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Abstract

This paper shows how to directly compute a largest set, C, of length N codewords over a given

finite alphabet, such that no codeword in C is a cyclic shift of another codeword in C. The

method uses finite integer rings and can be used to generate irreducible polynomials.

Definitions: bxc is the largest integer value ≤ x. 〈a〉m means the residue of a, mod m.

ordm(a) is the order of a, mod m, i.e.
〈

ai
〉

m
6= 1, 0 < i < n, 〈an〉m = 1. Rt(n,m) is an nthroot

of 1, mod m. Thus ordm(Rt(n,m)) = n.

1 Introduction

Consider the finite alphabet, A, and consider the set, V, of all messages, v, of length N over
A. Thus,

v ∈ V, v = (v0, v1, . . . , vN−1), vk ∈ A, ∀k

Let the f thright cyclic shift operation, s(v, f), be defined as follows,

s(v, f) = (v〈−f〉N
, v〈1−f〉N

, . . . , v〈N−1−f〉N
)

Consider the codeset C ⊂ V, such that,

v ∈ C iff v′ = s(v, f) 6∈ C,v′ 6= v, ∀v ∈ V, 0 < f < N (1)

In other words, C comprises representative members of V, such that V is generated by the
repeated operation of s on C. Moreover, the repeated operation of s on C never maps a member
of C back into another member of C. The codeset, C, is not uniquely defined by (1) as there
are many possible representatives. C is of interest because there are important functions, H,
acting on members of V, which remain invariant under s (shift-invariant), and C is a smallest
subset of V such that,

H(C) = H(V)

where,

H(v) = H(s(v, f)), ∀f (2)

Moreover,

H(c) 6= H(c′), c, c′ ∈ C, c 6= c′
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For instance, if one enumerates members of A arbitrarily, and then performs the N -point
Discrete Fourier Transform of v, given by,

un =
N−1
∑

k=0

vke
2πjnk

N = DFTn(v)

then H could be chosen to satisfy (2) if H(v) = max(| DFTn(v)|). C would be a useful ’smaller
search space’ over which to look for ’ideal’ channel estimation training sequences [3]. This paper
describes a method for computing C by first mapping A to the integers, and then using finite
integer arithmetic to compute C [1, 2]. Such a scheme is suitable for software and hardware
applications, and also highlights the underlying structure of the message space, V, under cyclic
shifts, this being dependent on the factorisation of integers of the form P N − 1.

2 Theory

If |A| = P , A can be mapped to an integer alphabet, IP, where IP = {0, 1, . . . , P −1}. Without
loss of generalisation, members v of V, will forthwith be considered to be messages from the
alphabet, IP. Consider the following bijective mapping,

v ⇔ w, ∀v ∈ V, and w ∈ ZM, except ve = (P − 1, P − 1, . . . , P − 1),

where w =
〈

∑N−1
i=0 viP

i
〉

M
, vi =

〈

b w
P i c
〉

P
∈ IP and M = P N − 1

(3)

Both v = (0, 0, . . . , 0) and ve = (P − 1, P − 1, . . . , P − 1) map to w = 0 under (3) hence the
exclusion of ve. Using the Chinese Remainder Theorem (CRT) [1], each member of ZM can be
constructed from its R residues over the mutually prime factors of M ,

∀w ∈ ZM, w = r0 ⊗ r1 ⊗ . . . rR−2 ⊗ rR−1, rj = 〈w〉
m

tj

j

⇒ w =

〈

∑R−1
j=0 rj

M

m
tj

j

〈(

M

m
tj

j

)−1〉

m
tj

j

〉

M

(4)

where M =
∏R−1

j=0 m
tj
j , and ”⊗” means the direct product. Let nej ,0,j = ord

m
ej

j

(P ), and

nej ,1,j =
φ′(m

ej

j
)

nej ,0,j
, where,

φ′(m
ej

j ) = φ(m
ej

j ) mj 6= 2 and/or ej ≤ 2

φ′(m
ej

j ) =
φ(m

ej

j
)

2 mj = 2 and ej > 2

and φ is Euler’s Totient Function [1]. If gcd(nej ,0,j, nej ,1,j) = 1, let βej ,j = Rt(nej ,1,j,m
ej

j ), (a
prime factor combination of the exponents, n). Alternatively, or if gcd(nej ,0,j, nej ,1,j) > 1, let

βej ,j = Rt(φ′(m
ej

j ),m
ej

j ), (a mixed-radix combination of the exponents, n). For all cases except
mj = 2, ej > 2, each residue, rj , can be generated using the following construction,

rj ∈

{

〈

m
tj−ej

j P
sej ,0,j β

sej ,1,j

ej ,j

〉

m
tj

j

, 0 : 1 ≤ ej ≤ tj , 0 ≤ sej ,i,j < nej ,i,j, i ∈ {0, 1}

}

(5)
When mj = 2 and ej > 2, rj is generated by,

rj ∈
{〈

2tj−ej P
sej ,0,j β

sej ,1,j

ej ,j

〉

2tj
,

〈

µ2tj−ejP
sej ,0,jβ

sej ,1,j

ej ,j

〉

2tj
,

0 : 2 ≤ ej ≤ tj, 0 ≤ sej ,i,j < nej ,i,j, i ∈ {0, 1, }
} (6)

2



where µ is given by,

µ = −1 if 〈P + 1〉2ej 6= 0
µ = 2ej−1 + 1 if 〈P + 1〉2ej = 0

By ranging through all possible values of ej and sej ,i,j for a given j, (5) and (6) generate

the m
tj
j integers, {1, . . . ,m

tj
j − 1} + {0}. The generation of all w ∈ ZM, (and therefore all

v ∈ V,v 6= ve), is achieved by constructing the rj with (5) and/or (6), and then using (4) to
form each w. To generate only codewords, c ∈ C, the criteria of (5), (6), are modified. Consider
the operation s(v, 1). This is equivalent to the operation 〈wP 〉M which, in turn, is equivalent

to,

(

〈r0P 〉mt0
0
⊗ 〈r1P 〉mt1

1
⊗ . . .⊗ 〈rR−1P 〉

m
tR−1
R−1

)

. From (5) and (6), the operation 〈rjP 〉
m

tj

j

is achieved by replacing sej ,0,j with
〈

sej ,0,j + 1
〉

nej ,0,j

, ∀ej , j, with sej ,1,j unchanged. Thus, to

generate wc corresponding to all codewords, c ∈ C, the nej ,1,j in (5) and (6) are left unchanged,
whereas the nej ,0,j are replaced by n′

ej ,0,j,q, ∀q, 0 ≤ q < Q, where q is constructed using the
following mixed-radix formulation,

q =
R−1
∑

j=0

ej

j−1
∏

i=0

(ti + 1) 0 ≤ ej ≤ tj, Q =
R−1
∏

j=0

(tj + 1)

The n′
ej ,0,j,q are evaluated as follows,

n′
ej ,0,j,q = gcd(lcm(γ(nej+1,0,j+1), γ(nej+2,0,j+2), . . . γ(neR−1,0,R−1), 1), nej ,0,j) (7)

where n0,0,j = 0, ∀j, and γ(n) = n, n > 0, γ(0) = 1. The n0,0,j are not required in (5) or (6)
(as ej is never zero), so their replacements, n′

0,0,j,q, need not be computed in (7). The values,
n0,0,j = 0 are only included in (7) for rj = 0. For each q, the n′

ej ,0,j,q can be computed using (7),
to replace the respective nej ,0,j in (5) or (6), and a subset of C, Cq, can be generated, using
(5) and/or (6), (4), and (3). Thus,

C =
(

∪Q−1
q=0 Cq

)

∪ ve

3 Examples

Example 1: Let P = 2, N = 5. Then M = 25 − 1 = 31, and 31 is prime. Thus R = 1,
m0 = 31, t0 = 1, and r0 = {〈2se0,0,06se0,1,0〉31 , 0 : 1 ≤ e0 ≤ 1, 0 ≤ se0,i,0 < ne0,i,0},
where ne0,0,0 = 5, ne0,1,0 = 6. To generate wc corresponding to all codewords, c ∈ C, ne0,0,0 is
limited to n′

e0,0,0,q, ∀q, 0 ≤ q < 2, as follows,

n′
0,0,0,0 is not required.

n′
1,0,0,1 = gcd(lcm(1), n1,0,0) = 1

With n′
1,0,0,1 = 1, r0 ∈ {2060, 2061, 2062, 2063, 2064, 2065, 0} = {1, 6, 5, 30, 25, 26, 0}. The CRT

construction is trivial, i.e. wc = r0, ∀r0. The 8 codewords, c ∈ C, are,

0, 0, 0, 0, 1 (wc = 1), 0, 0, 1, 1, 0 (wc = 6), 0, 0, 1, 0, 1 (wc = 5),
1, 1, 1, 1, 0 (wc = 30), 1, 1, 0, 0, 1 (wc = 25), 1, 1, 0, 1, 0 (wc = 26),

0, 0, 0, 0, 0 (wc = 0), 1, 1, 1, 1, 1 (Exception = 31)
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Example 2: Let P = 15, N = 2. Then M = 152 − 1 = 224 = 257. Thus R = 2, m0 = 2,
m1 = 7, t0 = 5, and t1 = 1.

r0 = {〈16.15s1,0,01s1,1,0〉32 ,

〈8.15s2,0,01s2,1,0〉32 ,

〈4.15s3,0,07s3,1,0〉32 , 〈5.4.15s3,0,07s3,1,0〉32 ,

〈2.15s4,0,03s4,1,0〉32 , 〈9.2.15s4,0,03s4,1,0〉32 ,

〈15s5,0,03s5,1,0〉32 , 〈−15s5,0,03s5,1,0〉32 ,

0 : 0 ≤ se0,i,0 < ne0,i,0}

where n1,0,0 = 1, n2,0,0 = 2, n3,0,0 = 2, n4,0,0 = 2, n5,0,0 = 2, and n1,1,0 = 1, n2,1,0 = 1, n3,1,0 =
1, n4,1,0 = 2, n5,1,0 = 4. For ej > 2, (6) is used instead of (5). For ej = 3 and 4, µ = 5 and 9,
respectively. For ej = 5, µ = −1.

r1 = {〈15s1,0,13s1,1,1〉7 , 0 : 0 ≤ s1,i,1 < n1,i,1}

where n1,0,1 = 1 and n1,1,1 = 6. To generate wc, corresponding to all codewords, c ∈ C, the
nej ,0,j are limited to n′

ej ,0,j,q, ∀q, 0 ≤ q < Q, where Q = 6.2 = 12, as follows,

n′

0,0,0,0
not required , n′

0,0,1,0
not required

n′

1,0,0,1
= 1, n′

0,0,0,1
not required

n′

2,0,0,2
= 1, n′

0,0,0,2
not required

n′

3,0,0,3
= 1, n′

0,0,0,3
not required

n′

4,0,0,4
= 1, n′

0,0,0,4
not required

n′

5,0,0,5
= 1, n′

0,0,0,5
not required

n′

0,0,0,6
not required, n′

1,0,0,6
= 1

n′

1,0,0,7
= 1, n′

1,0,0,7
= 1

n′

2,0,0,8
= 1, n′

1,0,0,8
= 1

n′

3,0,0,9
= 1, n′

1,0,0,9
= 1

n′

4,0,0,10
= 1, n′

1,0,0,10
= 1

n′

5,0,0,11
= 1, n′

1,0,0,11
= 1

For each q, 0 ≤ q < 12, 119 different (r0, r1) residue pairs are generated:

q = 0 : (0, 0);
q = 1 : (16, 0);
q = 2 : (8, 0);
q = 3 : (4, 0), (20, 0);
q = 4 : (2, 0), (2.3, 0), (9.2, 0), (9.2.3, 0);

q = 5 : (1, 0), (1.3, 0), (1.32, 0), (1.33, 0), (−1, 0), (−1.3, 0), (−1.32 , 0), (−1.33, 0);

q = 6 : (0, 1), (0, 1.3), (0, 1.32), (0, 1.33), (0, 1.34), (0, 1.35);

q = 7 : (16, 1), (16, 1.3), (16, 1.32), (16, 1.33), (16, 1.34), (16, 1.35);

q = 8 : (8, 1), (8, 1.3), (8, 1.32), (8, 1.33), (8, 1.34), (8, 1.35);

q = 9 : (4, 1), (4, 1.3), (4, 1.32), (4, 1.33), (4, 1.34), (4, 1.35), (20, 1), (20, 1.3), (20, 1.32), (20, 1.33), (20, 1.34), (20, 1.35);

q = 10 : (2, 1), (2, 1.3), (2, 1.32), (2, 1.33), (2, 1.34), (2, 1.35), (2.3, 1), (2.3, 1.3), (2.3, 1.32), (2.3, 1.33), (2.3, 1.34), (2.3, 1.35),

(9.2, 1), (9.2, 1.3), (9.2, 1.32), (9.2, 1.33), (9.2, 1.34), (9.2, 1.35), (9.2.3, 1), (9.2.3, 1.3), (9.2.3, 1.32), (9.2.3, 1.33),

(9.2.3, 1.34), (9.2.3, 1.35);

q = 11 : (1, 1), (1, 1.3), (1, 1.32), (1, 1.33), (1, 1.34), (1, 1.35), (1.3, 1), (1.3, 1.3), (1.3, 1.32), (1.3, 1.33), (1.3, 1.34), (1.3, 1.35),

(1.32, 1), (1.32, 1.3), (1.32, 1.32), (1.32, 1.33), (1.32, 1.34), (1.32, 1.35), (1.33, 1), (1.33 , 1.3), (1.33 , 1.32), (1.33, 1.33),

(1.33, 1.34), (1.33, 1.35), (−1, 1), (−1, 1.3), (−1, 1.32), (−1, 1.33), (−1, 1.34), (−1, 1.35), (−1.3, 1), (−1.3, 1.3),

(−1.3, 1.32), (−1.3, 1.33), (−1.3, 1.34), (−1.3, 1.35), (−1.32, 1), (−1.32, 1.3), (−1.32, 1.32), (−1.32, 1.33), (−1.32, 1.34),

(−1.32, 1.35), (−1.33, 1), (−1.33 , 1.3), (−1.33 , 1.32), (−1.33, 1.33), (−1.33, 1.34), (−1.33, 1.35);

Using the CRT, wc = 〈161r0 + 64r1〉224. The 119 integers, wc, each corresponding to a code-
word, c ∈ C, can be computed from the above.

4 The Generation of Irreducible Polynomials

This section describes how to use the above method to generate irreducible polynomials. If
β ∈ GF(pN ), β 6∈ GF(pn), n|N , n 6= N , then βp0

, βp1
, . . . , βpN−1

is a normal basis for GF(pN ).
Moreover, the N conjugates of β are roots of a degree N irreducible polynomial, I(x), over
GF(p),

I(x) =
N−1
∏

i=0

(x− βpi

)
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Let us represent βk using the normal basis in β. Then successive cyclic shifts, s, of the basis
coefficients generate all conjugates of βk. If sn(βk) = βk, sn′(βk) 6= βk, 0 < n′ < n, then βk

has n conjugates, where n|N , and the n conjugates of β are roots of a degree n irreducible
polynomial, Ik(x), over GF(p),

Ik(x) =
n−1
∏

i=0

(x− βkpi

)

Therefore each irreducible polynomial, Ik(x), of degree n, n|N , can be uniquely associated with
one of its roots, βkpi

, and the generation of a maximum subset, C, of length N words over
an integer alphabet, Ip, such that no word is a cyclic shift of another, is equivalent to the
generation of a representative root of all possible Ik(x) of degree n, n|N . |C| is equal to the
number of irreducible polynomials over GF(p) of degree n, n|N . This paper has shown how
to directly compute C and this section has shown that, when P = p is a power of a prime,
each member of C is a root of a different irreducible polynomial, Ik(x), when interpreted over
a normal basis. Thus the method of this paper can be used to generate all possible irreducible
polynomials over a given field. It is straightforward to extend the technique to all integer values
of P by use of Residue Number Systems [2]. From [1] it is known that the number of irreducible
polynomials over GF(p) of degree n, n|N , satisfies,

∑

n|N

1

n

∑

d|n

µ(d)p
n
d (8)

where µ is the Mobius Function. This can be used to verify the method of this paper for the
cases where P = p is a power of a prime. For instance, when p = 2, N = 5, then (8) gives 8
irreducible polynomials, and this is verified by Example 1.

5 Conclusion

This paper has described a method for the generation of a largest subset of length N messages
over a finite alphabet so that no two messages in the subset are equivalent under cyclic shift.
The method requires finite integer arithmetic. A similar method would use finite polynomial
arithmetic to achieve the same ends. It has also been shown how the method can be used to
generate all irreducible polynomials over a given field.
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