The Generation of Finite Alphabet Codewords With No Mutual Cyclic Shift Equivalence ¹

M.G.Parker, S.J.Shepherd, Telecommunications Research Group, Department of Electronic and Electrical Engineering, University of Bradford, Bradford, BD7 1DP, UK. e-mail: mgparker@bradford.ac.uk

Abstract

This paper shows how to directly compute a largest set, \mathbf{C} , of length N codewords over a given finite alphabet, such that no codeword in \mathbf{C} is a cyclic shift of another codeword in \mathbf{C} . The method uses finite integer rings and can be used to generate irreducible polynomials.

Definitions: $\lfloor x \rfloor$ is the largest integer value $\leq x$. $\langle a \rangle_m$ means the residue of a, mod m. ord_m(a) is the order of a, mod m, i.e. $\langle a^i \rangle_m \neq 1$, 0 < i < n, $\langle a^n \rangle_m = 1$. Rt(n, m) is an n^{th} root of 1, mod m. Thus ord_m(Rt(n, m)) = n.

1 Introduction

Consider the finite alphabet, \mathbf{A} , and consider the set, \mathbf{V} , of all messages, \mathbf{v} , of length N over A. Thus,

$$\mathbf{v} \in \mathbf{V}, \quad \mathbf{v} = (v_0, v_1, \dots, v_{N-1}), \quad v_k \in \mathbf{A}, \quad \forall k$$

Let the f^{th} right cyclic shift operation, $s(\mathbf{v}, f)$, be defined as follows,

$$s(\mathbf{v},f) = (v_{\langle -f \rangle_N}, v_{\langle 1-f \rangle_N}, \dots, v_{\langle N-1-f \rangle_N})$$

Consider the codeset $\mathbf{C} \subset \mathbf{V}$, such that,

$$\mathbf{v} \in \mathbf{C} \text{ iff } \mathbf{v}' = s(\mathbf{v}, f) \notin \mathbf{C}, \mathbf{v}' \neq \mathbf{v}, \quad \forall \mathbf{v} \in \mathbf{V}, 0 < f < N$$
(1)

In other words, **C** comprises representative members of **V**, such that **V** is generated by the repeated operation of s on **C**. Moreover, the repeated operation of s on **C** never maps a member of **C** back into another member of **C**. The codeset, **C**, is not uniquely defined by (1) as there are many possible representatives. **C** is of interest because there are important functions, H, acting on members of **V**, which remain invariant under s (shift-invariant), and **C** is a smallest subset of **V** such that,

$$H(\mathbf{C}) = H(\mathbf{V})$$

where,

$$H(\mathbf{v}) = H(s(\mathbf{v}, f)), \quad \forall f$$
(2)

Moreover,

$$H(\mathbf{c}) \neq H(\mathbf{c}'), \quad \mathbf{c}, \mathbf{c}' \in \mathbf{C}, \quad \mathbf{c} \neq \mathbf{c}'$$

 $^{^{1}}$ The work described in this paper was supported by EPSRC grant ref: GR/K48914

For instance, if one enumerates members of \mathbf{A} arbitrarily, and then performs the N-point Discrete Fourier Transform of \mathbf{v} , given by,

$$u_n = \sum_{k=0}^{N-1} v_k e^{\frac{2\pi j n k}{N}} = \text{DFT}_n(\mathbf{v})$$

then H could be chosen to satisfy (2) if $H(\mathbf{v}) = \max(|\operatorname{DFT}_n(\mathbf{v})|)$. **C** would be a useful 'smaller search space' over which to look for 'ideal' channel estimation training sequences [3]. This paper describes a method for computing **C** by first mapping **A** to the integers, and then using finite integer arithmetic to compute **C** [1, 2]. Such a scheme is suitable for software and hardware applications, and also highlights the underlying structure of the message space, **V**, under cyclic shifts, this being dependent on the factorisation of integers of the form $P^N - 1$.

2 Theory

If $|\mathbf{A}| = P$, **A** can be mapped to an integer alphabet, $\mathbf{I}_{\mathbf{P}}$, where $\mathbf{I}_{\mathbf{P}} = \{0, 1, \dots, P-1\}$. Without loss of generalisation, members **v** of **V**, will forthwith be considered to be messages from the alphabet, $\mathbf{I}_{\mathbf{P}}$. Consider the following bijective mapping,

$$\mathbf{v} \Leftrightarrow w, \quad \forall \mathbf{v} \in \mathbf{V}, \text{ and } w \in \mathbf{Z}_{\mathbf{M}}, \text{ except } \mathbf{v}_{\mathbf{e}} = (P-1, P-1, \dots, P-1),$$

where $w = \left\langle \sum_{i=0}^{N-1} v_i P^i \right\rangle_M, \quad v_i = \left\langle \lfloor \frac{w}{P^i} \rfloor \right\rangle_P \in \mathbf{I}_{\mathbf{P}} \quad \text{and } M = P^N - 1$ (3)

Both $\mathbf{v} = (0, 0, \dots, 0)$ and $\mathbf{v}_{\mathbf{e}} = (P - 1, P - 1, \dots, P - 1)$ map to w = 0 under (3) hence the exclusion of $\mathbf{v}_{\mathbf{e}}$. Using the Chinese Remainder Theorem (CRT) [1], each member of $\mathbf{Z}_{\mathbf{M}}$ can be constructed from its R residues over the mutually prime factors of M,

$$\forall w \in \mathbf{Z}_{\mathbf{M}}, \qquad w = r_0 \otimes r_1 \otimes \dots r_{R-2} \otimes r_{R-1}, \qquad r_j = \langle w \rangle_{m_j^{t_j}}$$
$$\Rightarrow w = \left\langle \sum_{j=0}^{R-1} r_j \frac{M}{m_j^{t_j}} \left\langle \left(\frac{M}{m_j^{t_j}}\right)^{-1} \right\rangle_{m_j^{t_j}} \right\rangle_M \tag{4}$$

where $M = \prod_{j=0}^{R-1} m_j^{t_j}$, and " \otimes " means the direct product. Let $n_{e_j,0,j} = \operatorname{ord}_{m_j^{e_j}}(P)$, and $n_{e_j,1,j} = \frac{\phi'(m_j^{e_j})}{n_{e_j,0,j}}$, where,

$$\begin{aligned} \phi'(m_j^{e_j}) &= \phi(m_j^{e_j}) & m_j \neq 2 \text{ and/or } e_j \leq 2 \\ \phi'(m_j^{e_j}) &= \frac{\phi(m_j^{e_j})}{2} & m_j = 2 \text{ and } e_j > 2 \end{aligned}$$

and ϕ is Euler's Totient Function [1]. If $gcd(n_{e_j,0,j}, n_{e_j,1,j}) = 1$, let $\beta_{e_j,j} = Rt(n_{e_j,1,j}, m_j^{e_j})$, (a prime factor combination of the exponents, n). Alternatively, or if $gcd(n_{e_j,0,j}, n_{e_j,1,j}) > 1$, let $\beta_{e_j,j} = Rt(\phi'(m_j^{e_j}), m_j^{e_j})$, (a mixed-radix combination of the exponents, n). For all cases except $m_j = 2, e_j > 2$, each residue, r_j , can be generated using the following construction,

$$r_{j} \in \left\{ \left\langle m_{j}^{t_{j}-e_{j}} P^{s_{e_{j},0,j}} \beta_{e_{j},j}^{s_{e_{j},1,j}} \right\rangle_{m_{j}^{t_{j}}} \quad , \quad 0 \quad : \quad 1 \le e_{j} \le t_{j}, 0 \le s_{e_{j},i,j} < n_{e_{j},i,j}, i \in \{0,1\} \right\}$$

$$(5)$$

When $m_i = 2$ and $e_i > 2$, r_i is generated by,

$$r_{j} \in \left\{ \left\langle 2^{t_{j}-e_{j}} P^{s_{e_{j},0,j}} \beta_{e_{j},j}^{s_{e_{j},1,j}} \right\rangle_{2^{t_{j}}} , \left\langle \mu 2^{t_{j}-e_{j}} P^{s_{e_{j},0,j}} \beta_{e_{j},j}^{s_{e_{j},1,j}} \right\rangle_{2^{t_{j}}} , \\ 0 : 2 \le e_{j} \le t_{j}, 0 \le s_{e_{j},i,j} < n_{e_{j},i,j}, i \in \{0,1,\} \right\}$$

$$(6)$$

where μ is given by,

$$\begin{aligned} \mu &= -1 & \text{if } \langle P+1 \rangle_{2^{e_j}} \neq 0 \\ \mu &= 2^{e_j-1}+1 & \text{if } \langle P+1 \rangle_{2^{e_j}} = 0 \end{aligned}$$

By ranging through all possible values of e_j and $s_{e_j,i,j}$ for a given j, (5) and (6) generate the $m_j^{t_j}$ integers, $\{1, \ldots, m_j^{t_j} - 1\} + \{0\}$. The generation of all $w \in \mathbf{Z}_{\mathbf{M}}$, (and therefore all $\mathbf{v} \in \mathbf{V}, \mathbf{v} \neq \mathbf{v}_{\mathbf{e}}$), is achieved by constructing the r_j with (5) and/or (6), and then using (4) to form each w. To generate only codewords, $\mathbf{c} \in \mathbf{C}$, the criteria of (5), (6), are modified. Consider the operation $s(\mathbf{v}, 1)$. This is equivalent to the operation $\langle wP \rangle_M$ which, in turn, is equivalent to, $\left(\langle r_0 P \rangle_{m_0^{t_0}} \otimes \langle r_1 P \rangle_{m_1^{t_1}} \otimes \ldots \otimes \langle r_{R-1} P \rangle_{m_{R-1}^{t_{R-1}}} \right)$. From (5) and (6), the operation $\langle r_j P \rangle_{m_j^{t_j}}$ is achieved by replacing $s_{e_j,0,j}$ with $\left\langle s_{e_j,0,j} + 1 \right\rangle_{n_{e_j,0,j}}$, $\forall e_j, j$, with $s_{e_j,1,j}$ unchanged. Thus, to generate w_c corresponding to all codewords, $\mathbf{c} \in \mathbf{C}$, the $n_{e_j,1,j}$ in (5) and (6) are left unchanged, whereas the $n_{e_j,0,j}$ are replaced by $n'_{e_j,0,j,q}, \forall q, 0 \leq q < Q$, where q is constructed using the following mixed-radix formulation,

$$q = \sum_{j=0}^{R-1} e_j \prod_{i=0}^{j-1} (t_i + 1) \qquad 0 \le e_j \le t_j, \qquad \qquad Q = \prod_{j=0}^{R-1} (t_j + 1)$$

The $n'_{e_i,0,j,q}$ are evaluated as follows,

$$n'_{e_{j},0,j,q} = \gcd(\operatorname{lcm}(\gamma(n_{e_{j+1},0,j+1}), \gamma(n_{e_{j+2},0,j+2}), \dots, \gamma(n_{e_{R-1},0,R-1}), 1), n_{e_{j},0,j})$$
(7)

where $n_{0,0,j} = 0$, $\forall j$, and $\gamma(n) = n$, n > 0, $\gamma(0) = 1$. The $n_{0,0,j}$ are not required in (5) or (6) (as e_j is never zero), so their replacements, $n'_{0,0,j,q}$, need not be computed in (7). The values, $n_{0,0,j} = 0$ are only included in (7) for $r_j = 0$. For each q, the $n'_{e_j,0,j,q}$ can be computed using (7), to replace the respective $n_{e_j,0,j}$ in (5) or (6), and a subset of **C**, **C**_{**q**}, can be generated, using (5) and/or (6), (4), and (3). Thus,

$$\mathbf{C} = \left(\cup_{q=0}^{Q-1} \mathbf{C}_{\mathbf{q}}\right) \cup \mathbf{v}_{\mathbf{e}}$$

3 Examples

Example 1: Let P = 2, N = 5. Then $M = 2^5 - 1 = 31$, and 31 is prime. Thus R = 1, $m_0 = 31$, $t_0 = 1$, and $r_0 = \{\langle 2^{s_{e_0,0,0}} 6^{s_{e_0,1,0}} \rangle_{31}$, $0: 1 \le e_0 \le 1, 0 \le s_{e_0,i,0} < n_{e_0,i,0} \}$, where $n_{e_0,0,0} = 5$, $n_{e_0,1,0} = 6$. To generate w_c corresponding to all codewords, $\mathbf{c} \in \mathbf{C}$, $n_{e_0,0,0}$ is limited to $n'_{e_0,0,0,q}, \forall q, 0 \le q < 2$, as follows,

$$n'_{0,0,0,0}$$
 is not required.
 $n'_{1,0,0,1} = \gcd(\operatorname{lcm}(1), n_{1,0,0}) = 1$

With $n'_{1,0,0,1} = 1$, $r_0 \in \{2^{0}6^{0}, 2^{0}6^{1}, 2^{0}6^{2}, 2^{0}6^{3}, 2^{0}6^{4}, 2^{0}6^{5}, 0\} = \{1, 6, 5, 30, 25, 26, 0\}$. The CRT construction is trivial, i.e. $w_c = r_0, \forall r_0$. The 8 codewords, $\mathbf{c} \in \mathbf{C}$, are,

Example 2: Let P = 15, N = 2. Then $M = 15^2 - 1 = 224 = 2^57$. Thus R = 2, $m_0 = 2$, $m_1 = 7, t_0 = 5, \text{ and } t_1 = 1.$

$$\begin{split} r_0 &= \{ \langle 16.15^{s_{1,0,0}}1^{s_{1,1,0}} \rangle_{32} \quad , \\ & \langle 8.15^{s_{2,0,0}}1^{s_{2,1,0}} \rangle_{32} \quad , \\ \langle 4.15^{s_{3,0,0}}7^{s_{3,1,0}} \rangle_{32} \quad , \quad \langle 5.4.15^{s_{3,0,0}}7^{s_{3,1,0}} \rangle_{32} \\ \langle 2.15^{s_{4,0,0}}3^{s_{4,1,0}} \rangle_{32} \quad , \quad \langle 9.2.15^{s_{4,0,0}}3^{s_{4,1,0}} \rangle_{32} \\ \langle 15^{s_{5,0,0}}3^{s_{5,1,0}} \rangle_{32} \quad , \quad \langle -15^{s_{5,0,0}}3^{s_{5,1,0}} \rangle_{32} \quad , \\ 0 \quad : \quad 0 \leq s_{e_0,i,0} < n_{e_0,i,0} \} \end{split}$$

where $n_{1,0,0} = 1, n_{2,0,0} = 2, n_{3,0,0} = 2, n_{4,0,0} = 2, n_{5,0,0} = 2$, and $n_{1,1,0} = 1, n_{2,1,0} = 1, n_{3,1,0} = 1$ $1, n_{4,1,0} = 2, n_{5,1,0} = 4$. For $e_j > 2$, (6) is used instead of (5). For $e_j = 3$ and 4, $\mu = 5$ and 9, respectively. For $e_i = 5$, $\mu = -1$.

$$r_1 = \{ \langle 15^{s_{1,0,1}} 3^{s_{1,1,1}} \rangle_7 \quad , \quad 0 \quad : \quad 0 \le s_{1,i,1} < n_{1,i,1} \}$$

where $n_{1,0,1} = 1$ and $n_{1,1,1} = 6$. To generate w_c , corresponding to all codewords, $\mathbf{c} \in \mathbf{C}$, the $n_{e_i,0,j}$ are limited to $n'_{e_i,0,j,q}$, $\forall q, 0 \leq q < Q$, where Q = 6.2 = 12, as follows,

$n'_{0,0,0,0}$ not required ,	$n'_{0,0,1,0}$ not required
$n'_{1,0,0,1} = 1,$	$n'_{0,0,0,1}$ not required
$n_{2,0,0,2}' = 1,$	$n'_{0,0,0,2}$ not required
$n'_{3,0,0,3} = 1,$	$n'_{0,0,0,3}$ not required
$n'_{4,0,0,4} = 1,$	$n'_{0,0,0,4}$ not required
$n_{5,0,0,5}^{\prime,0,0,1} = 1,$	$n'_{0,0,0,5}$ not required
$n'_{0,0,0,6}$ not required,	$n'_{1,0,0,6} = 1$
$n'_{1,0,0,7} = 1,$	$n'_{1,0,0,7} = 1$
$n_{2,0,0,8}' = 1,$	$n_{1,0,0,8}' = 1$
$n'_{3,0,0,9} = 1,$	$n_{1,0,0,9}' = 1$
$n'_{4,0,0,10} = 1,$	$n'_{1,0,0,10} = 1$
$n_{5,0,0,11}' = 1,$	$n'_{1,0,0,11} = 1$

For each $q, 0 \le q < 12, 119$ different (r_0, r_1) residue pairs are generated:

- $\begin{array}{l} q = 0: (0,0);\\ q = 1: (16,0);\\ q = 2: (8,0);\\ q = 3: (4,0), (20,0);\\ q = 4: (2,0), (2.3,0), (9.2,0), (9.2.3,0);\\ q = 4: (2,0), (2.3,0), (9.2,0), (9.2.3,0);\\ \end{array}$

- $\begin{array}{l} q = 4: (2,0), (2.3,0), (9.2,0), (9.2,3,0); \\ q = 5: (1,0), (1.3,0), (1.3^2,0), (1.3^3,0), (-1,0), (-1.3,0), (-1.3^2,0), (-1.3^3,0); \\ q = 6: (0,1), (0,1.3), (0,1.3^2), (0,1.3^3), (0,1.3^4), (0,1.3^5); \\ q = 7: (16,1), (16,1.3), (16,1.3^2), (16,1.3^3), (16,1.3^4), (16,1.3^5); \\ q = 9: (4,1), (4,1.3), (4,1.3^2), (4,1.3^3), (4,1.3^4), (4,1.3^5), (20,1), (20,1.3), (20,1.3^2), (20,1.3^3), (20,1.3^4), (20,1.3^5); \\ q = 9: (4,1), (4,1.3), (4,1.3^2), (2,1.3^3), (2,1.3^4), (2,1.3^5), (23,1), (23,1.3), (23,1.3^2), (23,1.3^4), (23,1.3^4), (23,1.3^5), \\ (9.2,1), (9.2,1.3), (9.2,1.3^2), (9.2,1.3^3), (9.2,1.3^4), (9.2,1.3^5), (9.2,3,1), (9.2,3,1.3), (9.2,3,1.3^2), (9.2,3,1.3^4), (2.3,1.3^5), \\ (9.23,1.3^4), (9.23,1.3^5); \\ q = 11: (1,1), (1,1.3), (1,1.3^2), (1,1.3^3), (1,1.3^4), (1,1.3^5), (1.3,1), (1.3,1.3), (1.3,1.3^2), (1.3,1.3^4), (1.3,1.3^5), \\ (1.3^2,1), (1.3^2,1.3), (1.3^2,1.3^2), (1.3^2,1.3^3), (1.3^2,1.3^4), (1.3^2,1.3^5), (1.3^3,1), (1.3^3,1.3), (1.3^3,1.3^2), (1.3^3,1.3^3), \\ (1.3^3,1.3^4), (1.3^3,1.3^5), (-1,1), (-1,1.3), (-1,1.3^2), (-1,1.3^3), (-1,1.3^4), (-1,3^2,1.3^2), (-1.3^2,1.3^3), (-1.3^2,1.3^4), \\ (-1.3^2,1.3^5), (-1.3,1.3), (-1.3,1.3^4), (-1.3,1.3^5), (-1.3^3,1.3^4), (-1.3^3,1.3^2), (-1.3^3,1.3^5); \end{array} \right$

Using the CRT, $w_c = \langle 161r_0 + 64r_1 \rangle_{224}$. The 119 integers, w_c , each corresponding to a codeword, $c \in \mathbf{C}$, can be computed from the above.

4 The Generation of Irreducible Polynomials

This section describes how to use the above method to generate irreducible polynomials. If $\beta \in \operatorname{GF}(p^N), \beta \notin \operatorname{GF}(p^n), n | N, n \neq N$, then $\beta^{p^0}, \beta^{p^1}, \ldots, \beta^{p^{N-1}}$ is a normal basis for $\operatorname{GF}(p^N)$. Moreover, the N conjugates of β are roots of a degree N irreducible polynomial, I(x), over $\mathrm{GF}(p),$

$$I(x) = \prod_{i=0}^{N-1} (x - \beta^{p^i})$$

Let us represent β^k using the normal basis in β . Then successive cyclic shifts, s, of the basis coefficients generate all conjugates of β^k . If $s^n(\beta^k) = \beta^k$, $s^{n'}(\beta^k) \neq \beta^k$, 0 < n' < n, then β^k has n conjugates, where n|N, and the n conjugates of β are roots of a degree n irreducible polynomial, $I_k(x)$, over GF(p),

$$I_k(x) = \prod_{i=0}^{n-1} (x - \beta^{kp^i})$$

Therefore each irreducible polynomial, $I_k(x)$, of degree n, n|N, can be uniquely associated with one of its roots, β^{kp^i} , and the generation of a maximum subset, **C**, of length N words over an integer alphabet, $\mathbf{I_p}$, such that no word is a cyclic shift of another, is equivalent to the generation of a representative root of all possible $I_k(x)$ of degree n, n|N. $|\mathbf{C}|$ is equal to the number of irreducible polynomials over GF(p) of degree n, n|N. This paper has shown how to directly compute **C** and this section has shown that, when P = p is a power of a prime, each member of **C** is a root of a different irreducible polynomial, $I_k(x)$, when interpreted over a normal basis. Thus the method of this paper can be used to generate all possible irreducible polynomials over a given field. It is straightforward to extend the technique to all integer values of P by use of Residue Number Systems [2]. From [1] it is known that the number of irreducible polynomials over GF(p) of degree n, n|N, satisfies,

$$\sum_{n|N} \frac{1}{n} \sum_{d|n} \mu(d) p^{\frac{n}{d}} \tag{8}$$

where μ is the Mobius Function. This can be used to verify the method of this paper for the cases where P = p is a power of a prime. For instance, when p = 2, N = 5, then (8) gives 8 irreducible polynomials, and this is verified by Example 1.

5 Conclusion

This paper has described a method for the generation of a largest subset of length N messages over a finite alphabet so that no two messages in the subset are equivalent under cyclic shift. The method requires finite integer arithmetic. A similar method would use finite polynomial arithmetic to achieve the same ends. It has also been shown how the method can be used to generate all irreducible polynomials over a given field.

References

- R.Lidl,H.Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ Press, '86
- [2] M.G.Parker, "VLSI Algorithms and Architectures for the Implementation of Number-Theoretic Transforms, Residue and Polynomial Residue Number Systems," *PhD thesis, School of Eng, University of Huddersfield, March '95*
- [3] C.Tellambura, M.G.Parker, Y.J.Guo, S.J.Shepherd, S.K.Barton, "Optimal Sequences for Channel Estimation Using Discrete Fourier Transform Techniques," Accepted for Publication in IEEE Trans on Communications, '96