
Fault-Tolerant Linear Convolution Using Residue Number

Systems

by

M.G.Parker,M.Benaissa

The authors are with:

School of Eng., Univ.of Huddersfield, Huddersfield HD1 3DH, UK.,

Phone - 0484 422288 Ext 2385, E-Mail M.Parker@eng.hud.ac.uk

1



Fault-Tolerant Linear Convolution Using Residue Number

Systems

Abstract

This paper proposes a Fault-Tolerant Linear Convolution architecture using Residue Number

Systems (RNS) and Polynomial Residue Number Systems (PRNS). The RNS and PRNS are

both given error-detection capability by the addition of redundant residue channels, and the

combined redundancy enables errors to be corrected without explicit error-decoding. The method

is simple, fast, and amenable to VLSI implementation.

2



1 Introduction

Fault-tolerance (FT) within VLSI systems is to be encouraged as increasing VLSI design complexity

heightens the likelihood of component or module failure. The simplest form of FT uses Modular Re-

dundancy (MR) where multiple replication of a component or module can identify system error (by o/p

comparison), and extract the most probable correct o/p (by rejecting the ’odd one out’). However, this

technique is costly in terms of area, a protected system requiring at least three times the area of an

unprotected system. More sophisticated error-correction procedures have been developed. The use of

Reed-Solomon (RS) codes [2] to protect data at the digit (or bit) level, has gained popularity in recent

years. Another means of FT uses Residue Number Systems (RNS) [4]. A RNS performs computation

over a number of independent residue channels, where the computation within each channel is performed

over a different modulus. As the channels are independent, any fault occuring within the system does

not permeate throughout the whole system but affects only the channel in which it ocurred. This makes

the fault(s) easier to detect and correct. A scheme similar to MR is therefore applicable using RNS by

the addition of extra, redundant, residue channels, though the extra hardware required is a fraction of

that required for MR.

Linear Convolution (LC) is of great importance in Signal Processing applications [1, 3], forming the

hub of filtering and correlation operations. Hence, it’s implementation within VLSI systems is a frequent

requirement. It can be computed efficiently by using a Polynomial Residue Number System (PRNS) [5],

(note, PRNS is a direct extension of RNS into polynomial arithmetic). In a recent paper, Beckmann and

Musicus [6] have proposed the addition of extra, redundant, polynomial residue channels within a PRNS

LC to detect and correct errors. Error-correction is achieved by an exhaustive search for a possible set

of valid residues. This is certainly effective. However, it requires a large amount of post-processing. An

alternative correction method, suggested in [6], is an estimation method for a special choice of channel

moduli. This is faster though sensitive to noise.

In this paper we propose a single error-correcting LC system similar to that described in [6]. However,

whereas they emphasise LC in the complex field, we perform LC in a finite integer ring, mod M . This

allows us to decompose the PRNS LC using RNS. By adding one extra PRNS channel, a single PRNS

channel error is detectable. If we also have one extra RNS channel, we can ignore the o/p from the

errored PRNS channel and still have enough RNS residues to compute the required LC result. Thus the

error-decoding task, tackled in [6], is averted, at the price, (for single error-correction), of one extra RNS

channel, and one less PRNS channel. An example is given and it is shown how the method can be used

to correct more than one error. The primary advantages of this system are it’s immediate and simple

error correction capability and the small size and independent nature of its computing elements.

3



2 RNS and PRNS

2.1 RNS

Let us perform the linear operation,

〈f(a, b)〉M 0 ≤ a, b < R (1)

where R ≤ M is the i/p dynamic range, and 〈∗〉M means the residue of ∗, mod M .

We can write,

M =

n−1
∏

i=0

mwi

i (2)

where the mwi

i are mutually prime, and n and wi are positive integers.

A RNS solution to (1), using n independent channels, is as follows

fi(a, b) =
〈

f(〈a〉mwi
i

, 〈b〉mwi
i

)
〉

m
wi
i

0 ≤ i < n (3)

We can reconstruct f(a, b), using the Chinese Remainder Theorem (CRT),

f(a, b) =

〈

n−1
∑

i=0

fi(a, b).Mi.
〈

M−1
i

〉

m
wi
i

〉

M

(4)

where,

Mi = M/mwi

i (5)

We note that if f(a, b) < M for all a and b,

f(a, b) ≡ 〈f(a, b)〉M (6)

We have embedded an integer function in a modular ring in order to use RNS without affecting the o/p.

Theorem 1 f(a, b) can be computed using n residue channels if the product of the residue moduli, M ,

is > fm, (where fm = max(f(a, b))).

If, from (5), Mi ≤ fm, for all i, then the RNS is non-redundant. That is, all n channels are vital to

the computation of f(a, b).

Adding one extra residue channel,

M+1 =

n
∏

i=0

mwi

i (7)

We can define the product of any n of these channel moduli as,

M+1
i = M+1/mwi

i for 0 ≤ i < n + 1 (8)

If M+1
i > fm, for all i, then the RNS contains one redundant residue channel.

Theorem 2 f(a, b) can be computed using n + 1 residue channels, and if all possible combinations of n

out of n + 1 channels can also compute f(a, b), the RNS can detect a single channel error. This error is

detected when f(a, b) is computed > fm using all n + 1 channels.

Adding further RNS channels enables more errors to be detected and some to be corrected.

4



2.2 PRNS

PRNS is a direct extension of RNS to the polynomial domain. For clarity, we re-state the arguments

used for RNS in their polynomial form.

Consider computation over a polynomial modulus M(x), of degree N , (deg(M(x)) = N), where all

polynomial coefficients are in a field, (or ring), F which can be finite or infinite. Let us perform the

linear operation,

〈g(a(x), b(x))〉M(x) (9)

where a(x) and b(x) are polynomials of degree R− 1 or less, with R ≤ N .

We can write,

M(x) =

n−1
∏

i=0

mi(x)vi (10)

where mi(x)vi are mutually prime, and n and vi are positive integers.

A PRNS solution to (9). using n independent channels, is as follows,

gi(a(x), b(x)) =
〈

g(〈a(x)〉mi(x)vi
, 〈b(x)〉mi(x)vi

)
〉

mi(x)vi

0 ≤ i < n (11)

We can reconstruct g(a(x), b(x)), using the Chinese Remainder Theorem for Polynomials (CRTP),

g(a(x), b(x)) =

〈

n−1
∑

i=0

gi(a(x), b(x)).Mi(x).
〈

Mi(x)−1
〉

mi(x)vi

〉

M(x)

(12)

where,

Mi(x) = M(x)/mi(x)vi (13)

If deg(g(a(x), b(x))) < deg(M(x)) for all a(x) and b(x),

g(a(x), b(x)) ≡ 〈g(a(x), b(x))〉M(x) (14)

We have embedded a polynomial function in a polynomial ring in order to use PRNS without affecting

the o/p.

Theorem 3 g(a(x), b(x)) can be computed using n polynomial residue channels if the product of the

residue moduli, M(x), has degree > gm, (where gm = max(deg(g(a(x), b(x))))).

If, from (13), deg(Mi(x)) ≤ gm, for all i, then the PRNS is non-redundant.

Adding one extra residue channel,

M+1(x) =

n
∏

i=0

mi(x)vi (15)

with,

Mi(x)+1 = M+1(x)/mi(x)vi 0 ≤ i < n + 1 (16)

If deg(Mi(x)+1) > gm, for all i, then the PRNS contains one redundant residue channel.

5



Theorem 4 g(a(x), b(x)) can be computed using n+1 residue channels, and if all possible combinations

of n out of n + 1 channels can also compute g(a(x), b(x)), the PRNS can detect a single channel error.

This error is detected when deg(g(a(x), b(x))) is computed > gm using all n + 1 channels.

Adding further PRNS channels enables more errors to be detected and some to be corrected.

The above analysis for RNS and PRNS is equally valid for functions of more or less than two variables.

In the next section we apply RNS and PRNS to the Linear Convolution (LC) operation and show

how, by using the single error detection capability of both RNS and PRNS, a single channel error may

be corrected.

3 Linear Convolution (LC) Using RNS and PRNS

Consider,

c(x) = g(a(x), b(x)) = a(x).b(x) (17)

where we define a(x) as follows,

a(x) =

Rp−1
∑

k=0

ak.xk 0 ≤ ak < R (18)

with 0 ≤ ak < R. (Similarly for b(x)). c(x) is,

c(x) =

2.Rp−2
∑

j=0

cj .x
j (19)

This polynomial multiplication is equivalent to a LC of the coefficients of a(x) and b(x) of o/p

blocklength = 2.Rp − 1. Hence we can define the LC as a function of 2× Rp integer variables of input

dynamic range < R. Thus,

cj = fj(a0, a1, . . . , aRp−1, b0, b1, . . . , bRp−1) =

Rp−1
∑

k=0

aj−k .bj 0 ≤ j < 2.Rp − 2 (20)

where aj , bj = 0 for 0 > j ≥ Rp − 1.

We observe that we can embedd the polynomial multiplication of (17) in a PRNS whilst embedding

the equivalent LC of the polynomial coefficients, (20), in a RNS. To determine the minimum number of

residues required to fulfill the RNS and PRNS without reducing the o/p, we refer to Theorems (1) and

(3) and determine the maximum possible integer o/p dynamic range, and polynomial o/p degree. Thus,

to satisfy (6),

cj ≡ 〈cj〉M for 0 ≤ j < 2.Rp − 2 (21)

where, from (20),

M > Rp.(R − 1)2 (we assign fm = Rp.(R− 1)2) (22)

and, to satisfy (14),

c(x) ≡ 〈c(x)〉M(x) (23)

6



where, from (17) and (19),

deg(M(x)) > 2.Rp − 2 (we assign gm = 2.Rp − 2) (24)

Given these lower limit restrictions on M and M(x), we can always embedd an integer LC in a

RNS and PRNS. We show the general RNS/PRNS LC in Fig 1. Note the array of relatively small,

independent, processing elements (PEs). The granularity of the array depends on (2) and (10), i.e. the

number of integer and polynomial residue channels. This highlights a particularly important criteria for

the feasible implementation of LC using RNS/PRNS:

M(x) will only be highly factorisable (hf) if its coefficients are defined over a large enough field (or

ring). From (2), we require M(x) hf over each of mwi

i in turn. If M(x) is to be fully factorised into

degree-one factors, with all vi = 1, we can state, without proof, the following,

Theorem 5 For M(x) to factorise into degree-one factors over mwi

i , deg(M(x)) must be < mi

3.1 Example

We wish to implement the LC of two data blocks of length 29. We represent the LC as a polynomial

multiplication where a(x) and b(x) are of degree 28. Rp = 29 and the maximum possible degree of the

polynomial product is therefore gm = 56. (i.e. a 57 blocklength LC). We can embedd this polynomial

product in a PRNS, where deg(M(x)) > 56. If the i/p dynamic range of the polynomial coefficients is

given by R = 92, then the maximum possible o/p polynomial coefficient size is, fm = 240149.

The LC can also be embedded in a RNS when M is chosen such that M > fm. We note that choosing

m0 = 59, m1 = 61 and m2 = 67, (with all wi = 1), specifies M as,

M = m0.m1.m2 = 241133 > fm

.

For no redundancy, deg(M(x)) must be chosen = 57. m0, m1 and m2 allow full factoristation of

M(x) into 57 degree-one factors, as 57 mutually prime elements exist in each of m0, m1 and m2. Thus

a 3× 57 RNS/PRNS array of residue PEs performs the LC.

Other cases can be analysed in a similar fashion.

In the next section we show that the addition of single error detection capability for both RNS and

PRNS allows a simple form of single error correction.

4 Fault Tolerant RNS/PRNS LC

4.1 Single Error-Correction

If, from (5) and (13), the RNS and PRNS satisfy the following, respectively,

Mi ≤ fm deg(Mi(x) ≤ gm) (25)

7



then the RNS/PRNS LC is non-redundant. Let us add one extra residue channel to each of the RNS

and PRNS (RNS:1,PRNS:1), such that theorems 2 and 4 are satisfied. Thus both the PRNS and RNS

can detect one channel error. Fig 2 shows this ’expanded’ system. If we now take an example of a single

PE failure. The following chain of events takes place,

1. One PE failure in Row 2, Column 2 of Fig 2.

2. CRTP1 in Row 2 detects o/p of degree > gm. (i.e. highest coefficient non-zero).

3. Row 2 scrapped.

4. CRT reconstructs correct LC o/p for each coefficient, independently, using the polynomial

row residues, but ignores Row 2.

Hence, single error-correction is achieved Note, the CRTP and CRT modules are not included in the

RNS/PRNS protection scheme and must be protected separately.

4.1.1 Example

To continue the example of the previous section. Let us add m3 = 71 to give m0 = 59, m1 = 61, m2 = 67

and m3 = 71. We note that, using these four residue moduli, the RNS has single redundancy. We can

add another degree-one polynomial to produce M+1(x), a fully factorisable degree 58 polynomial, giving

single PRNS redundancy. (Note, each of the four mi possesses at least 58 mutually prime elements,

enabling M+1(x) to be fully factorisable). Thus a 4× 58 RNS/PRNS array of residue PEs performs the

LC.

4.2 Multiple Error-Correction

4.2.1 RNS:2,PRNS:1

Let us add a second RNS residue so that two redundant RNS residues exist. This scheme detects and

corrects up to two PE failures as long as the PEs are not in the same row. Correction is achieved by

ignoring the Row residues from the two Rows errored by the PRNS. The RNS can ’afford’ to ignore up

to two residues in each column.

4.2.2 RNS:2,PRNS:2

We now have two redundant residues for each of RNS and PRNS. The PRNS can detect up to two errors

per row. Hence, the system can afford up to two PE failures.

4.2.3 RNS:t,PRNS:t

This system can correct up to t errors.

8



4.3 Area Assessment

If a non-redundant system uses n RNS channels and np PRNS channels, and up to t errors are to be

corrected, then we can state the approximate area increase for protection as the ratio,

O((n + t).(np + t)/n.np) (26)

Clearly, the more residues there are, the larger n and np are. Large n and np implies a small

percentage rise in area cost. This scheme is more effective for small t. For high t, explicit error-decoding

searches may be more appropriate.

5 Conclusion

In this paper we have presented an architecture using simultaneous RNS and PRNS decomposition to

compute a Linear Convolution. We have stated the conditions necessary for system redundancy and used

this redundancy to detect single errors in either RNS or PRNS. Combining the detection capabilities of

RNS and PRNS allows us to correct a single processing element failure. We then showed how increased

fault tolerance can be achieved by adding even more RNS and PRNS residue channels. The scheme is

regular and fast, requiring a relatively small area overhead for a given fault tolerance.

References

[1] J.H.McClellan,C.M.Rader, Number Theory in Digital Signal Processing, Prentice Hall, ’79

[2] R.E.Blahut, Theory and Practice of Error Control Codes, Reading, MA: Addison Wesley,

’84

[3] R.E.Blahut, Fast Algorithms for Digital Signal Processing, Reading, Addison-Wesley, ’85

[4] M.A.Soderstrand,W.K.Jenkins,G.A.Jullien, F.J.Taylor, Residue Number System Arithmetic:

Modern Applications in Digital Signal Processing, IEEE Press, New York, NY ’86

[5] A.Skavantzos,N.Mitash, ”Computing Large Polynomial Products using Modular Arithmetic,” IEEE

Trans on Circuits and Systems - II, Vol 39, No 4, pp 252 - 254, April ’92

[6] P.E.Beckmann,Bruce.R.Musicus, ”Fast Fault-Tolerant Digital Convolution Using a Polynomial

Residue Number System,” IEEE Trans on Signal Processing, Vol 41, No 7, pp 2300 - 2313, July ’93

9



mod m
w0
0

b(x)a(x) b
∗

0
a
∗

0

mod M(x) CRTP0

b
∗∗

0
a
∗∗

0
c
∗∗

0
c
∗

0

mod m
w1
1

b(x)a(x) b
∗

1
a
∗

1

mod M(x) CRTP1

b
∗∗

1
a
∗∗

1
c
∗∗

1
c
∗

1

mod m
wn−1

n−1

b(x)a(x)
b
∗

n−1
a
∗

n−1

mod M(x) CRTPn−1

b
∗∗

n−1
a
∗∗

n−1 c
∗∗

n−1
c
∗

n−1

CRT

RNS PRNS

c(x)

n

Processing Element
Decomposition Decomposition

Each column works over

a different polynomial modulus

Each row works over a

different integer modulus

2.Rp − 1

Figure 1: Linear Convolver Using RNS and PRNS

10



mod m
w0
0

b(x)a(x) b
∗

0
a
∗

0

mod M
+1(x) CRTP0

b
∗∗

0
a
∗∗

0
c
∗∗

0
c
∗

0

mod m
w1
1

b(x)a(x) b
∗

1
a
∗

1

mod M
+1(x) CRTP1

b
∗∗

1
a
∗∗

1
c
∗∗

1
c
∗

1

mod m
wn−1

n−1

b(x)a(x)

b
∗

n−1
a
∗

n−1

mod M
+1(x) CRTPn−1

b
∗∗

n−1
a
∗∗

n−1 c
∗∗

n−1

c
∗

n−1

CRT

RNS PRNS

c(x)

2.Rp

n + 1

b(x)a(x)
b
∗

n a
∗

n b
∗∗

n a
∗∗

n c
∗∗

n
c
∗

n

mod m
wn
n mod M

+1(x) CRTPn

extra row

extra columnDecomposition Decomposition
o/p ignored

��
��

Failed PE

Figure 2: Linear Convolver Using RNS and PRNS with Single Error Correction

11


