The Generation of Finite Alphabet Codewords With No Mutual Cyclic Shift Equivalence ${ }^{1}$

M.G.Parker, S.J.Shepherd, Telecommunications Research Group, Department of Electronic and Electrical Engineering, University of Bradford, Bradford, BD7 1DP, UK.
e-mail: mgparker@bradford.ac.uk

Abstract

This paper shows how to directly compute a largest set, \mathbf{C}, of length N codewords over a given finite alphabet, such that no codeword in \mathbf{C} is a cyclic shift of another codeword in \mathbf{C}. The method uses finite integer rings and can be used to generate irreducible polynomials.

Definitions: $\lfloor x\rfloor$ is the largest integer value $\leq x .\langle a\rangle_{m}$ means the residue of a, mod m. $\operatorname{ord}_{m}(a)$ is the order of $a, \bmod m$, i.e. $\left\langle a^{i}\right\rangle_{m} \neq 1,0<i<n,\left\langle a^{n}\right\rangle_{m}=1 . \operatorname{Rt}(n, m)$ is an $n^{\text {th }}$ root of $1, \bmod m$. Thus $\operatorname{ord}_{m}(\operatorname{Rt}(n, m))=n$.

1 Introduction

Consider the finite alphabet, \mathbf{A}, and consider the set, \mathbf{V}, of all messages, \mathbf{v}, of length N over A. Thus,

$$
\mathbf{v} \in \mathbf{V}, \quad \mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{N-1}\right), \quad v_{k} \in \mathbf{A}, \quad \forall k
$$

Let the $f^{\text {th }}$ right cyclic shift operation, $s(\mathbf{v}, f)$, be defined as follows,

$$
s(\mathbf{v}, f)=\left(v_{\langle-f\rangle_{N}}, v_{\langle 1-f\rangle_{N}}, \ldots, v_{\langle N-1-f\rangle_{N}}\right)
$$

Consider the codeset $\mathbf{C} \subset \mathbf{V}$, such that,

$$
\begin{equation*}
\mathbf{v} \in \mathbf{C} \text { iff } \mathbf{v}^{\prime}=s(\mathbf{v}, f) \notin \mathbf{C}, \mathbf{v}^{\prime} \neq \mathbf{v}, \quad \forall \mathbf{v} \in \mathbf{V}, 0<f<N \tag{1}
\end{equation*}
$$

In other words, \mathbf{C} comprises representative members of \mathbf{V}, such that \mathbf{V} is generated by the repeated operation of s on \mathbf{C}. Moreover, the repeated operation of s on \mathbf{C} never maps a member of \mathbf{C} back into another member of \mathbf{C}. The codeset, \mathbf{C}, is not uniquely defined by (1) as there are many possible representatives. \mathbf{C} is of interest because there are important functions, H, acting on members of \mathbf{V}, which remain invariant under s (shift-invariant), and \mathbf{C} is a smallest subset of \mathbf{V} such that,

$$
H(\mathbf{C})=H(\mathbf{V})
$$

where,

$$
\begin{equation*}
H(\mathbf{v})=H(s(\mathbf{v}, f)), \quad \forall f \tag{2}
\end{equation*}
$$

Moreover,

$$
H(\mathbf{c}) \neq H\left(\mathbf{c}^{\prime}\right), \quad \mathbf{c}, \mathbf{c}^{\prime} \in \mathbf{C}, \quad \mathbf{c} \neq \mathbf{c}^{\prime}
$$

[^0]For instance, if one enumerates members of \mathbf{A} arbitrarily, and then performs the N-point Discrete Fourier Transform of \mathbf{v}, given by,

$$
u_{n}=\sum_{k=0}^{N-1} v_{k} e^{\frac{2 \pi j n k}{N}}=\operatorname{DFT}_{n}(\mathbf{v})
$$

then H could be chosen to satisfy (2) if $H(\mathbf{v})=\max \left(\left|\mathrm{DFT}_{n}(\mathbf{v})\right|\right)$. C would be a useful 'smaller search space' over which to look for 'ideal' channel estimation training sequences [3]. This paper describes a method for computing \mathbf{C} by first mapping \mathbf{A} to the integers, and then using finite integer arithmetic to compute $\mathbf{C}[1,2]$. Such a scheme is suitable for software and hardware applications, and also highlights the underlying structure of the message space, \mathbf{V}, under cyclic shifts, this being dependent on the factorisation of integers of the form $P^{N}-1$.

2 Theory

If $|\mathbf{A}|=P, \mathbf{A}$ can be mapped to an integer alphabet, $\mathbf{I}_{\mathbf{P}}$, where $\mathbf{I}_{\mathbf{P}}=\{0,1, \ldots, P-1\}$. Without loss of generalisation, members \mathbf{v} of \mathbf{V}, will forthwith be considered to be messages from the alphabet, $\mathbf{I}_{\mathbf{P}}$. Consider the following bijective mapping,

$$
\begin{align*}
& \mathbf{v} \Leftrightarrow w, \quad \forall \mathbf{v} \in \mathbf{V}, \text { and } w \in \mathbf{Z}_{\mathbf{M}}^{\mathbf{M}}, \quad \text { except } \mathbf{v}_{\mathbf{e}}=(P-1, P-1, \ldots, P-1), \\
& \text { where } w=\left\langle\sum_{i=0}^{N-1} v_{i} P^{i}\right\rangle_{M}, \quad v_{i}=\left\langle\left\lfloor\frac{w}{P^{i}}\right\rfloor\right\rangle_{P} \in \mathbf{I}_{\mathbf{P}} \quad \text { and } M=P^{N}-1 \tag{3}
\end{align*}
$$

Both $\mathbf{v}=(0,0, \ldots, 0)$ and $\mathbf{v}_{\mathbf{e}}=(P-1, P-1, \ldots, P-1)$ map to $w=0$ under (3) hence the exclusion of $\mathbf{v}_{\mathbf{e}}$. Using the Chinese Remainder Theorem (CRT) [1], each member of $\mathbf{Z}_{\mathbf{M}}$ can be constructed from its R residues over the mutually prime factors of M,

$$
\begin{gather*}
\forall w \in \mathbf{Z}_{\mathbf{M}}, \quad w=r_{0} \otimes r_{1} \otimes \ldots r_{R-2} \otimes r_{R-1}, \quad r_{j}=\langle w\rangle_{m_{j}^{t_{j}}} \\
\Rightarrow w=\left\langle\sum_{j=0}^{R-1} r_{j} \frac{M}{m_{j}^{t_{j}}}\left\langle\left(\frac{M}{m_{j}^{t_{j}}}\right)^{-1}\right\rangle_{m_{j}^{t_{j}}}\right\rangle_{M} \tag{4}
\end{gather*}
$$

where $M=\prod_{j=0}^{R-1} m_{j}^{t_{j}}$, and " \otimes " means the direct product. Let $n_{e_{j}, 0, j}=\operatorname{ord}_{m_{j}{ }_{j}}(P)$, and $n_{e_{j}, 1, j}=\frac{\phi^{\prime}\left(m_{j}^{e_{j}}\right)}{n_{e_{j}, 0, j}}$, where,

$$
\begin{array}{cc}
\phi^{\prime}\left(m_{j}^{e_{j}}\right)=\phi\left(m_{j}^{e_{j}}\right) & m_{j} \neq 2 \text { and } / \text { or } e_{j} \leq 2 \\
\phi^{\prime}\left(m_{j}^{e_{j}}\right)=\frac{\phi\left(m_{j}{ }_{j}\right)}{2} & m_{j}=2 \text { and } e_{j}>2
\end{array}
$$

and ϕ is Euler's Totient Function [1]. If $\operatorname{gcd}\left(n_{e_{j}, 0, j}, n_{e_{j}, 1, j}\right)=1$, let $\beta_{e_{j}, j}=\operatorname{Rt}\left(n_{e_{j}, 1, j}, m_{j}^{e_{j}}\right)$, (a prime factor combination of the exponents, n). Alternatively, or if $\operatorname{gcd}\left(n_{e_{j}, 0, j}, n_{e_{j}, 1, j}\right)>1$, let $\beta_{e_{j}, j}=\operatorname{Rt}\left(\phi^{\prime}\left(m_{j}^{e_{j}}\right), m_{j}^{e_{j}}\right)$, (a mixed-radix combination of the exponents, n). For all cases except $m_{j}=2, e_{j}>2$, each residue, r_{j}, can be generated using the following construction,

$$
\begin{equation*}
r_{j} \in\left\{\left\langle m_{j}^{t_{j}-e_{j}} P^{s_{e_{j}, 0, j}} \beta_{e_{j}, j}^{s_{e_{j}, 1, j}}\right\rangle_{m_{j}^{t_{j}}} \quad, \quad 0 \quad: \quad 1 \leq e_{j} \leq t_{j}, 0 \leq s_{e_{j}, i, j}<n_{e_{j}, i, j}, i \in\{0,1\}\right\} \tag{5}
\end{equation*}
$$

When $m_{j}=2$ and $e_{j}>2, r_{j}$ is generated by,

$$
\begin{align*}
r_{j} \in\left\{\left\langle 2^{t_{j}-e_{j}} P^{s_{e_{j}, 0, j}} \beta_{e_{j}, j}^{s_{e_{j}, 1, j}}\right\rangle_{2^{t_{j}}}\right. & \left., \quad\left\langle\mu 2^{t_{j}-e_{j}} P^{s_{e_{j}, 0, j}} \beta_{e_{j}, j}^{s_{e_{j}, 1, j}}\right\rangle\right\rangle_{2^{t_{j}}} \\
0 & \left.: 2 \leq e_{j} \leq t_{j}, 0 \leq s_{e_{j}, i, j}<n_{e_{j}, i, j}, i \in\{0,1,\}\right\} \tag{6}
\end{align*}
$$

where μ is given by,

$$
\begin{array}{cc}
\mu=-1 & \text { if }\langle P+1\rangle_{2^{e_{j}}} \neq 0 \\
\mu=2^{e_{j}-1}+1 & \text { if }\langle P+1\rangle_{2^{e_{j}}}=0
\end{array}
$$

By ranging through all possible values of e_{j} and $s_{e_{j}, i, j}$ for a given $j,(5)$ and (6) generate the $m_{j}^{t_{j}}$ integers, $\left\{1, \ldots, m_{j}^{t_{j}}-1\right\}+\{0\}$. The generation of all $w \in \mathbf{Z}_{\mathbf{M}}$, (and therefore all $\mathbf{v} \in \mathbf{V}, \mathbf{v} \neq \mathbf{v}_{\mathbf{e}}$), is achieved by constructing the r_{j} with (5) and/or (6), and then using (4) to form each w. To generate only codewords, $\mathbf{c} \in \mathbf{C}$, the criteria of (5), (6), are modified. Consider the operation $s(\mathbf{v}, 1)$. This is equivalent to the operation $\langle w P\rangle_{M}$ which, in turn, is equivalent to, $\left(\left\langle r_{0} P\right\rangle_{m_{0}^{t_{0}}} \otimes\left\langle r_{1} P\right\rangle_{m_{1}^{t_{1}}} \otimes \ldots \otimes\left\langle r_{R-1} P\right\rangle_{m_{R-1}^{t_{R-1}}}\right)$. From (5) and (6), the operation $\left\langle r_{j} P\right\rangle_{m_{j}^{t_{j}}}$ is achieved by replacing $s_{e_{j}, 0, j}$ with $\left\langle s_{e_{j}, 0, j}+1\right\rangle_{n_{e_{j}, 0, j}}, \forall e_{j}, j$, with $s_{e_{j}, 1, j}$ unchanged. Thus, to generate w_{c} corresponding to all codewords, $\mathbf{c} \in \mathbf{C}$, the $n_{e_{j}, 1, j}$ in (5) and (6) are left unchanged, whereas the $n_{e_{j}, 0, j}$ are replaced by $n_{e_{j}, 0, j, q}^{\prime}, \forall q, 0 \leq q<Q$, where q is constructed using the following mixed-radix formulation,

$$
q=\sum_{j=0}^{R-1} e_{j} \prod_{i=0}^{j-1}\left(t_{i}+1\right) \quad 0 \leq e_{j} \leq t_{j}, \quad Q=\prod_{j=0}^{R-1}\left(t_{j}+1\right)
$$

The $n_{e_{j}, 0, j, q}^{\prime}$ are evaluated as follows,

$$
\begin{equation*}
n_{e_{j}, 0, j, q}^{\prime}=\operatorname{gcd}\left(\operatorname{lcm}\left(\gamma\left(n_{e_{j+1}, 0, j+1}\right), \gamma\left(n_{e_{j+2}, 0, j+2}\right), \ldots \gamma\left(n_{e_{R-1}, 0, R-1}\right), 1\right), n_{e_{j}, 0, j}\right) \tag{7}
\end{equation*}
$$

where $n_{0,0, j}=0, \forall j$, and $\gamma(n)=n, n>0, \gamma(0)=1$. The $n_{0,0, j}$ are not required in (5) or (6) (as e_{j} is never zero), so their replacements, $n_{0,0, j, q}^{\prime}$, need not be computed in (7). The values, $n_{0,0, j}=0$ are only included in (7) for $r_{j}=0$. For each q, the $n_{e_{j}, 0, j, q}^{\prime}$ can be computed using (7), to replace the respective $n_{e_{j}, 0, j}$ in (5) or (6), and a subset of $\mathbf{C}, \mathbf{C}_{\mathbf{q}}$, can be generated, using (5) and/or (6), (4), and (3). Thus,

$$
\mathbf{C}=\left(\cup_{q=0}^{Q-1} \mathbf{C}_{\mathbf{q}}\right) \cup \mathbf{v}_{\mathbf{e}}
$$

3 Examples

Example 1: Let $P=2, N=5$. Then $M=2^{5}-1=31$, and 31 is prime. Thus $R=1$, $m_{0}=31, t_{0}=1$, and $r_{0}=\left\{\left\langle 2^{s_{e_{0}, 0,0}} 6^{s_{e_{0}, 1,0}}\right\rangle_{31} \quad, \quad 0: \quad 1 \leq e_{0} \leq 1,0 \leq s_{e_{0}, i, 0}<n_{e_{0}, i, 0}\right\}$, where $n_{e_{0}, 0,0}=5, n_{e_{0}, 1,0}=6$. To generate w_{c} corresponding to all codewords, $\mathbf{c} \in \mathbf{C}, n_{e_{0}, 0,0}$ is limited to $n_{e_{0}, 0,0, q}^{\prime}, \forall q, 0 \leq q<2$, as follows,

$$
\begin{gathered}
n_{0,0,0,0}^{\prime} \quad \text { is not required. } \\
n_{1,0,0,1}^{\prime}=\operatorname{gcd}\left(\operatorname{lcm}(1), n_{1,0,0}\right)=1
\end{gathered}
$$

With $n_{1,0,0,1}^{\prime}=1, r_{0} \in\left\{2^{0} 6^{0}, 2^{0} 6^{1}, 2^{0} 6^{2}, 2^{0} 6^{3}, 2^{0} 6^{4}, 2^{0} 6^{5}, 0\right\}=\{1,6,5,30,25,26,0\}$. The CRT construction is trivial, i.e. $w_{c}=r_{0}, \forall r_{0}$. The 8 codewords, $\mathbf{c} \in \mathbf{C}$, are,

$$
\begin{array}{cccccc}
0,0,0,0,1 & \left(w_{c}=1\right), & 0,0,1,1,0 & \left(w_{c}=6\right), & 0,0,1,0,1 & \left(w_{c}=5\right), \\
1,1,1,1,0 & \left(w_{c}=30\right), & 1,1,0,0,1 & \left(w_{c}=25\right), & 1,1,0,1,0 & \left(w_{c}=26\right), \\
0,0,0,0,0 & \left(w_{c}=0\right), & 1,1,1,1,1 & (\text { Exception }=31) &
\end{array}
$$

Example 2: Let $P=15, N=2$. Then $M=15^{2}-1=224=2^{5} 7$. Thus $R=2, m_{0}=2$, $m_{1}=7, t_{0}=5$, and $t_{1}=1$.

$$
\begin{gathered}
r_{0}=\left\{\left\langle 16.15^{s_{1,0,0}} 1^{s_{1,1,0}}\right\rangle_{32}\right. \\
\left\langle 8.15^{s_{2,0,0}} 1^{s_{2,1,0}}\right\rangle_{32}, \\
\left\langle 4.15^{s_{3,0,0}} 7^{s_{3,1,0}}\right\rangle_{32}, \quad, \quad\left\langle 5.4 .15^{s_{3,0,0}} 7^{s_{3,1,0}}\right\rangle_{32} \\
\left\langle 2.15^{s_{4,0,0}} 3^{s_{4,1,0}}\right\rangle_{32}, \quad, \quad\left\langle 9.2 .15^{s_{4,0,0}} 3^{s_{4,1,0}}\right\rangle_{32} \\
\left\langle 15^{s_{5,0,0}} 3^{s_{5,1,0}}\right\rangle_{32}, \\
0 \quad, \quad\left\langle-15^{s_{5,0,0}} 3^{s_{5,1,0}}\right\rangle_{32}
\end{gathered},
$$

where $n_{1,0,0}=1, n_{2,0,0}=2, n_{3,0,0}=2, n_{4,0,0}=2, n_{5,0,0}=2$, and $n_{1,1,0}=1, n_{2,1,0}=1, n_{3,1,0}=$ $1, n_{4,1,0}=2, n_{5,1,0}=4$. For $e_{j}>2$, (6) is used instead of (5). For $e_{j}=3$ and $4, \mu=5$ and 9 , respectively. For $e_{j}=5, \mu=-1$.

$$
r_{1}=\left\{\left\langle 15^{s_{1,0,1}} 3^{s_{1,1,1}}\right\rangle_{7} \quad, \quad 0 \quad: \quad 0 \leq s_{1, i, 1}<n_{1, i, 1}\right\}
$$

where $n_{1,0,1}=1$ and $n_{1,1,1}=6$. To generate w_{c}, corresponding to all codewords, $\mathbf{c} \in \mathbf{C}$, the $n_{e_{j}, 0, j}$ are limited to $n_{e_{j}, 0, j, q}^{\prime}, \forall q, 0 \leq q<Q$, where $Q=6.2=12$, as follows,

$\begin{gathered} n_{0,0,0,0}^{\prime} \text { not required }, \\ n_{1,0,0,1}^{\prime}=1, \\ n_{2,0,0,2}^{\prime}=1, \\ n_{3,0,0,3}^{\prime}=1, \\ n_{44,0,4}^{\prime}=1, \\ n_{5,0,0,5}^{\prime}=1, \\ n_{0,0,0,6}^{\prime}, ~ n o t ~ r e q u i r e d, ~ \\ n_{1,0,0,7}^{\prime}=1, \\ n_{2,0,0,8}^{\prime}=1, \\ n_{3,0,0,9}^{\prime}=1, \\ n_{4,0,0,10}^{\prime}=1, \\ n_{5,0,0,11}^{\prime}=1, \end{gathered}$

$\quad n_{0,0,1,0}^{\prime}$ not required
$n_{0,0,0,1}^{\prime}$ not required
$n_{0,0,0,2}^{\prime}$ not required
$n_{0,0,0,3}^{\prime}$ not required
$n_{0,0,0,4}^{\prime}$ not required
$n_{0,0,0,5}^{\prime}$ not required
$n_{1,0,0,6}^{\prime}=1$
$n_{1,0,0,7}^{\prime}=1$
$n_{1,0,0,8}^{\prime}=1$
$n_{1,0,0,9}^{\prime}=1$
$n_{1,0,0,10}^{\prime}=1$
$n_{1,0,0,11}^{\prime}=1$

For each $q, 0 \leq q<12,119$ different $\left(r_{0}, r_{1}\right)$ residue pairs are generated:

```
q=0:(0,0);
q=1:(16,0);
q=2:(8,0);
q=3:(4,0),(20,0);
q=4:(2,0),(2.3,0),(9.2,0),(9.2.3,0);
q=5:(1,0),(1.3,0),(1.\mp@subsup{3}{}{2},0),(1.\mp@subsup{3}{}{3},0),(-1,0),(-1.3,0),(-1.\mp@subsup{3}{}{2},0),(-1.\mp@subsup{3}{}{3},0);
q=6:(0,1),(0,1.3),(0,1.3 2),(0,1.3 3),(0,1.34),(0,1.3 5);
q=7:(16,1),(16, 1.3),(16,1.3 2 ), (16,1.3 3),(16, 1.3 4), (16, 1.3 5);
q=8:(8,1),(8,1.3),(8,1.3 2),(8,1.3 3),(8,1.34),(8,1.3 5);
q=9:(4,1),(4,1.3),(4,1.\mp@subsup{3}{}{2}),(4,1.\mp@subsup{3}{}{3}),(4,1.\mp@subsup{3}{}{4}),(4,1.\mp@subsup{3}{}{5}),(20,1),(20,1.3),(20,1.\mp@subsup{3}{}{2}),(20,1.\mp@subsup{3}{}{3}),(20,1.\mp@subsup{3}{}{4}),(20,1.\mp@subsup{3}{}{5});
q=10:(2,1),(2,1.3),(2,1.\mp@subsup{3}{}{2}),(2,1.\mp@subsup{3}{}{3}),(2,1.\mp@subsup{3}{}{4}),(2,1.\mp@subsup{3}{}{5}),(2.3,1),(2.3,1.3),(2.3,1.\mp@subsup{3}{}{2}),(2.3,1.\mp@subsup{3}{}{3}),(2.3,1.\mp@subsup{3}{}{4}),(2.3,1.\mp@subsup{3}{}{5}),
    (9.2,1), (9.2,1.3), (9.2,1.\mp@subsup{3}{}{2}),(9.2,1.\mp@subsup{3}{}{3}),(9.2,1.\mp@subsup{3}{}{4}),(9.2,1.\mp@subsup{3}{}{5}),(9.2.3,1),(9.2.3,1.3),(9.2.3,1.\mp@subsup{3}{}{2}),(9.2.3,1.3}\mp@subsup{)}{}{3})
    (9.2.3,1.34}),(9.2.3,1.35)
q=11:(1,1),(1, 1.3),(1,1.\mp@subsup{3}{}{2}),(1,1.\mp@subsup{3}{}{3}),(1,1.\mp@subsup{3}{}{4}),(1,1.\mp@subsup{3}{}{5}),(1.3,1),(1.3,1.3),(1.3,1.\mp@subsup{3}{}{2}),(1.3,1.\mp@subsup{3}{}{3}),(1.3,1.\mp@subsup{3}{}{4}),(1.3,1.\mp@subsup{3}{}{5}),
        (1.\mp@subsup{3}{}{2},1),(1.\mp@subsup{3}{}{2},1.3),(1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{2}),(1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{3}),(1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{4}),(1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{5}),(1.\mp@subsup{3}{}{3},1),(1.\mp@subsup{3}{}{3},1.3),(1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{2}),(1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{3}),
        (1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{4}),(1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{5}),(-1,1),(-1,1.3),(-1,1.\mp@subsup{3}{}{2}),(-1,1.\mp@subsup{3}{}{3}),(-1,1.\mp@subsup{3}{}{4}),(-1,1.\mp@subsup{3}{}{5}),(-1.3,1),(-1.3,1.3),
        (-1.3,1.\mp@subsup{3}{}{2}),(-1.3,1.3 3),(-1.3,1.\mp@subsup{3}{}{4}),(-1.3,1.\mp@subsup{3}{}{5}),(-1.\mp@subsup{3}{}{2},1),(-1.\mp@subsup{3}{}{2},1.3),(-1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{2}),(-1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{3}),(-1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{4}),
        (-1.\mp@subsup{3}{}{2},1.\mp@subsup{3}{}{5}),(-1.\mp@subsup{3}{}{3},1),(-1.\mp@subsup{3}{}{3},1.3),(-1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{2}),(-1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{3}),(-1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{4}),(-1.\mp@subsup{3}{}{3},1.\mp@subsup{3}{}{5});
```

Using the CRT, $w_{c}=\left\langle 161 r_{0}+64 r_{1}\right\rangle_{224}$. The 119 integers, w_{c}, each corresponding to a codeword, $c \in \mathbf{C}$, can be computed from the above.

4 The Generation of Irreducible Polynomials

This section describes how to use the above method to generate irreducible polynomials. If $\beta \in \operatorname{GF}\left(p^{N}\right), \beta \notin \operatorname{GF}\left(p^{n}\right), n \mid N, n \neq N$, then $\beta^{p^{0}}, \beta^{p^{1}}, \ldots, \beta^{p^{N-1}}$ is a normal basis for $\operatorname{GF}\left(p^{N}\right)$. Moreover, the N conjugates of β are roots of a degree N irreducible polynomial, $I(x)$, over GF (p),

$$
I(x)=\prod_{i=0}^{N-1}\left(x-\beta^{p^{i}}\right)
$$

Let us represent β^{k} using the normal basis in β. Then successive cyclic shifts, s, of the basis coefficients generate all conjugates of β^{k}. If $s^{n}\left(\beta^{k}\right)=\beta^{k}, s^{n^{\prime}}\left(\beta^{k}\right) \neq \beta^{k}, 0<n^{\prime}<n$, then β^{k} has n conjugates, where $n \mid N$, and the n conjugates of β are roots of a degree n irreducible polynomial, $I_{k}(x)$, over $\operatorname{GF}(p)$,

$$
I_{k}(x)=\prod_{i=0}^{n-1}\left(x-\beta^{k p^{i}}\right)
$$

Therefore each irreducible polynomial, $I_{k}(x)$, of degree $n, n \mid N$, can be uniquely associated with one of its roots, $\beta^{k p^{2}}$, and the generation of a maximum subset, \mathbf{C}, of length N words over an integer alphabet, $\mathbf{I}_{\mathbf{p}}$, such that no word is a cyclic shift of another, is equivalent to the generation of a representative root of all possible $I_{k}(x)$ of degree $n, n|N .|\mathbf{C}|$ is equal to the number of irreducible polynomials over $\operatorname{GF}(p)$ of degree $n, n \mid N$. This paper has shown how to directly compute \mathbf{C} and this section has shown that, when $P=p$ is a power of a prime, each member of \mathbf{C} is a root of a different irreducible polynomial, $I_{k}(x)$, when interpreted over a normal basis. Thus the method of this paper can be used to generate all possible irreducible polynomials over a given field. It is straightforward to extend the technique to all integer values of P by use of Residue Number Systems [2]. From [1] it is known that the number of irreducible polynomials over $\mathrm{GF}(p)$ of degree $n, n \mid N$, satisfies,

$$
\begin{equation*}
\sum_{n \mid N} \frac{1}{n} \sum_{d \mid n} \mu(d) p^{\frac{n}{d}} \tag{8}
\end{equation*}
$$

where μ is the Mobius Function. This can be used to verify the method of this paper for the cases where $P=p$ is a power of a prime. For instance, when $p=2, N=5$, then (8) gives 8 irreducible polynomials, and this is verified by Example 1.

5 Conclusion

This paper has described a method for the generation of a largest subset of length N messages over a finite alphabet so that no two messages in the subset are equivalent under cyclic shift. The method requires finite integer arithmetic. A similar method would use finite polynomial arithmetic to achieve the same ends. It has also been shown how the method can be used to generate all irreducible polynomials over a given field.

References

[1] R.Lidl,H.Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ Press, ' 86
[2] M.G.Parker, "VLSI Algorithms and Architectures for the Implementation of NumberTheoretic Transforms, Residue and Polynomial Residue Number Systems," PhD thesis, School of Eng, University of Huddersfield, March '95
[3] C.Tellambura,M.G.Parker,Y.J.Guo,S.J.Shepherd,S.K.Barton, "Optimal Sequences for Channel Estimation Using Discrete Fourier Transform Techniques," Accepted for Publication in IEEE Trans on Communications, '96

[^0]: ${ }^{1}$ The work described in this paper was supported by EPSRC grant ref: GR/K48914

