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Definitions

Definition
A lattice L ⊂ Rn is given by the integer linear combinations of a set of
linearly independent b1, . . . , bn ∈ Rn:

L(b1, . . . , bn) =

{
d∑

i=1

xibi : xi ∈ Z

}
.

The vectors b1, . . . , bn are called basis of the lattice.

• Basis is not unique. Let B = [b1, . . . , bn] be a column matrix representing
the basis of some lattice L, then for all U ∈ GLn(Z), BU represents
another basis of L.

• The volume of a lattice is invariant under the different bases:
vol(L) =

√
det(BTB).
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Shortest Vector Problem (SVP)

Definition
The first minimum λ1(L) of a lattice L is defined as the length of the
shortest vector in L.

Definition
The shortest vector problem (SVP) asks for a nonzero lattice vector
v ∈ L(B) such that ‖v‖ = λ1

(
L(B)

)
.

• NP-hard (under randomized reductions).

• Already determining λ1 is hard.

• LLL algorithm to solve SVP approximately in polynomial time.
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Shortest Vector Problem cont.

Definition
The Hermite constant γn is defined as the supremum of λ1(L)2

vol(L)2/n over all

rank-n lattices.

• I.e. λ1(L) ≤ √γnvol(L)1/n.

• γn is known for n = 2, 3, 4, 5, 6, 7, 8, 24.

• Upper bound: γn ≤ 1 + n
4

.

Definition
Given a lattice L and a factor α > 0, the Hermite-SVP asks for a nonzero
lattice vector v ∈ L such that ‖v‖ ≤ α · vol(L)1/n.

• Known approximation algorithms (such as LLL and BKZ) achieve α = cn

for some c > 1.

• We call c the Hermite factor constant.
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Orthogonal projection πi

By πi : Rn −→ span (b1, . . . , bi−1)⊥, we denote the orthogonal projection as
usual. In particular b∗i = πi (bi ).

bjπi(bj)

span(b1, . . . , bi−1)
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The potential of a lattice basis

Definition
The potential Pot(B) of a lattice basis B = [b1, . . . , bn] is defined as

Pot(B) :=
n∏

i=1

vol
(
L(b1, . . . , bi )

)2

• For 1 ≤ k < ` ≤ n, adding an integer multiple of the k-th basis vector to
the `-th basis vector does not change the potential of the basis.

• I.e. Size reduction does not change the potential of the basis:

b` ← b` −
`−1∑
k=1

bµ`,kebk

• Permutation of basis vectors does!
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A class of permutations

For 1 ≤ k ≤ ` ≤ n we define a class of elements σk,` ∈ Sn as follows:

σk,`(i) =


i for i < k or i > ` ,
` for i = k ,
i − 1 for k < i ≤ ` .

Let 1 ≤ k ≤ ` ≤ n and B = [b1, . . . , bn], then

B = [ b1 . . . bk−1 bk bk+1 . . . . . . b`−1 b` b`+1 . . . bn ]

σk,`B = [ b1 . . . bk−1 b` bk bk+1 . . . . . . b`−1 b`+1 . . . bn ]

Lemma
Let B = [b1, . . . , bn] be a lattice basis, δ ∈ (1/4, 1]. Then for 1 ≤ k ≤ ` ≤ n

Pot(σk,`B) = Pot(B) ·
∏̀
i=k

‖πi (b`)‖2

‖πi (bi )‖2
.
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Approximation algorithms

Definition
A basis B = [b1, . . . , bn] whose Gram-Schmidt coefficients µij =

〈πj (bj ),bi 〉
‖πj (bj )‖2

,

1 ≤ j < i ≤ n satisfy
|µij | ≤ 1/2,

is called

� δ-LLL reduced if for 1 ≤ k < n:

δ · ‖πk(bk)‖2 ≤ ‖πk(bk+1)‖2
(
⇔ δ · Pot(B) ≤ Pot(σk,k+1B)

)
.

� δ-PotLLL reduced if 1 ≤ k < ` ≤ n:

δ · Pot(B) ≤ Pot(σk,`B).

� δ-DeepLLL-β reduced if 1 ≤ k < ` ≤ n with k ≤ β ∧ `− k ≤ β:

δ · ‖πk(bk)‖2 ≤ ‖πk(b`)‖2.

� δ-BKZ-β reduced if 1 ≤ k ≤ n:

δ · ‖πk(bk)‖2 ≤ λ1

(
L
(
πk(bk), . . . , πk(bmin(k+β−1,n))

))
.
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LLL vs PotLLL

Algorithm 1: LLL

Input: Basis B, δ ∈ (1/4, 1]
Output: A δ-LLL reduced basis.
`← 21

while ` ≤ n do2

Size-reduce(B)3

k ← `− 14

if δ · Pot(B) > Pot(σk,`B) then5

B ← σk,`B6

`← k7

else8

`← `+ 19

end10

end11

return B12

Algorithm 2: PotLLL

Input: Basis B, δ ∈ (1/4, 1]
Output: A δ-PotLLL reduced basis.
`← 21

while ` ≤ n do2

Size-reduce(B)3

k ← argmin1≤j≤`Pot(σj,`B)4

if δ · Pot(B) > Pot(σk,`B) then5

B ← σk,`B6

`← k7

else8

`← `+ 19

end10

end11

return B12

• One might think of different ways to compute a PotLLL reduced basis.
• Future work: k ← min

{
k : δ · Pot(B) > Pot(σk,`B)

}
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Worst-case behaviour

Running time:

• LLL and PotLLL have polynomial running time for δ < 1.

• No useful upper bound known for BKZ and DeepLLL.

SVP approximation factor (case δ = 1):

LLL: ‖b1‖ ≤
(√
γ2
)n−1

vol
(
L(B)

)1/n
=
(√

4
3

)n−1

vol
(
L(B)

)1/n
PotLLL: ‖b1‖ ≤

(√
γ2
)n−1

vol
(
L(B)

)1/n
DeepLLL: ‖b1‖ ≤

(√
γ2
)n−1

vol
(
L(B)

)1/n
BKZ-β: ‖b1‖ ≤

(√
γβ
)(n−1)/(β−1)+1

vol
(
L(B)

)1/n
.

• Critical bases exist for LLL, DeepLLL and PotLLL!
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Hermite factor constant

• N. Gama, P. Nguyen: Predicting Lattice Reduction (Eurocrypt 2008):

• Practical behaviour much better.

• Practical Hermite factor still exponential in n, i.e.

‖b1‖ = cn · vol
(
L(B)

)1/n
, where c depends on reduction algorithm.

upper bound empirical

LLL 1.0754 1.0219

BKZ-20 1.0337 1.0128

DeepLLL-50 1.0754 1.011

• Using V. Shoups NTL library.
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PotLLL vs the rest

• Our own independent implementation.

• Dimensions 40, 50,. . . , 400.

• 50 random lattices in each dimension (challenge lattices1 with seed=
1, . . . , 50).

• Reduction algorithms: PotLLL, LLL, DeepLLL-β, BKZ-β.

• Hermite factor constant ‖b1‖ = cn · vol
(
L(B)

)1/n
Dimension n = 100 n = 200 n = 300 n = 400

LLL 1.0187 1.0204 1.0212 1.0212

BKZ-5 1.0154 1.0160 1.0163 —

PotLLL 1.0146 1.0151 1.0153 1.0154

DeepLLL-5 1.0138 1.0146 1.0150 —

BKZ-10 1.0140 1.0144 1.0145 —

DeepLLL-10 1.0128 1.0135 — —

1http://www.latticechallenge.org/svp-challenge
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LLL vs PotLLL vs DeepLLL
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Figure: Hermite factor constant
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LLL vs PotLLL vs DeepLLL
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PotLLL vs BKZ
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Figure: Hermite factor constant
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PotLLL vs BKZ
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Overview
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Conclusion, further remarks

• First polynomial time version of LLL with deep insertions

• Step towards complexity analysis of DeepLLL.

• Extended experiments on practical behaviour of lattice reduction
algorithms.

• Our implementation will be made public soon. On
http://user.math.uzh.ch/fontein/fplll-potlll/ corresponding
extension of fplll is provided already.

• Future work: Different classes of permutations.

http://user.math.uzh.ch/fontein/fplll-potlll/
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Implementation

• All experiments were run on Intel R© Xeon R© X7550 CPUs at 2 GHz on a
shared memory machine.

• For dimensions 40 up to 160, we used long double arithmetic, and for
dimensions 160 up to 400, we used MPFR.

• In dimension 160, we did the experiments both using long double and
MPFR arithmetic. The reduced lattices did not differ.

• In dimension 170, floating point errors prevented the long double

arithmetic variant to complete on some of the lattices.
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Thanks!
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