On the Arithmetic Walsh Coefficients of Boolean Functions

Claude Carlet ${ }^{1}$ Andrew Klapper ${ }^{2}$

${ }^{1}$ University of Paris 8, LAGA
${ }^{2}$ University of Kentucky
Workshop on Codes and Cryptography 2013

Outline

(1) Background
(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts

Without Carry

"Classical" symmetric key crypto:

- Boolean functions $\left(f: V_{n}=\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\right)$, vectors, sequences
- eg: S-box $=$ Boolean vector valued function on \mathbb{F}_{2}^{n}
- Analysis of structures by polynomials, power series
- eg: Sequence $a_{0}, a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{F}_{2} \leftrightarrow \sum a_{i} x^{i}$
- Some analysis depends on finding "nearest" linear function function:

$$
\ell_{a}(b)=\sum_{i=1}^{n} a_{i} b_{i}(\bmod 2)=[a \cdot b]_{2}
$$

"Near" = Hamming distance

With Carry

Research program since 1992: find \& exploit with carry analogs of without carry structures:

Without carry	With carry
Boolean polynomial	Base 2 integer
Power series	2-adic number
LFSR	FCSR
Trace function	a (mod q) (mod 2)
Polynomial over \mathbb{F}_{q}	Algebraic integer
Correlation function	Arithmetic correlation

SETA '10 (Goresky, K): With carry analog of Walsh-Hadamard transform of a Boolean function

Boolean Functions and Walsh-Hadamard Transforms

$B_{n}=\{$ Boolean functions $\}$ is a ring with component-wise operations.

Definition

If f is a BF and $b \in V_{n}$, then $\widehat{f}(b)=\sum_{a \in V_{n}}(-1)^{f(a)-\ell_{b}(a)}$

Invertible: $\sum_{b \in V_{n}} \widehat{f}(b)(-1)^{\ell_{a}(b)}=2^{n} f(a)$
Imbalance of $f: Z(f)=\sum_{a \in V_{n}}(-1)^{f(a)}$
Then $\widehat{f}(b)=Z\left(f-\ell_{b}\right)$

Poisson Summation Formula (PSF)

$f \in B_{n}$ a Boolean function on V_{n} : for any $d \in V_{n}$, subspace $S \subseteq V_{n}$:

$$
\sum_{a \in S}(-1)^{d \cdot a} \widehat{f}(a)=|S| \sum_{b \in d+S^{\perp}}(-1)^{f(b)}
$$

Useful for:

- bounding the algebraic degree of Boolean functions from divisibility properties of the WT
- studying normal functions
- relating bent functions and their duals

Further Application: Resilience

- Boolean function f is m-resilient if balanced and fixing any m coordinates gives a balanced function
- Measures resistance to Siegenthaler's attack on combiners
- m-resilient iff $\left(\mathrm{wt}_{H}(a) \leq m \Rightarrow \widehat{f}(a)=0\right)$, thanks to PSF

Outline

(1) Background

(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts

2-Adic Algebra

Recall: 2-adic integer is a sum $f=\sum_{i=0}^{\infty} a_{i} 2^{i}, a_{i} \in\{0,1\}$
Addition: to add $a=\sum a_{i} 2^{i}$ plus $b=\sum b_{i} 2^{i}$, add $a_{i}+b_{i}$, but there may be a carry to $i+1$ st coefficient

Formally: define c_{i}, carry $d_{i} \in\{0,1\}$ by $d_{0}=0$ and

$$
a_{i}+b_{i}+d_{i}=c_{i}+2 d_{i+1}
$$

Then $a+b=\sum c_{i} 2^{i}$
Multiplication is similar
This makes $\mathbb{Z}_{2}=\left\{\sum_{i=0}^{\infty} a_{i} 2^{i}: a_{i} \in\{0,1\}\right\}$ an algebraic ring
Imbalance:
if a is eventually periodic, $z(a)=\sum_{i}(-1)^{a_{i}}$, sum over one period

Extended Boolean Functions

Addition with carry for Boolean functions: where do the carries go?
Extend the BF: given $f: V_{n} \rightarrow \mathbb{F}_{2}$, define $\mathbf{f}: \mathbb{N}^{n} \rightarrow \mathbb{F}_{2}$ by

$$
\mathbf{f}\left(a_{1}, \cdots, a_{n}\right)=f\left(a_{1}(\bmod 2), \cdots, a_{n}(\bmod 2)\right)
$$

Result is 2-periodic: $\mathbf{f}(a+2 b)=\mathbf{f}(a)$
More general: $R_{n}=\left\{\mathbf{f}: \mathbb{N}^{n} \rightarrow \mathbb{F}_{2}\right\}$
Addition: given $\mathbf{f}, \mathbf{g} \in R_{n}$, define $\mathbf{h}, \mathbf{k} \in R_{n}$ by $\mathbf{k}\left(a_{1}, \cdots, a_{n}\right)=0$ if any $a_{i}=0$ and for all $a \in \mathbb{N}^{n}$

$$
\mathbf{f}(a)+\mathbf{g}(a)+\mathbf{k}(a)=\mathbf{h}(a)+2 \mathbf{k}\left(a+1^{n}\right)
$$

Then $\mathbf{f}+\mathbf{g}=\mathbf{h}$

Extended Boolean Functions (2)

Multiplication is similar
Theorem
R_{n} with these operations is a ring. The set of eventually 2-periodic elements of R_{n} is closed under +, -.

$$
\text { For } \mathbf{f} \in R_{n} \text {, let } \phi_{\mathbf{f}}=\sum_{a=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}} \mathbf{f}(a) t_{1}^{a_{1}} \cdots t_{n}^{a_{n}} \in \mathbb{Z}\left[\left[t_{1}, \cdots, t_{n}\right]\right]
$$

Theorem

The function $\mathbf{f} \mapsto \phi_{\mathbf{f}}$ is a ring isomorphism from R_{n} to $\mathbb{Z}\left[\left[t_{1}, \cdots, t_{n}\right]\right] /\left(t_{1} t_{2} \cdots t_{n}-2\right)$.

So, $\mathbf{f} \in R_{n}$ corresponds to a choice of $\bar{f}(a) \in \mathbb{Z}_{2}$ for each $a \in$ coordinate hyperplane

Outline

(1) Background

(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts

Arithmetic Walsh Transform (AWT)

Let $\mathbf{f} \in R_{n}$ be eventually 2-periodic
Imbalance of \mathbf{f} is $Z(\mathbf{f})=\sum_{a}(-1)^{\mathbf{f}(a)}$ (sum over one period of \mathbf{f})
$\ell_{b}(a)=[a \cdot b]_{2}=$ inner product of a and b modulo 2

Definition

The arithmetic Walsh Transform of \mathbf{f} is $W(\mathbf{f}): V_{n} \rightarrow \mathbb{Z}$ defined by

$$
W(\mathbf{f})(b)=Z\left(\mathbf{f}-\ell_{b}\right) .
$$

The arithmetic Walsh Transform of a Boolean function f is the arithmetic Walsh Transform of the extension \mathbf{f} of $f, W(f)(b)=W(\mathbf{f})(b)$.

AWT Previous Results

Theorem

No two functions have the same arithmetic Walsh transforms.

So the AWT is invertble
Known:

- AWT of affine functions
- AWT of certain quadratic functions
- $E[W(f)(b)]$
- $E\left[W(f)(b)^{2}\right]$

Outline

(1) Background

(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts

Poisson Summation Formula for AWTs

Fix $d \in V_{n}$. Let S be a linear subspace of V_{n}. Goal: describe

$$
\Gamma_{S}(f, d)=\sum_{a \in S}(-1)^{d \cdot a} W(f)(a)=\sum_{a \in S}(-1)^{d \cdot a} Z\left(\mathbf{f}-\ell_{b}\right)
$$

in terms of attributes of f
Notation: For any set $T \subseteq V_{n}$, let

$$
H_{T}(f)=H_{T}=\sum_{b \in T} f(b) \quad \text { and } \quad Q_{T}(f)=Q_{T}=\sum_{b \in T} f(b) f\left(b+1^{n}\right)
$$

If 1^{n} is not a parity check for S, then $S_{0}=\left\{a \in S: a \cdot 1^{n}=0\right\}$, and $S_{1}=S \backslash S_{0}$

Theorem

Suppose that 1^{n} is a parity check for S. Then

$$
\Gamma_{S}(f, d)= \begin{cases}|S|\left(2^{n}-2 H V_{V_{n}}+Q_{V_{n} \backslash S^{\perp}}\right) & \text { if } d \in S^{\perp} \\ -|S| Q_{d+S^{\perp}} & \text { if } d \notin S^{\perp} .\end{cases}
$$

Theorem

Suppose that 1^{n} is not a parity check for S. Then, with the notation above:

$$
\begin{aligned}
\text { If } d \in S^{\perp}: & \Gamma_{s}(f, d)=(|S| / 4)\left(2^{n+1}-2 H_{V_{n}}-2 Q_{S_{0}^{\perp}}+H_{S_{0}^{\perp}}\right. \\
& \left.-2 H_{S^{\perp}}-H_{1^{n}+S_{0}^{\perp}}+2 H_{1^{n}+S^{\perp}}\right) . \\
\text { If } d \in S_{0}^{\perp} \backslash & S^{\perp}: \\
& -\Gamma_{S}(f, d)=(|S| / 2)\left(2^{n}-3 H_{V_{n}}+Q_{V_{n}}+H_{1^{n}+S_{0}^{\perp}}-H_{1^{n}+S^{\perp}}\right. \\
& \text { If } \left.d \notin H_{S^{\perp}}\right) . \\
& \Gamma_{s}(f, d)=-(|S| / 4)\left(2 Q_{d+S_{0}^{\perp}}+2 H_{d+S^{\perp}}-2 H_{1^{n}+d+S^{\perp}}\right. \\
& \left.-H_{d+S_{0}^{\perp}}+H_{1^{n}+d+S_{0}^{\perp}}\right) .
\end{aligned}
$$

Outline

(9) Background

(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts
- Fix $n-k$ coordinates to $0=$ Coordinate subspace of dimension k \Leftrightarrow pick $I \subseteq\{1, \cdots, n\},|I|=k$ let $S=$ all a : support of $a \subseteq I$
- f is m-resilient if balanced and restriction to any translate of a dimension $n-m$ coordinate subspace is balanced $\Leftrightarrow \forall a, \mathrm{wt}_{H}(a) \leq m: \widehat{f}(a)=0$
- For $T \subseteq V_{n}: H_{T}(f)=\sum_{a \in T} f(a)$.
f unbiased for H on T if $H_{T}(f)=E\left[H_{T}\right]=|T| / 2$
- m-resilient: if S is a coordinate subspace of dimension $\geq n-m$, then $\forall d \in V_{n}, f$ is unbiased for H on $d+S$
- What if we replace H_{T} by other statistical measures?
- Example: $Q_{T}(f)=\sum_{a \in T} f(a) f\left(a+1^{n}\right)$

Q-Resilience

- f is unbiased for Q on T if $Q_{T}(f)=E\left[Q_{T}\right]=|T| / 4$
- $S \subseteq V_{n}$ a linear subspace. f is Q-immune on S if $\forall d \in V_{n}, f$ is unbiased for Q on $d+S$. f is Q-resilient on S if balanced and Q-immune
- Even weight coordinate subspace of degree k : pick $I \subseteq\{1, \cdots, n\},|I|=k$, let $S=$ all even weight a : support of $a \subseteq I$

Theorem

$f \in B_{n}, S$ an even weight coordinate subspace of degree m. f is Q-immune on S^{\perp} iff $\forall a \neq 0^{n} \in S: W(f)(a)=W(f)\left(0^{n}\right)+2^{n-2}$. f is Q-resilient on S^{\perp} iff $W(f)\left(0^{n}\right)=0 \& W(f)(a)=2^{n-2}, a \neq 0^{n} \in S$.

Theorem

$f \in B_{n}, S$ a coordinate subspace of dimension m. If f is Q-resilient on S^{\perp}, then f is Q-resilient on S_{0}^{\perp}.

Suppose f is m-resilient. If f is Q-resilient on S_{0}^{\perp}, then

- $W(f)\left(0^{n}\right)=0$,
- $W(f)(a)=2^{n-2}$ if $a \neq 0^{n}$ and $a \in S_{0}$, and
- $W(f)(a)=2^{n-1}-2^{n-m-1}$ if $a \in S_{1}$.

Proof Sketch

S an even weight coordinate subspace
f balanced $\Rightarrow W(f)\left(0^{n}\right)=2^{n}-2 H_{V_{n}}=0$
f unbiased for Q on $d+S^{\perp} \Rightarrow Q_{d+S^{\perp}}=\left|S^{\perp}\right| / 4$ if $d \notin S^{\perp}$

Gives $|S|$ linear equations (one per coset of S^{\perp}) in $|S|$ variables (the $W(f)(a), a \in S)$

Rank is $|S|-1$, but $W(f)\left(0^{n}\right)$ determines a unique solution

Outline

(1) Background

(2) Arithmetic Walsh Transforms

- Algebraic background
- The Transform
- Poisson Summation Formula
- Application: Resilience
- AWT and Cubic Boolean Functions
(3) Further Thoughts

Old theorem (Carlet): $f \in B_{n}, c \in V_{n}: \exists p \geq 0 \in \mathbb{Z}, h \in B_{n+2 p}$ so $\operatorname{deg}(h) \leq 3$ and $\widehat{h}\left(0^{n+p}\right)=Z(h)=2^{\widehat{p} f(c)}$

Definition
 $f \in B_{n}$ is diagonal if $\forall a \in V_{n}: f\left(a+1^{n}\right)=f(a)\left(1^{n}\right.$ is a linear structure).

Theorem

Let $f \in B_{n}$ be a diagonal Boolean function and let $c \in V_{n}$.
Then $\exists p \geq 0 \in \mathbb{Z}$, diagonal $h \in B_{n+2 p}$ so $\operatorname{deg}(h) \leq 3$ and $W(h)\left(0^{n+p}\right)=Z(h)=2^{p} W(f)(c)$.

Questions

Can we find a cryptanalytic attack based on Q-bias?

Is there a cryptanalytic attack whose effectiveness is measured by the arithmetic Walsh transform?

Other applications of Arithmetic Poisson Summation Formula?

Other transforms?

