
Boolean Functions: Cryptography and Applications BFCA’08
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Abstract. A bent function is called self dual if it is equal to
its dual. It is called anti self dual if it is equal to the comple-
ment of its dual. A spectral characterization in terms of the
Rayleigh quotient of the Sylvester Hadamard matrix is de-
rived. An efficient search algorithm based on the spectrum
of the Sylvester matrix is derived. Primary and Secondary
constructions are given. All self dual bent Boolean functions
in ≤ 6 variables and all quadratic such functions in 8 vari-
ables are given, up to a restricted form of linear equivalence.

Keywords: Boolean functions, bent functions, Walsh Hadamard
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1. Introduction

Bent functions form a remarkable class of Boolean functions
with applications in many domains, such as difference sets, spread-
ing sequences for CDMA, error correcting codes and cryptology.
In symmetric cryptography, these functions can be used as build-
ing blocks of stream ciphers. They will not, in general, be used
directly as combining functions or as filtering functions, because
they are not balanced, but as Dobbertin showed in [6], they can be
used as an ingredient to build balanced filtering functions. While
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this class of Boolean functions is very small compared to the class
of all Boolean functions it is still large enough to make enumer-
ation and classification impossible if the number of variables is
≥ 10. It is therefore desirable to look for subclasses that are more
amenable to generation, enumeration and classification.

A subclass that has received little attention since Dillon’s sem-
inal thesis [6] is the subclass of those Boolean functions that are
equal to their dual ( or Fourier transform in Dillon’s terminology).
We call these self dual bent functions. Of related interest are
those bent functions whose dual is the complement of the func-
tion. We call these anti self dual bent functions. In this work
we characterize the sign functions of these two class of functions
as the directions where extrema of the Rayleigh quotient of the
Sylvester type Hadamard matrix occur, or, equivalently, as eigen-
vectors of that matrix. This spectral characterization allows us
to give a very simple and efficient search algorithm, that makes
it possible to enumerate and classify all self dual bent function
for ≤ 6 variables and all quadratic such functions in 8 variables.
The computational saving on the exhaustive search is doubly ex-
ponential in n. We derive primary constructions (Maiorana Mac-
Farland and Dillons’s partial spreads), secondary constructions
(going from bent function in n variables to self dual or anti self
dual bent functions in n+m variables) and class symmetries ( op-
erations on Boolean functions that preserve self duality or anti self
duality). The subclass of the Maiorana MacFarland class of bent
functions exhibits interesting connections with self-dual codes, a
fact which was our original motivation at the start of the study: to
connect the duality of codes with the duality of Boolean functions.
This appears also in the section on class symmetries.

The material is organized as follows. Section 2 collects the no-
tation and definitions that we need for the rest of the paper. Sec-
tion 3 contains the characterization in terms of Rayleygh quotient
and the bounds on that quantity for an odd number of variables.
Section 4 looks into constructions, first primary then secondary.
Section 5 describes the search algorithm and establishes the sym-
metry between self dual and anti self dual bent functions. The
numerical results are listed in section 6.
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2. Definitions and Notation

A Boolean function f in n variables is any map from Fn
2 to

F2. Its sign function is F := (−1)f , and its Walsh Hadamard
transform (WHT) can be defined as

F̂ (x) :=
∑
y∈Fn

2

(−1)f(y)+x.y.

When F is viewed as a column vector the matrix of the WHT is
the Hadamard matrix Hn of Sylvester type, which we now define
by tensor products. Let

H :=
(

1 1
1 −1

)
.

Let Hn := H⊗n be the n− fold tensor product of H with
itself and Hn := H⊗n/2n/2, its normalized version. Recall the
Hadamard property

HnHT
n = 2nI2n ,

where we denote by IM the M by M identity matrix. A Boolean
function in n variables is said to be bent if and only if HnF is
the sign function of some other Boolean function. That function is
then called the dual of f and denoted by f̃ . The sign function of
f̃ is henceforth denoted by F̃ . If, furthermore, f = f̃ , then f is self
dual bent. This means that its sign function is an eigenvector of
Hn attached to the eigenvalue 1. Similarly, if f = f̃ + 1 then f
is anti self dual bent. This means that its sign function is an
eigenvector of Hn attached to the eigenvalue −1.

3. A characterization

Define the Rayleigh quotient Sf of a Boolean function f in
n variables by the character sum

Sf :=
∑

x,y∈Fn
2

(−1)f(x)+f(y)+x.y =
∑
x∈Fn

2

F (x)F̂ (x)

Theorem 1. Let n denote an even integer and f be a Boolean
function in n variables. The modulus of the character sum Sf is
at most 23n/2 with equality if and only if f is self dual bent or anti
self dual bent.
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Proof. The triangle inequality yields

|
∑
x,y

(−1)f(x)+f(y)+x.y| ≤
∑

x

|
∑

y

(−1)f(x)+f(y)+x.y|

By Cauchy Schwarz inequality the latter sum is at most√
2n

∑
x

(
∑

y

(−1)f(x)+f(y)+x.y)2

which, by Parseval identity (
∑

x(F̂ (x))2 = 22n) equals 23n/2. So,
Sf ≤ 23n/2, with equality only if there is equality in these two
inequalities. Equality holds in the Cauchy Schwarz inequality if
and only if |F (x)F̂ (x)| = |F̂ (x)| is a constant function of x that is
if and only if f is bent. Equality in the triangle inequality holds
then if and only if the sign of F (x)F̂ (x) = 2n/2F (x)F̃ (x) is a
constant function of x that is if and only if, furthermore, f is self
dual ( + sign) or anti self dual (− sign). �

By using the sign function F of f we can write

Sf =
∑
x∈Fn

2

F (x)F̂ (x) = 〈F,HnF 〉.

The standard properties of the Rayleygh quotient attached to
the real symmetric matrix Hn show that the maximum (resp. min-
imum) of Sf are obtained for F an eigenvector of Hn attached
to a maximum (resp. minimum) eigenvalue of Hn, which are,
by Lemma 1 below, 2n/2 (resp. −2n/2). See for instance [4,
p.198] or any textbook in Numerical Analysis for basic defini-
tion and properties of the Rayleigh quotient of an hermitian ma-
trix. Alternatively, by using Lemma 1 below, the orthogonal de-
composition in eigenspaces of Hn yields F = F+ + F−, with
F± ∈ Ker(Hn ± 2n/2I2n), and 〈F, F 〉 = 〈F+, F+〉 + 〈F−, F−〉.
Plugging this decomposition into Sf gives

Sf = 2n/2〈F+, F+〉 − 2n/2〈F−, F−〉,

and by the triangle inequality, |Sf | ≤ 23n/2, with equality if and
only if F = F+ or F = F−.

Proposition 1. The Hamming distance between a self dual bent
function f1 and an antiselfdual bent function f2, both of n vari-
ables, is 2n−1.
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Proof. Let F1 (resp; F2) denote the sign function of f1 (resp;
f2.). On the one hand

〈F1,HnF2〉 = −2n/2〈F1, F2〉,

by anti self duality of f2. On the other hand by self adjunctness
of Hn, we have

〈F1,HnF2〉 = 〈HnF1, F2〉,
which equals 2n/2〈F1, F2〉, by self duality of f1. Since

〈F1, F2〉 = −〈F1, F2〉 = 0,

the result follows. �
An interesting open problem is to consider the maximum of Sf

for n odd, when the eigenvectors of Hn cannot be in {±1}n. In
that direction we have

Theorem 2. The maximum Rayleygh quotient of a Boolean func-
tion g in an odd number of variables n is at least Sg ≥ 2(3n−1)/2.

Proof. Let F be the sign function of a self dual bent function
in n − 1 variables, so that Hn−1F = 2(n−1)/2F. Define a Boolean
function in n variables by its sign function G = (F, F ). Write
Hn = H ⊗Hn−1, to derive

HnG = (2Hn−1F, 0)t = (2(n+1)/2F, 0)t.

Taking dot product on the left by G yields

Sg = 2(n+1)/2F tF = 2(n+1)/22n−1 = 2(3n−1)/2.

�

4. Constructions

4.1. Primary Constructions

4.1.1. Maiorana McFarland

A general class of bent functions is the Maiorana McFarland
class, that is functions of the form

x · φ(y) + g(y)
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with x, y dimension n/2 variable vectors, φ ∈ GL(n/2, 2) and g ar-
bitrary Boolean. In the following theorem Lt denote the transpose
of L.

Theorem 3. A Maiorana McFarland function is self dual bent
(resp. anti self dual bent) if and only if g(y) = b · y + ε and φ(y) =
L(y)+a where L is a linear automorphism satisfying L×Lt = In/2,
a = L(b), and a has even (resp. odd) Hamming weight. In both
cases the code of parity check matrix (In/2, L) is self dual and (a, b)
one of its codewords. Conversely, to the ordered pair (H, c) of a
parity check matrix H of a self dual code of length n and one of
its codewords c can be attached such a Boolean function.

Proof. The dual of a Maiorana-McFarland bent function x ·
φ(y)+ g(y) is equal to φ−1(x) · y + g(φ−1(x)) [1]. If the function f
is self-dual then g and φ must be affine, that is, g(y) = b ·y+ε and
φ(y) = L(y) + a (where L is a linear automorphism). Then f is
self-dual if and only if, for every x, y ∈ Fn/2

2 : x·(L(y)+a)+b·y+ε =
y · L−1(x + a) + L−1(x + a) · b + ε, that is, for every x, y ∈ F

n/2
2 ,

x · L(y) = y · L−1(x) (i.e. L × Lt = In), a = L(b) and b has even
weight. �

Any self-dual code of length n gives rise to K parity check
matrices, and each such distinct parity check matrix gives rise to
2n/2−1 self-dual bent functions, and 2n/2−1 anti self-dual bent func-
tions. Thus, any self-dual code of length n gives rise to K×2n/2−1

self-dual bent functions, and the same number of anti self-dual
bent functions, to within variable re-labelling. All such functions
are quadratic. It is possible to both classify and/or enumerate
this class given a classification and/or enumeration of all self-dual
codes, coupled with a method to classify and/or enumerate all dis-
tinct parity check matrices for each code. One way of performing
this last task is to generate all edge-local complementation (ELC)
orbits [3], to within re-labelling of vertices, for the bipartite graph
associated with each distinct self-dual code of size n. For each of
self-dual and nega self-dual, enumeration would then be realised
by summing the orbit sizes and then multiplying the result by
2n/2−1, and classification would be realised by listing each mem-
ber in the union of orbits. Each member of such a list would
then be a RM(2, n) coset leader for a coset of 2n/2−1 self-dual and
2n/2−1 nega self-dual quadratic Boolean functions.
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4.1.2. Dillon’s partial spreads

Let x, y ∈ F2n/2 . The class denoted by PSap in [1] consists of
so-called Dillon’s function of the type

f(x, y) = g(x/y)
with the convention that x/y = 0 if y = 0, and where g is balanced
and g(0) = 0.

Theorem 4. A Dillon function is self dual bent if g satisfies
g(1) = 0, and, for all u 6= 0 the relation g(u) = g(1/u). There
are exactly

(2n/2−1−1
2n/2−2

)
such functions.

Proof. By [1] the dual of a Dillon function is obtained by ex-
changing the roles of x and y. Define g by its values on pairs u, 1/u
for u different from zero and one. Counting and balancedness im-
plies then that g(1) = 0 and that the number of such pairs where
g takes the value one is

(2n/2−1−1
2n/2−2

)
. The result follows. �

By complementing functions one may go beyond the PSap class.

Corollary 1. Let g be a function from F2n/2 down to F2, that
satisfies g(1) = g(0), and, for all u 6= 0 the relation g(u) = g(1/u).
If g is balanced then with the same convention as above the function
f(x, y) = g(x/y) is self dual bent.

4.2. Secondary Constructions

4.2.1. Class symmetries

In this section we give class symmetries that is operations on
boolean functions that leave the self dual bent class invariant as a
whole. Define, following [7], the orthogonal group of index n over
F2 as

On := {L ∈ GL(n, 2)&LLt = In}.
Observe that L ∈ On if and only if (In, L) is the generator matrix
of a self dual binary code of length 2n. Thus, for even n, an example
is In + Jn with Jn =all-one matrix.

Theorem 5. Let f denote a self dual bent function in n variables.
If L ∈ On and c ∈ {0, 1} then f(Lx) + c is self dual bent.

Proof. Set g(x) := f(Lx)+ c. The Walsh Hadamard transform
of that function is

Ĝ(x) = (−1)cF̂ (L(x)) = (−1)f(Lx)+c = (−1)g(x),

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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where the first equality holds by a change of variable involving
L−1 = LT , and the last before last by self duality of f. �

Recall that a function is I-bent if it has flat spectrum wrt some
unitary transform U obtained by tensoring m matrices I2 and
n−m matrices H1 in any order [8], for some m ≤ n.

Theorem 6. Let f denote a self dual bent function in n variables,
that is furthermore I-bent. Its I-bent dual is self dual bent.

Proof. By definition, there is an unitary matrix U and a
Boolean function g such that U(−1)f = (−1)g. The result then
follows from the fact that U commutes with Hn.

Hn(−1)g = HnU(−1)f = UHn(−1)f = U(−1)f

where the last equality comes from the self duality of f. �

4.2.2. n + m variables from n variables and m variables

For this subsection define the duality of a bent function to be
0 if it is self dual bent and 1 if it is anti self dual bent. If f and g
are Boolean functions in n and m variables, repectively, define the
direct sum of f and g as the Boolean function on n+m variables
given by f(x) + g(y). The following result is immediate, and its
proof is omitted. Still it shows that self dual and anti self dual
bent functions cannot be considered separately.

Proposition 2. If f and g are bent functions of dualities ε and ν
their direct sum is bent of duality ε + ν.

A more general construction involving four functions can be
found in [2]. If f1, f2 and g1, g2 are a pair of Boolean functions in
n and m variables, respectively, define the indirect sum of these
four functions by

h(x, y) := f1(x) + g1(y) + (f1 + f2(x))(g1 + g2(y)).

Theorem 7. If f1, f2 (resp. g1, g2) are bent functions of dualities
both ε (resp. both ν ) their indirect sum is bent of duality ε + ν. If
f1 is bent and f2 = f⊥1 + ε for some ε ∈ {0, 1}, and g1 is self dual
bent and g2 is anti self dual bent, then the indirect sum of the four
functions is self dual bent of duality ε.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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Proof. The proof of the first assertion comes from the fact that
the indirect sum is bent if all four functions are bent and in this
case the dual function is obtained as the indirect sum of the duals
of the four functions [2]. Writing fi = fi + ε, and gi = gi + ν for
i = 1, 2, the result follows. The proof of the second assertion is
similar and is omitted. �

As an example of construction take g1(y1, y2) = y1y2 which is
self dual bent and g2(y1, y2) = y1y2 +y1 +y2 which is anti self dual
bent. Let f be a bent function in n variables and put F (resp. F̃ )
its sign function (resp. the sign function of its dual). The vector
(F, F̃ , F̃ ,−F ) is the sign function of a self dual bent function in
n + 2 variables. The vector (F,−F̃ ,−F̃ ,−F ) is the sign function
of a anti self dual bent function in n + 2 variables. The observant
reader will notice that the sign pattern of the above construction is
the same as that of self dual bent and anti self dual bent functions
in 2 variables. This leads to conjecture the existence of 20 different
constructions of self dual bent functions in n + 4 variables from
bent functions in n variables.

5. A search algorithm

Theorem 8. Let n ≥ 2 be an even integer and Z be arbitrary in
{±1}n−1. Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}n−1, then the
vector (Y, Z) is the sign function of a self dual bent function in n
variables.

We prepare for the proof by a linear algebra lemma.

Lemma 1. The spectrum of Hn consists of the two eigenvalues ±1
with the same mutiplicity 2n−1. A basis of the eigenspace attached
to 1 is formed of the rows of the matrix (Hn−1 +2n/2I2n−1 ,Hn−1).
An orthogonal decomposition of R2n

in eigenspaces of Hn is

R2n
= Ker(Hn + 2n/2I2n)⊕Ker(Hn − 2n/2I2n).

Proof. (of the Lemma) The minimal polynomial of Hn is X2−1,
by symmetry of Hn and the Hadamard property of Hn. Hence the
spectrum. The multiplicity follows by Tr(Hn) = 0. The matrix
Hn + In is a projector on the eigenspace attached to the eigen-
value 1. The said basis is, up to scale, the first 2n−1 columns of
that matrix. The last assertion follows by standard properties of
symmetric real matrices. �
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Proof. By the Lemma, we need to solve for X with rational
coordinates the system

(Hn−1 + 2n/2I2n−1)X = 2n/2Y

Hn−1X = 2n/2Z

or, equivalently

Z + X = Y

Hn−1X = 2n/2Z

The result follows by H2
n−1 = 2n−1In−1. �

As an example we treat the case n = 2. We get Y = (2z1 +
z2, z1)T . The condition y1 = ±1 forces z1 = −z2. We have two
self dual bent functions of sign functions (z1, z1, z1,−z1)T , with
z1 = ±1. We give an algorithm to generate all self dual bent func-
tions of degree at most k.

Algorithm SDB(n, k)
(1) Generate all Z in RM(k, n− 1).
(2) Compute all Y as Y := Z + 2Hn−1

2n/2 Z.

(3) If Y ∈ {±1}n−1 output (Y, Z), else go to next Z.

It should be noted that compared to brute force exhaustive
search the computational saving is of order 2R, with

R = 2n −
k∑

j=0

(
n− 1

j

)
= 2n−1 +

n−k−1∑
j=0

(
n− 1

j

)

The next result shows that there is a one-to-one correspondence
between self-dual and antiselfdual bent functions.

Theorem 9. Let n ≥ 2 be an even integer and Z be arbitrary in
{±1}n−1. Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}n−1, then the
vector (Z,−Y ) is the sign function of a self dual bent function in
n variables.

Proof.
Observe the identity

(I2n−1 +
2Hn−1

2n/2
)(I2n−1 −

2Hn−1

2n/2
) = −I2n−1 .
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From there we see that

Z = Y ′ − 2Hn−1

2n/2
Y ′

with Y ′ = −Y. By the analogue of Theorem 1 for antiselfdual bent
functions the result follows. �

From this result follows a generation algorithm for antiselfdual
bent functions of degree at most k.

Algorithm NSDB(n, k)
(1) Generate all Z in RM(k, n− 1).
(2) Compute all Y as Y := Z − 2Hn−1

2n/2 Z.

(3) If Y ∈ {±1}n−1 output (Y, Z), else go to next Z.

Eventually, we point out a connection with plateaued func-
tions. Recall that a Boolean function f on n variables is plateaued
of order r if the entries of Hn(−1)f are in module either zero or
2n−r/2.

Theorem 10. Let n ≥ 2 be an even integer and Z be arbitrary
in {±1}n−1. Define Y := Z + 2Hn−1

2n/2 Z. If Y is in {±1}n−1, then
both Y and Z are sign functions of plateaued Boolean functions of
order n− 2 in n− 1 variables.

Proof. Observe that the entries of Y − Z take values in the
set {0, ±2}, and, therefore the entries of Z in the set {0, ±2n/2}.
Similarly, by the proof of the preceding Theorem, Z := −Y +
2Hn−1

2n/2 Y. By the same argument as previous, the entries of Y are
in the set {0, ±2n/2}. �

6. Numerics

The following results were obtained by using the algorithms
SDB(n, k) and NSDB(n, k) for n ≤ 6 and k ≤ n/2.. We consider
the self-dual bent functions f and g to be equivalent when g(x) =
f(Ax + b) + b · x + c, where AAt = I, b ∈ Zn

2 , wt(b) even, and
c ∈ Z2.

6.1. Two variables

There is one and only one self dual bent function in two vari-
ables up to complementation: (1, 1, 1,−1), or x1x2. There is one

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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and only one anti self dual bent function in two variables up to
complementation (1,−1,−1,−1).

6.2. Four and Six variables

We have classified all self-dual bent functions of up to 6 vari-
ables. Table 1 gives a representative from each equivalence class,
and the number of functions in each class. An expression like
12 + 34 denotes x1x2 + x3x4.

Table 1. Self-Dual Bent Functions of 4 and 6 Variables

Representative from equivalence class Size

12 1

Total number of functions of 2 variables 1

12 + 34 12
12 + 13 + 14 + 23 + 24 + 34 + 1 8

Total number of functions of 4 variables 20

12 + 34 + 56 480
12 + 34 + 35 + 36 + 45 + 46 + 56 + 3 240
12+13+14+15+16+23+24+25+26+34+35+36+45+46+56+1+2 32
134 + 234 + 156 + 256 + 12 + 35 + 46 + 56 11,520
126+136+125+135+246+346+245+345+12+15+26+34+36+45+56 5760
126+136+145+135+246+236+245+345+12+15+25+34+36+46+56 23,040
456 + 356 + 145 + 246 + 135 + 236 + 124 + 123 + 15 + 26 + 34 + 35 +
36 + 45 + 46 + 3

1440

123+124+134+126+125+136+135+234+236+235+146+145+156+
246+245+346+345+256+356+456+14+25+36+45+46+56+1+2+3

384

Total number of functions of 6 variables 42,896

6.3. Eight variables

We have classified all quadratic self-dual bent functions of 8
variables. Table 2 gives a representative from each equivalence
class, and the number of functions in each class.

7. Conclusion and open problems

In this work we have explored the class of self dual bent func-
tions and characterized it by the Rayleigh quotient of the Hadamard

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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Table 2. Quadratic Self-Dual Bent Functions of 8 Variables

Representative from equivalence class Size

12 + 34 + 56 + 78 30,720
12 + 34 + 56 + 57 + 58 + 67 + 68 + 78 + 5 15,360
13 + 14 + 15 + 26 + 27 + 28 + 34 + 35 + 45 + 67 + 68 + 78 + 1 + 2 2048

Number of quadratic functions of 8 variables 48,128

matrix of Sylvester type. It would be interesting to obtain lower
bounds on the Rayleigh quotient of Boolean functions in an odd
number of variables. We have determined all self dual bent func-
tions in at most 6 variables and all quadratic self dual bent func-
tions for 8 variables. In general characterizing the class of qua-
dratic self dual bent functions is a difficult problem. The open
question is to know if there is more than the Maiorana MacFarland
type of §4.1. We also have given some symmetries that preserve
the self dual class in §4.2. It would be interesting to know if there
are no more. More connections with the theory of self dual binary
codes, for instance weight enumerators, is a goal worth pursuing.
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