomised construction and dynamic decoding of LDPC codes.
Master’s thesis, University of Bergen (2006)

15. Danielsen, L.E., Parker, M.G.: On the classification of all self-dual additive codes
over GF(4) of length up to 12. Journ. of Comb. Theory, Series A 113(7) (October
2006) 1351–1367

16. Catherine, C.: Enhancing the error-correction performance of low-density parity-
check codes. PhD thesis, University of Mauritius (2008)

17. Kothiyal, A., Takeshita, O.: A comparison of adaptive belief propagation and
the best graph algorithm for the decoding of linear block codes. In: Information
Theory, International Symposium on. (September 2005) 724–728

18. Kou, Y., Lin, S., Fossorier, M.P.C.: Low-density parity-check codes based on finite
geometries: A rediscovery and new results. IEEE Trans. Inform. Theory 47(7)
(November 2001) 2711–2736

