A Polynomial Time Version of LLL with Deep Insertions

Urs Wagner
University of Zurich, Applied Algebra Group

WCC 2013

Joint work with: Felix Fontein, UZH Applied Algebra Group Michael Schneider, TU Darmstadt
(3) PotLLL
(4) Practical behaviour
(5) Implementation and conclusion

Definitions

Definition

A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is given by the integer linear combinations of a set of linearly independent $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$:

$$
\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)=\left\{\sum_{i=1}^{d} x_{i} b_{i}: x_{i} \in \mathbb{Z}\right\} .
$$

The vectors b_{1}, \ldots, b_{n} are called basis of the lattice.

- Basis is not unique. Let $B=\left[b_{1}, \ldots, b_{n}\right]$ be a column matrix representing the basis of some lattice \mathcal{L}, then for all $U \in \mathrm{GL}_{n}(\mathbb{Z}), B U$ represents another basis of \mathcal{L}.
- The volume of a lattice is invariant under the different bases: $\operatorname{vol}(\mathcal{L})=\sqrt{\operatorname{det}\left(B^{T} B\right)}$.

Lattice

Outline

Lattices and the shortest vector problem

Potential of a lattice basis
PotLLL
Practical
behaviour
Implemen-
tation and
conclusion

Lattice

Shortest Vector Problem (SVP)

Definition

The first minimum $\lambda_{1}(\mathcal{L})$ of a lattice \mathcal{L} is defined as the length of the shortest vector in \mathcal{L}.

Definition
The shortest vector problem (SVP) asks for a nonzero lattice vector $v \in \mathcal{L}(B)$ such that $\|v\|=\lambda_{1}(\mathcal{L}(B))$.

- NP-hard (under randomized reductions).
- Already determining λ_{1} is hard.
- LLL algorithm to solve SVP approximately in polynomial time.

Shortest Vector Problem cont.

Definition
The Hermite constant γ_{n} is defined as the supremum of $\frac{\lambda_{1}(\mathcal{L})^{2}}{\operatorname{vol}(\mathcal{L})^{2 / n}}$ over all rank- n lattices.

- I.e. $\lambda_{1}(\mathcal{L}) \leq \sqrt{\gamma_{n}} \operatorname{vol}(\mathcal{L})^{1 / n}$.
- γ_{n} is known for $n=2,3,4,5,6,7,8,24$.
- Upper bound: $\gamma_{n} \leq 1+\frac{n}{4}$.

Definition

Given a lattice \mathcal{L} and a factor $\alpha>0$, the Hermite-SVP asks for a nonzero lattice vector $v \in \mathcal{L}$ such that $\|v\| \leq \alpha \cdot \operatorname{vol}(\mathcal{L})^{1 / n}$.

- Known approximation algorithms (such as LLL and BKZ) achieve $\alpha=c^{n}$ for some $c>1$.
- We call c the Hermite factor constant.

Orthogonal projection π_{i}

Outline

By $\pi_{i}: \mathbb{R}^{n} \longrightarrow \operatorname{span}\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}$, we denote the orthogonal projection as usual. In particular $b_{i}^{*}=\pi_{i}\left(b_{i}\right)$.

The potential of a lattice basis

Definition
The potential $\operatorname{Pot}(B)$ of a lattice basis $B=\left[b_{1}, \ldots, b_{n}\right]$ is defined as

$$
\operatorname{Pot}(B):=\prod_{i=1}^{n} \operatorname{vol}\left(\mathcal{L}\left(b_{1}, \ldots, b_{i}\right)\right)^{2}
$$

- For $1 \leq k<\ell \leq n$, adding an integer multiple of the k-th basis vector to the ℓ-th basis vector does not change the potential of the basis.
- I.e. Size reduction does not change the potential of the basis:

$$
b_{\ell} \leftarrow b_{\ell}-\sum_{k=1}^{\ell-1}\left\lfloor\mu_{\ell, k}\right\rceil b_{k}
$$

- Permutation of basis vectors does!

A class of permutations

For $1 \leq k \leq \ell \leq n$ we define a class of elements $\sigma_{k, \ell} \in S_{n}$ as follows:

$$
\sigma_{k, \ell}(i)= \begin{cases}i & \text { for } \quad i<k \text { or } i>\ell \\ \ell & \text { for } \quad i=k \\ i-1 & \text { for } \quad k<i \leq \ell\end{cases}
$$

Let $1 \leq k \leq \ell \leq n$ and $B=\left[b_{1}, \ldots, b_{n}\right]$, then

$$
\left.\begin{array}{rl}
B & =\left[\begin{array}{llllllllllll}
b_{1} & \ldots & b_{k-1} & b_{k} & b_{k+1} & \ldots & \ldots & b_{\ell-1} & b_{\ell} & b_{\ell+1} & \ldots & b_{n}
\end{array}\right] \\
\sigma_{k, \ell} B & =\left[\begin{array}{llllllllll}
b_{1} & \ldots & b_{k-1} & b_{\ell} & b_{k} & b_{k+1} & \ldots & \ldots & b_{\ell-1} & b_{\ell+1}
\end{array} \ldots\right.
\end{array} b_{n}\right]\left[\begin{array}{lll}
&
\end{array}\right]
$$

Lemma
Let $B=\left[b_{1}, \ldots, b_{n}\right]$ be a lattice basis, $\delta \in(1 / 4,1]$. Then for $1 \leq k \leq \ell \leq n$

$$
\operatorname{Pot}\left(\sigma_{k, \ell} B\right)=\operatorname{Pot}(B) \cdot \prod_{i=k}^{\ell} \frac{\left\|\pi_{i}\left(b_{\ell}\right)\right\|^{2}}{\left\|\pi_{i}\left(b_{i}\right)\right\|^{2}}
$$

Approximation algorithms

Definition
A basis $B=\left[b_{1}, \ldots, b_{n}\right]$ whose Gram-Schmidt coefficients $\mu_{i j}=\frac{\left\langle\pi_{j}\left(b_{j}\right), b_{i}\right\rangle}{\left\|\pi_{j}\left(b_{j}\right)\right\|^{2}}$, $1 \leq j<i \leq n$ satisfy

$$
\left|\mu_{i j}\right| \leq 1 / 2,
$$

is called
$\diamond \delta$-LLL reduced if for $1 \leq k<n$:

$$
\delta \cdot\left\|\pi_{k}\left(b_{k}\right)\right\|^{2} \leq\left\|\pi_{k}\left(b_{k+1}\right)\right\|^{2} \quad\left(\Leftrightarrow \delta \cdot \operatorname{Pot}(B) \leq \operatorname{Pot}\left(\sigma_{k, k+1} B\right)\right)
$$

$\diamond \delta$-PotLLL reduced if $1 \leq k<\ell \leq n$:

$$
\delta \cdot \operatorname{Pot}(B) \leq \operatorname{Pot}\left(\sigma_{k, \ell} B\right) .
$$

$\diamond \delta$-DeepLLL- β reduced if $1 \leq k<\ell \leq n$ with $k \leq \beta \wedge \ell-k \leq \beta$:

$$
\delta \cdot\left\|\pi_{k}\left(b_{k}\right)\right\|^{2} \leq\left\|\pi_{k}\left(b_{\ell}\right)\right\|^{2}
$$

$\diamond \delta$-BKZ- β reduced if $1 \leq k \leq n$:

$$
\delta \cdot\left\|\pi_{k}\left(b_{k}\right)\right\|^{2} \leq \lambda_{1}\left(\mathcal{L}\left(\pi_{k}\left(b_{k}\right), \ldots, \pi_{k}\left(b_{\min (k+\beta-1, n)}\right)\right)\right) .
$$

Algorithm 1: LLL
Input: Basis $B, \delta \in(1 / 4,1]$
Output: A δ-LLL reduced basis.
$1 \ell \leftarrow 2$
2 while $\ell \leq n$ do
3 Size-reduce (B)
$k \leftarrow \ell-1$
if $\delta \cdot \operatorname{Pot}(B)>\operatorname{Pot}\left(\sigma_{k, \ell} B\right)$ then ${ }_{5}$ $B \leftarrow \sigma_{k, \ell} B$ $\ell \leftarrow k$
else
$\ell \leftarrow \ell+1$
end
end
return B

Algorithm 2: PotLLL
Input: Basis $B, \delta \in(1 / 4,1]$
Output: A δ-PotLLL reduced basis.
$\ell \leftarrow 2$
2 while $\ell \leq n$ do
3 Size-reduce (B)
$k \leftarrow \operatorname{argmin}_{1 \leq j \leq \ell} \operatorname{Pot}\left(\sigma_{j, \ell} B\right)$
if $\delta \cdot \operatorname{Pot}(B)>\operatorname{Pot}\left(\sigma_{k, \ell} B\right)$ then
$B \leftarrow \sigma_{k, \ell} B$ $\ell \leftarrow k$
else
$\ell \leftarrow \ell+1$
end
11 end
12 return B

- One might think of different ways to compute a PotLLL reduced basis.
- Future work: $k \leftarrow \min \left\{k: \delta \cdot \operatorname{Pot}(B)>\operatorname{Pot}\left(\sigma_{k, \ell} B\right)\right\}$

Worst-case behaviour

Running time:

- LLL and PotLLL have polynomial running time for $\delta<1$.
- No useful upper bound known for BKZ and DeepLLL.

SVP approximation factor (case $\delta=1$):

$$
\begin{array}{ll}
\text { LLL: } & \left\|b_{1}\right\| \leq\left(\sqrt{\gamma_{2}}\right)^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1 / n}=\left(\sqrt{\frac{4}{3}}\right)^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1 / n} \\
\text { PotLLL: } & \left\|b_{1}\right\| \leq\left(\sqrt{\gamma_{2}}\right)^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1 / n} \\
\text { DeepLLL: } & \left\|b_{1}\right\| \leq\left(\sqrt{\gamma_{2}}\right)^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1 / n} \\
\text { BKZ- } \beta: & \left\|b_{1}\right\| \leq\left(\sqrt{\gamma_{\beta}}\right)^{(n-1) /(\beta-1)+1} \operatorname{vol}(\mathcal{L}(B))^{1 / n}
\end{array}
$$

- Critical bases exist for LLL, DeepLLL and PotLLL!

Hermite factor constant

- N. Gama, P. Nguyen: Predicting Lattice Reduction (Eurocrypt 2008):
- Practical behaviour much better.
- Practical Hermite factor still exponential in n, i.e. $\left\|b_{1}\right\|=c^{n} \cdot \operatorname{vol}(\mathcal{L}(B))^{1 / n}$, where c depends on reduction algorithm.

	upper bound	empirical
LLL	1.0754	1.0219
BKZ-20	1.0337	1.0128
DeepLLL-50	1.0754	1.011

- Using V. Shoups NTL library.

PotLLL vs the rest

- Our own independent implementation.
- Dimensions 40, 50,..., 400.
- 50 random lattices in each dimension (challenge lattices ${ }^{1}$ with seed $=$ $1, \ldots, 50)$.
- Reduction algorithms: PotLLL, LLL, DeepLLL- β, BKZ- β.
- Hermite factor constant $\left\|b_{1}\right\|=c^{n} \cdot \operatorname{vol}(\mathcal{L}(B))^{1 / n}$

Dimension	$n=100$	$n=200$	$n=300$	$n=400$
LLL	1.0187	1.0204	1.0212	1.0212
BKZ-5	1.0154	1.0160	1.0163	-
PotLLL	1.0146	1.0151	1.0153	1.0154
DeepLLL-5	1.0138	1.0146	1.0150	-
BKZ-10	1.0140	1.0144	1.0145	-
DeepLLL-10	1.0128	1.0135	-	-

[^0]
LLL vs PotLLL vs DeepLLL

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Figure: Hermite factor constant

LLL vs PotLLL vs DeepLLL

Figure: Time

PotLLL vs BKZ

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Figure: Hermite factor constant

PotLLL vs BKZ

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Figure: Time

Overview

Outline

Lattices and the shortest vector problem

Potential of a lattice basis PotLLL Practical behaviour

Implementation and conclusion

Overview

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Conclusion, further remarks

- First polynomial time version of LLL with deep insertions
- Step towards complexity analysis of DeepLLL.
- Extended experiments on practical behaviour of lattice reduction algorithms.
- Our implementation will be made public soon. On http://user.math.uzh.ch/fontein/fplll-potlll/ corresponding extension of fplll is provided already.
- Future work: Different classes of permutations.

Implementation

- All experiments were run on Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ X 7550 CPUs at 2 GHz on a shared memory machine.
- For dimensions 40 up to 160 , we used long double arithmetic, and for dimensions 160 up to 400, we used MPFR.
- In dimension 160, we did the experiments both using long double and MPFR arithmetic. The reduced lattices did not differ.
- In dimension 170, floating point errors prevented the long double arithmetic variant to complete on some of the lattices.

Thanks!

Outline

Lattices and the shortest
vector
problem
Potential of
a lattice
basis
PotLLL
Practical
behaviour
Implemen-
tation and
conclusion

[^0]: ${ }^{1}$ http://www.latticechallenge.org/svp-challenge

