Outline

Lattices and the shortest vector problem

Potential a lattice basis

PotLLI

Practical behaviour

Implementation and conclusion

A Polynomial Time Version of LLL with Deep Insertions

Urs Wagner University of Zurich, Applied Algebra Group

WCC 2013

Joint work with: Felix Fontein, UZH Applied Algebra Group Michael Schneider, TU Darmstadt

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

3 PotLLL

4 Practical behaviour

Potential of a lattice basis

5 Implementation and conclusion

1 Lattices and the shortest vector problem

Definitions

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Definition

A lattice $\mathcal{L} \subset \mathbb{R}^n$ is given by the integer linear combinations of a set of linearly independent $b_1, \ldots, b_n \in \mathbb{R}^n$:

$$\mathcal{L}(b_1,\ldots,b_n) = \left\{\sum_{i=1}^d x_i b_i : x_i \in \mathbb{Z}\right\}.$$

The vectors b_1, \ldots, b_n are called **basis** of the lattice.

- Basis is not unique. Let B = [b₁,..., b_n] be a column matrix representing the basis of some lattice L, then for all U ∈ GL_n(Z), BU represents another basis of L.
- The volume of a lattice is invariant under the different bases: $vol(\mathcal{L}) = \sqrt{\det(B^T B)}.$

Lattice

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Lattice

Outline

Lattices and the shortest vector problem

Potential (a lattice basis

PotLLL

Practical behaviour

Shortest Vector Problem (SVP)

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Definition

The first minimum $\lambda_1(\mathcal{L})$ of a lattice \mathcal{L} is defined as the length of the shortest vector in \mathcal{L} .

Definition

The **shortest vector problem (SVP)** asks for a nonzero lattice vector $v \in \mathcal{L}(B)$ such that $||v|| = \lambda_1(\mathcal{L}(B))$.

- NP-hard (under randomized reductions).
- Already determining λ_1 is hard.
- LLL algorithm to solve SVP approximately in polynomial time.

Shortest Vector Problem cont.

Definition

The **Hermite constant** γ_n is defined as the supremum of $\frac{\lambda_1(\mathcal{L})^2}{\operatorname{vol}(\mathcal{L})^{2/n}}$ over all rank-*n* lattices.

- I.e. $\lambda_1(\mathcal{L}) \leq \sqrt{\gamma_n} \mathrm{vol}(\mathcal{L})^{1/n}$.
- γ_n is known for n = 2, 3, 4, 5, 6, 7, 8, 24.
- Upper bound: $\gamma_n \leq 1 + \frac{n}{4}$.

Definition

Given a lattice \mathcal{L} and a factor $\alpha > 0$, the **Hermite-SVP** asks for a nonzero lattice vector $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| \leq \alpha \cdot \operatorname{vol}(\mathcal{L})^{1/n}$.

- Known approximation algorithms (such as LLL and BKZ) achieve α = cⁿ for some c > 1.
- We call c the Hermite factor constant.

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Orthogonal projection π_i

Outline

Lattices and the shortest vector problem

Potential a lattice basis

PotLLL

Practical behaviour

The potential of a lattice basis

Definition

The **potential** Pot(B) of a lattice basis $B = [b_1, \ldots, b_n]$ is defined as

$$\operatorname{Pot}(B) := \prod_{i=1}^n \operatorname{vol} \bigl(\mathcal{L}(b_1, \dots, b_i) \bigr)^2$$

- For 1 ≤ k < ℓ ≤ n, adding an integer multiple of the k-th basis vector to the ℓ-th basis vector does not change the potential of the basis.
- I.e. Size reduction does not change the potential of the basis:

$$b_\ell \leftarrow b_\ell - \sum_{k=1}^{\ell-1} \lfloor \mu_{\ell,k}
ceil b_k$$

Permutation of basis vectors does!

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Practical behaviour

A class of permutations

Outline

Lattices and the shortest vector problem

Potential of a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion For $1 \le k \le \ell \le n$ we define a class of elements $\sigma_{k,\ell} \in S_n$ as follows:

$$\sigma_{k,\ell}(i) = \begin{cases} i & \text{for } i < k \text{ or } i > \ell, \\ \ell & \text{for } i = k, \\ i - 1 & \text{for } k < i \le \ell. \end{cases}$$

Let $1 \leq k \leq \ell \leq n$ and $B = [b_1, \ldots, b_n]$, then

$$B = [b_1 \dots b_{k-1} \ b_k \ b_{k+1} \ \dots \ b_{\ell-1} \ b_{\ell} \ b_{\ell+1} \ \dots \ b_n]$$

$$b_{k,\ell}B = [b_1 \dots b_{k-1} \ b_{\ell} \ b_k \ b_{k+1} \ \dots \ b_{\ell-1} \ b_{\ell-1} \ b_{\ell+1} \ \dots \ b_n]$$

Lemma

 σ

Let $B = [b_1, \dots, b_n]$ be a lattice basis, $\delta \in (1/4, 1]$. Then for $1 \le k \le \ell \le n$

$$\operatorname{Pot}(\sigma_{k,\ell}B) = \operatorname{Pot}(B) \cdot \prod_{i=k}^{\ell} \frac{\|\pi_i(b_\ell)\|^2}{\|\pi_i(b_i)\|^2}.$$

Approximation algorithms

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Definition A basis $B = [b_1, ..., b_n]$ whose Gram-Schmidt coefficients $\mu_{ij} = \frac{\langle \pi_j(b_j), b_i \rangle}{\|\pi_j(b_j)\|^2}$, $1 \le j < i \le n$ satisfy $|\mu_{ii}| < 1/2$,

is called

- ♦ δ -LLL reduced if for $1 \le k < n$:
 - $\delta \cdot \|\pi_k(b_k)\|^2 \leq \|\pi_k(b_{k+1})\|^2 \qquad ig(\Leftrightarrow \delta \cdot \operatorname{Pot}(B) \leq \operatorname{Pot}(\sigma_{k,k+1}B)ig).$
- $\diamond \ \delta\text{-PotLLL reduced if } 1 \leq k < \ell \leq n:$

 $\delta \cdot \operatorname{Pot}(B) \leq \operatorname{Pot}(\sigma_{k,\ell}B).$

- $\diamond \ \delta\text{-DeepLLL-}\beta \text{ reduced if } 1 \leq k < \ell \leq n \text{ with } k \leq \beta \land \ell k \leq \beta:$ $\delta \cdot \|\pi_k(b_k)\|^2 \leq \|\pi_k(b_\ell)\|^2.$
- ◊ δ-**BKZ**-β reduced if 1 ≤ k ≤ n:

$$\delta \cdot \|\pi_k(\boldsymbol{b}_k)\|^2 \leq \lambda_1 \Big(\mathcal{L}\big(\pi_k(\boldsymbol{b}_k), \ldots, \pi_k(\boldsymbol{b}_{\min(k+\beta-1,n)})\big) \Big).$$

LLL vs PotLLL

Algorithm 2: Potl | |

Lattices and the shortest vector problem

PotLLL

Algorithm 1: 111

	Input: Basis B, $\delta \in (1/4, 1]$			Input: Basis B, $\delta \in (1/4,1]$		
	0	Dutput : A δ -LLL reduced basis.		Output : A δ -PotLLL reduced basis.		
	1 l	$\leftarrow 2$	1	$\ell \leftarrow 2$		
	2 W	hile $\ell \leq n$ do	2	while $\ell \leq n$ do		
	3	Size-reduce (B)	3	Size-reduce(<i>B</i>)		
	4	$k \leftarrow \ell - 1$	4	$k \leftarrow \operatorname{argmin}_{1 \le j \le \ell} \operatorname{Pot}(\sigma_{j,\ell}B)$		
	5	if $\delta \cdot \operatorname{Pot}(B) > \operatorname{Pot}(\sigma_{k,\ell}B)$ ther	15	if $\delta \cdot \operatorname{Pot}(B) > \operatorname{Pot}(\sigma_{k,\ell}B)$ then		
	6	$B \leftarrow \sigma_{k,\ell} B$	6	$B \leftarrow \sigma_{k,\ell} B$		
	7	$\ell \leftarrow k$	7	$\ell \leftarrow k$		
	8	else	8	else		
	9	$\ell \leftarrow \ell + 1$	9	$\ell \leftarrow \ell + 1$		
	10	end	10	end		
11 end		11	end			
	12 return B		12	2 return B		

- One might think of different ways to compute a PotLLL reduced basis.
- Future work: $k \leftarrow \min \{k : \delta \cdot \operatorname{Pot}(B) > \operatorname{Pot}(\sigma_{k,\ell}B)\}$

Worst-case behaviour

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Running time:

- LLL and PotLLL have polynomial running time for $\delta < 1$.
- No useful upper bound known for BKZ and DeepLLL.

SVP approximation factor (case $\delta = 1$):

- LLL: $\|b_1\| \leq (\sqrt{\gamma_2})^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1/n} = (\sqrt{\frac{4}{3}})^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1/n}$ PotLLL: $\|b_1\| \leq (\sqrt{\gamma_2})^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1/n}$ DeepLLL: $\|b_1\| \leq (\sqrt{\gamma_2})^{n-1} \operatorname{vol}(\mathcal{L}(B))^{1/n}$ BKZ- β : $\|b_1\| \leq (\sqrt{\gamma_\beta})^{(n-1)/(\beta-1)+1} \operatorname{vol}(\mathcal{L}(B))^{1/n}$.
- Critical bases exist for LLL, DeepLLL and PotLLL!

Hermite factor constant

- N. Gama, P. Nguyen: Predicting Lattice Reduction (Eurocrypt 2008):
- Practical behaviour much better.
- Practical Hermite factor still exponential in *n*, i.e. $||b_1|| = c^n \cdot \operatorname{vol}(\mathcal{L}(B))^{1/n}$, where *c* depends on reduction algorithm.

	upper bound	empirical
LLL	1.0754	1.0219
BKZ-20	1.0337	1.0128
DeepLLL-50	1.0754	1.011

Using V. Shoups NTL library.

Outline

- Lattices and the shortest vector problem
- Potential o a lattice basis

PotLLL

Practical behaviour

PotLLL vs the rest

Outline

Lattices and the shortest vector problem

Potential c a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

- Our own independent implementation.
- Dimensions 40, 50,..., 400.
- 50 random lattices in each dimension (challenge lattices¹ with seed = $1, \ldots, 50$).
- Reduction algorithms: PotLLL, LLL, DeepLLL- β , BKZ- β .
- Hermite factor constant $\|b_1\| = c^n \cdot \operatorname{vol}(\mathcal{L}(B))^{1/n}$

Dimension	n = 100	<i>n</i> = 200	<i>n</i> = 300	<i>n</i> = 400
LLL	1.0187	1.0204	1.0212	1.0212
BKZ-5	1.0154	1.0160	1.0163	
PotLLL	1.0146	1.0151	1.0153	1.0154
DeepLLL-5	1.0138	1.0146	1.0150	
BKZ-10	1.0140	1.0144	1.0145	—
DeepLLL-10	1.0128	1.0135	_	

 $^{1} {\tt http://www.latticechallenge.org/svp-challenge}$

LLL vs PotLLL vs DeepLLL

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Figure: Hermite factor constant

LLL vs PotLLL vs DeepLLL

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Figure: Time

PotLLL vs BKZ

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Figure: Hermite factor constant

PotLLL vs BKZ

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Implementation and conclusion

Figure: Time

Overview

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Overview

Outline

Lattices and the shortest vector problem

Potential o a lattice basis

PotLLL

Practical behaviour

Conclusion, further remarks

Outline

Lattices and the shortest vector problem

Potential c a lattice basis

PotLLL

Practical behaviour

- First polynomial time version of LLL with deep insertions
- Step towards complexity analysis of DeepLLL.
- Extended experiments on practical behaviour of lattice reduction algorithms.
- Our implementation will be made public soon. On http://user.math.uzh.ch/fontein/fplll-potlll/ corresponding extension of fplll is provided already.
- Future work: Different classes of permutations.

Implementation

Outline

Lattices and the shortest vector problem

Potential c a lattice basis

PotLLL

Practical behaviour

- All experiments were run on $\mathsf{Intel}^{\textcircled{R}}$ Xeon R X7550 CPUs at 2 GHz on a shared memory machine.
- For dimensions 40 up to 160, we used long double arithmetic, and for dimensions 160 up to 400, we used MPFR.
- In dimension 160, we did the experiments both using long double and MPFR arithmetic. The reduced lattices did not differ.
- In dimension 170, floating point errors prevented the long double arithmetic variant to complete on some of the lattices.

Thanks!

Outline

Lattices and the shortest vector problem

Potential c a lattice basis

PotLLL

Practical behaviour