Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions

Subhabrata Samajder Palash Sarkar

$17^{\text {th }}$ April, 2013

(2) Our Results

(3) Conclusion

Motivation

- Multiplication of Boolean functions is a basic operation and is of interest in itself.
- Buchbergers algorithm and its improvements F_{4} and F_{5}.
- Algebraic immunity.
- Non-linear Codes such as Reed-Muller Codes and Kerdock Codes.

Goal

- Multiplication of two sparse polynomials p and q having I_{p} and I_{q} terms each will have about $I_{q} I_{q}$ terms and so the usual algorithm which takes $\mathcal{O}\left(I_{p} I_{q}\right)$ time, is optimal.
- It is interesting to investigate whether this can be improved in case of dense polynomials, when the number of variables is at most 30 or so.

A w-bit Non-recursive Algorithm

(2) Our Results

(3) Conclusion

Basic Idea

$$
\begin{aligned}
& \text { Let, } \mathbb{R}=G F(2)\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left\langle x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right\rangle \text { and } \\
& \begin{array}{l}
p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R} \text {. Write, } \\
\qquad p\left(x_{1}, \ldots, x_{n}\right)=x_{n} \cdot p_{1}\left(x_{1}, \ldots, x_{n-1}\right) \oplus p_{0}\left(x_{1}, \ldots, x_{n-1}\right) \\
\quad q\left(x_{1}, \ldots, x_{n}\right)=x_{n} \cdot q_{1}\left(x_{1}, \ldots, x_{n-1}\right) \oplus q_{0}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{array}
\end{aligned}
$$

Then,

$$
\begin{aligned}
p q & =\left(p_{1} q_{1}\right) x_{n}^{2} \oplus\left(p_{1} q_{0} \oplus p_{0} q_{1}\right) x_{n} \oplus p_{0} q_{0} \\
& =\left(p_{1} q_{1} \oplus p_{1} q_{0} \oplus p_{0} q_{1}\right) x_{n} \oplus p_{0} q_{0} ; \quad\left[\text { Since, } x_{n}^{2}=x_{n} \text { in } \mathbb{R} .\right] \\
& =\left\{\left(p_{1} \oplus p_{0}\right)\left(q_{1} \oplus q_{0}\right) \oplus p_{0} q_{0}\right\} x_{n} \oplus p_{0} q_{0}
\end{aligned}
$$

Thus, the number of $(n-1)$-variate multiplications required is 2 instead of 4 at the cost of one extra addition.

Complexity Analysis

Let,

- $t(n)$ denote the time taken to multiply two n-variate polynomials.
- $e(n)$ denote the time taken to add two n-variate polynomial.

Then,

$$
t(n)=2 t(n-1)+4 e(n-1)
$$

Solving,

$$
\begin{aligned}
t(n)= & 2^{n} t(0)+4 \times\left\{e(n-1)+2 \times e(n-2)+2^{2} \times e(n-3)+\right. \\
& \left.\ldots+2^{n-2} \times e(1)+2^{n-1} \times e(0)\right\}
\end{aligned}
$$

Since, $e(n)=2^{n} \cdot e(0)$, using this we get,

$$
t(n)=2^{n} t(0)+4 n 2^{n-1} e(0)
$$

where, $t(0)$ and $e(0)$ denote the time taken for bit-wise AND and XOR.

Cmplexity Analysis (Cont.)

Therefore,

$$
t(n)=\mathcal{O}\left(n 2^{n}\right)=\mathcal{O}\left(2^{n+\log _{2} n}\right)=\mathcal{O}\left(m \log _{2} m\right)
$$

where $m=2^{n}$.

- This simple observation leads to an $\mathcal{O}\left(n 2^{n}\right)$ time recursive algorithm.
- Notice that, in "dense" polynomials, the size of the input polynomials will be about $\mathcal{O}(m)$ and so this $\mathcal{O}\left(m \log _{2} m\right)$ algorithm is very attractive.
- Asymptotically, this is competitive with general purpose Fourier transform based multivariate polynomial multiplication algorithm specialized to the binary case.

Polynomial Representation

- Polynomials in \mathbb{R} are representated using a sequence of bits.
- Presence of every monomial is denoted by a single bit.
- Thus 2^{n} bits are used to represent any n-variable polynomial in \mathbb{R}.

An Iterative Algorithm

Figure: Figure depicting the basic recursion step.

- Notice that, one can compute the values of $p_{0},\left(p_{0} \oplus p_{1}\right), q_{0}$ and $\left(q_{0} \oplus q_{1}\right)$ independently and then multiply them to get the required $p_{0} q_{0}$ and $\left(p_{0} \oplus p_{1}\right) \cdot\left(q_{0} \oplus q_{1}\right)$.
- Using this idea recursively, we get two recursive tree (one each for p and q).

An Iterative Algorithm (Cont.)

Figure: Figure depicting how each polynomials must be split.

- Then, p_{0} corresponds to the first 2^{n-1} bits (LSB's) of p and p_{1} the last 2^{n-1} bits (MSB's) of p.
- Hence, $p_{0} \oplus p_{1}$ is nothing but bit-wise XOR of the $1^{\text {st }}$ half with the $2^{\text {nd }}$ half of A.
- This is repeated until $n=1$.

An Iterative Algorithm (Cont.)

- Thus, two such trees are formed, one each for p and q.
- In the leaf, level multiplication is equivalent to bit-wise AND-ing.
- To get the final result $p q$, we traverse upwards from the leaves to the root by doing similar kind of operations.

Figure: Figure depicting the basic recursion step while returning back.

- Notice that the second XOR corresponds to concatenation, which is our case comes free.

An Iterative Algorithm (Cont.)

Thus, the iterative algorithm has the following subroutines:
(1) PRE_PROCESS of p.
(2) PRE_PROCESS of q.
(3) Bitwise AND-ing of the leaves of the corresponding trees of p and q, respectively.
(9) POST_PROCESS.

An Iterative Algorithm (Cont.)

Suppose, we want to multiply two 4-variable polynomial

$$
\begin{gathered}
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \oplus x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{1} x_{2} x_{3} \oplus x_{4} \oplus x_{1} x_{2} x_{4} \oplus \\
\\
x_{1} x_{3} x_{4} \oplus x_{2} x_{3} x_{4} \oplus x_{1} x_{2} x_{3} x_{4}
\end{gathered}
$$

and

$$
q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} \oplus x_{3} \oplus x_{1} x_{3} \oplus x_{2} x_{3} \oplus x_{1} x_{2} x_{3} \oplus x_{4} \oplus x_{1} x_{2} x_{4}
$$

Multiplying by hand, one can easily see that

$$
p q=x_{2} x_{3} \oplus x_{1} x_{2} x_{3} \oplus x_{4} \oplus x_{1} x_{4} \oplus x_{2} x_{4} \oplus x_{1} x_{2} x_{4} \oplus x_{3} x_{4}
$$

An Iterative Algorithm (Cont.)

- The byte representation of p is 01010011 ($=202$), 10010111 (=233).
- And the byte representaton of q is 00101111 ($=244$), 10010000 (=9), where the leftmost bit entry denotes the LSB.
- Therefore, the byte representation of $p q$ is 00000011 ($=196$), 11111000 (=31).

PRE_PROCESS of p

Figure: Figure depicting the PRE_PROCESS step for a 4-variate polynomial p.

PRE_PROCESS of q

Figure: Figure depicting the PRE_PROCESS step for a 4 -variate polynomial q.

POST_PROCESS

Figure: Figure depicting the POST_PROCESS step for a 4 -variate polynomial and the final result $p q$.

Using Table Look-ups

- Extracting a bit from a byte is costly.
- Hence, we use table - lookups.
- Instead of going all the way down to the $n^{\text {th }}$ level, we stop at level $n-\beta$.
- Use table lookups to perform multiplication of two β-variable polynomials.
- The value of β is taken to be 3 , because the table corresponding to $\beta=4$ becomes very large.
- We thus pack the polynomials p and q in byte arrays and use byte level XOR to multiply them.

An Iterative Algorithm using Table Look-ups

(1) PRE_PROCESS of p till $n=3$.
(2) PRE_PROCESS of q till $n=3$.
(3) Table Look-ups to multiply two 3-variable polynomials at once.
(9) POST_PROCESS.

Further Improvements

- One may use w-bit XOR instead of 8 -bit, assuming the architecture allows w-bit word arithmetic, where $w=2^{k}, k \geq 3$.
- The motivation is to save on the number of 8-bit XOR's.
- Thus, using one w-bit XOR, one can save $2^{\log _{2} w-3}$ many XOR's.
- However, doing it this way one can only go up to $n-\log _{2} w$ level.
- Hence using w-bit words, involves, an additional task of UNPACKING and PACKING the w-bit word into bytes so that one can use the 8-bit table lookup.
(1) Introduction
(2) Our Results
- A w-bit Non-recursive Algorithm
- Experimental Results
- Multiplying Sparse Polynomials
(3) Conclusion

A w-bit Non-recursive Algorithm

(1) PRE_PROCESS of p till $n=\log _{2} w$.
(2) PRE_PROCESS of q till $n=\log _{2} w$.
(3) UNPACK p.
((UNPACK q
(9) EXTRACT_AND_LOOKUP.
(- PACK.
(1) POST_PROCESS.

A w－bit Non－recursive Algorithm

UNPACK

Figure：Figure depicting the UNPACKING step for a 4－bit word．

A w-bit Non-recursive Algorithm Experimental Results Multiplying Sparse Polynomials

EXTRACT

Figure: Figure depicting the extraction step for a 4-bit word.

Cost Analysis

(1) $2^{\log _{2} w-3} \cdot 2^{n-\log _{2} w}=2^{n-3} 8$-bit table look-ups.
(2) $2 \cdot 2^{n-\log _{2} w} \cdot 2^{\log _{2} w-3}=2^{n-2} w$-bit operations for table look-ups.
(3) $2^{n-\log _{2} w} \cdot\left(3 \cdot\left(3 \cdot\left(\log _{2} w-3\right)\right)\right)=9 \cdot\left(\log _{2} w-3\right) \cdot 2^{n-\log _{2} w}$ w-bit operations for PACKING and UNPACKING.
(9) $3 \cdot\left(n-\log _{2} w\right) \cdot 2^{n-\log _{2} w-1} w$-bit XOR's for the PRE_PROCESS and POST_PROCESS.
(2) Our Results

- A w-bit Non-recursive Algorithm
- Experimental Results
- Multiplying Sparse Polynomials
(3) Conclusion

A w-bit Non-recursive Algorithm

Comparison with MultANF , MultANF $_{32}$ and MultANF 64

\mathbf{n}	Cycles	Cycles	32-bit	Cycles	64-bit	64-bit
for 8 bit	for 32 bit	w.r.t 8 bit	for 64 bit	w.r.t 8-bit	w.r.t 32-bit	
6	498.53	121.01	4.12	92.73	5.38	1.31
7	1138.23	428.95	2.65	199.38	5.71	2.15
8	2273.35	1032.89	2.20	1022.83	2.22	1.01
9	5013.86	1853.20	2.71	1276.61	3.93	1.45
10	11055.29	3871.94	2.86	2437.25	4.54	1.59
11	23608.47	8357.06	2.83	6010.26	3.93	1.39
12	34680.06	7711.84	4.50	5341.51	6.50	1.44
13	53976.73	16093.17	3.35	11153.91	4.84	1.44
14	103962.07	34223.26	3.04	23296.39	4.46	1.47

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit implementations.

A w-bit Non-recursive Algorithm

Comparison with MultANF , MultANF $_{32}$ and MultANF 64 (Cont.)

n	Average	Average	Speedup of	Average	Speedup of	Speedup of
Cycles	Cycles	32-bit	Cycles	64-bit	64-bit	
for 8 bit	for 32 bit	w.r.t 8 bit	for 64 bit	w.r.t 8-bit	w.r.t 32-bit	
15	221928.42	73352.13	3.03	49992.79	4.44	1.47
16	466755.57	153265.65	3.05	101450.16	4.60	1.51
17	1014411.71	321682.42	3.15	212650.40	4.77	1.51
18	2075710.70	681210.39	3.05	441465.78	4.70	1.54
19	4401203.98	1433646.38	3.07	915821.38	4.81	1.57
20	9786430.84	3132142.40	3.13	2500430.46	3.91	1.25
21	20418478.40	6441914.73	3.17	5112594.99	3.99	1.26
22	43212647.62	13552823.50	3.19	10629153.25	4.07	1.28
23	89719530.45	28183683.11	3.18	21806265.54	4.11	1.29

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit implementations.

A w-bit Non-recursive Algorithm

Comparison with MultANF ${ }_{8}$, MultANF $_{32}$ and MultANF 64 (Cont.)

\mathbf{n}	Average	Average	Speedup of	Average	Speedup of	Speedup of
Cycles	Cycles	32-bit	Cycles	64-bit	64-bit	
for 8 bit	for 32 bit	w.r.t 8 bit	for 64 bit	w.r.t 8-bit	w.r.t 32-bit	
24	190141764.33	59136263.78	3.22	45559914.11	4.17	1.30
25	401052397.73	130650693.03	3.07	106224818.55	3.78	1.23
26	838518978.22	299963811.34	2.80	272976258.05	3.07	1.10
27	1759215397.18	646245016.94	2.72	600701064.94	2.93	1.08
28	3635571731.89	1323794840.80	2.75	1239783643.15	2.93	1.07
29	7543793814.89	2735720452.18	2.76	2541063909.56	2.97	1.08
30	15606584912.85	5572652029.49	2.80	5109022401.64	3.06	1.09

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64 -bit implementations.

A w-bit Non-recursive Algorithm

Experimental Results

Multiplying Sparse Polynomials

Comparison of MultANF ${ }_{8}$ with SAGE

\mathbf{n}	MultANF 8	sage
3	0.80 ns	94773.05 ns
4	1.84 ns	127928.97 ns
5	55.55 ns	197319.98 ns
6	70.78 ns	354038.95 ns
7	161.31 ns	762128.12 ns
8	718.90 ns	1700400.83 ns
9	799.88 ns	3205805.06 ns
10	1644.70 ns	7070338.01 ns
11	7151.90 ns	14413833.62 ns
12	15372.56 ns	32285171.03 ns
13	18514.16 ns	69974661.11 ns
14	36287.44 ns	162460117.1 ns
15	77486.74 ns	336447609.9 ns

Table: Comprison with SAGE. In each case, the timings are avaraged ever $100 e_{\bar{z}}$ runs) a \propto
(1) Introduction
(2) Our Results

- A w-bit Non-recursive Algorithm
- Experimental Results
- Multiplying Sparse Polynomials
(3) Conclusion

Sparse Impelmentation

- A monomial is represented by a w-bit word, where w is the minimum machine word such that $2^{n} \leq w$.
- The two polynomials are given as two arrays A and B of w-bit words.
- Multiplication of two monomials corresponds to the bit-wise OR of the corresponding w-bit words.
- For sparse implementation, we take the input arrays A and B and OR every element of array A with that of array B, and store them in another array C.
- The array C is then sorted using a non recursive (the process stack is simulated internally) implementation of randomized quick sort.
- Repetitions are removed by either deleting the monomial (if its number of repetitions is even) or replacing all the entries by just one entry (if the number of repetitions is odd).

Comparison with SAGE

- The experimental results show that the algorithm used by SAGE is slower than the quadratic implementation.
- It seems that the SAGE algorithm depends both on the sizes of A and B (i. e., I_{p} and I_{q}) and the number of variables involved.
- But our sparse implementation only depends on I_{p} and I_{q}.
- For example to multiply two polynomials each with 1000 monomials SAGE took 7.43 seconds for $n=30$ and 34 seconds for $n=63$, whereas the quadratic implementation took 0.17 seconds for both $n=30$ and $n=63$.

Comparison with MultANF ${ }_{w}$

- Experimentally it was found that, if $I_{p} I_{q}<2^{n-\alpha}$, then the quadratic algorithm performs better than MultANF 2^{α}, where $\alpha=3,5,6$.

(1) Introduction

(2) Our Results

(3) Conclusion

Conclusion

- We have proposed a new non-recursive algorithm MultANF ${ }_{w}$, which multiplies two Boolean functions in their ANF's.
- It tries to use the w-bit word arithmetic, if the architecture supports it.
- With this in mind, three variants of MultANF ${ }_{w}$ were proposed for $w=8,32$ and 64 .
- It was shown that the 64-bit implementation is better than the other two.
- A comparison study of MultANF w_{w} with a sparse implementation tells us, when one should switch from the sparse implementation to the dense implementation, i.e., MultANF ${ }_{w}$.
- Lastly, a comparison between our implementations (sparse and dense implementations) with that of the software package SAGE shows that, our implementations are faster than SAGE.

Thank You!

