
Introduction
Our Results
Conclusion

Fast Multiplication of the Algebraic Normal Forms
of Two Boolean Functions

Subhabrata Samajder Palash Sarkar

17th April, 2013

1/38



Introduction
Our Results
Conclusion

1 Introduction

2 Our Results

3 Conclusion

2/38



Introduction
Our Results
Conclusion

Motivation

Multiplication of Boolean functions is a basic operation and is
of interest in itself.

Buchbergers algorithm and its improvements F4 and F5.

Algebraic immunity.

Non-linear Codes such as Reed-Muller Codes and Kerdock
Codes.

3/38



Introduction
Our Results
Conclusion

Goal

Multiplication of two sparse polynomials p and q having lp
and lq terms each will have about lq lq terms and so the usual
algorithm which takes O(lp lq) time, is optimal.

It is interesting to investigate whether this can be improved in
case of dense polynomials, when the number of variables is at
most 30 or so.

4/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

1 Introduction

2 Our Results

3 Conclusion

5/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Basic Idea

Let, R = GF (2) [x1, x2, . . . , xn] /
〈
x2

1 − x1, . . . , x
2
n − xn

〉
and

p (x1, . . . , xn) , q (x1, . . . , xn) ∈ R. Write,

p (x1, . . . , xn) = xn · p1 (x1, . . . , xn−1)⊕ p0 (x1, . . . , xn−1)

q (x1, . . . , xn) = xn · q1 (x1, . . . , xn−1)⊕ q0 (x1, . . . , xn−1) .

Then,

pq = (p1q1) x2
n ⊕ (p1q0 ⊕ p0q1) xn ⊕ p0q0

= (p1q1 ⊕ p1q0 ⊕ p0q1) xn ⊕ p0q0;
[
Since, x2

n = xn in R.
]

= {(p1 ⊕ p0) (q1 ⊕ q0)⊕ p0q0} xn ⊕ p0q0.

Thus, the number of (n − 1)-variate multiplications required is 2
instead of 4 at the cost of one extra addition.

6/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Complexity Analysis

Let,

t(n) denote the time taken to multiply two n-variate
polynomials.

e(n) denote the time taken to add two n-variate polynomial.

Then,
t(n) = 2t(n − 1) + 4e(n − 1).

Solving,

t(n) =2nt(0) + 4×
{
e(n − 1) + 2× e(n − 2) + 22 × e(n − 3)+

. . .+ 2n−2 × e(1) + 2n−1 × e(0)
}
.

Since, e(n) = 2n · e(0), using this we get,

t(n) = 2nt(0) + 4n2n−1e(0),

where, t(0) and e(0) denote the time taken for bit-wise AND and
XOR.

7/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Cmplexity Analysis (Cont.)

Therefore,

t(n) = O(n2n) = O(2n+log2 n) = O(m log2 m),

where m = 2n.

This simple observation leads to an O(n2n) time recursive
algorithm.

Notice that, in “dense” polynomials, the size of the input
polynomials will be about O(m) and so this O(m log2 m)
algorithm is very attractive.

Asymptotically, this is competitive with general purpose
Fourier transform based multivariate polynomial multiplication
algorithm specialized to the binary case.

8/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Polynomial Representation

Polynomials in R are representated using a sequence of bits.

Presence of every monomial is denoted by a single bit.

Thus 2n bits are used to represent any n-variable polynomial
in R.

9/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm

pq

p0q0 (p1 ⊕ p0)(q1 ⊕ q0)

Figure: Figure depicting the basic recursion step.

Notice that, one can compute the values of p0, (p0 ⊕ p1) , q0

and (q0 ⊕ q1) independently and then multiply them to get
the required p0q0 and (p0 ⊕ p1) · (q0 ⊕ q1) .

Using this idea recursively, we get two recursive tree (one each
for p and q).

10/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm (Cont.)

p

p0 p1 ⊕ p0

Figure: Figure depicting how each polynomials must be split.

Then, p0 corresponds to the first 2n−1 bits (LSB’s) of p and
p1 the last 2n−1 bits (MSB’s) of p.

Hence, p0 ⊕ p1 is nothing but bit-wise XOR of the 1st half
with the 2nd half of A.

This is repeated until n = 1.

11/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm (Cont.)

Thus, two such trees are formed, one each for p and q.

In the leaf, level multiplication is equivalent to bit-wise
AND-ing.

To get the final result pq, we traverse upwards from the leaves
to the root by doing similar kind of operations.

p0q0 (p1 ⊕ p0)(q1 ⊕ q0)

pq = xn {(p1 ⊕ p0) (q1 ⊕ q0)⊕ p0q0} ⊕ p0q0

Figure: Figure depicting the basic recursion step while returning back.

Notice that the second XOR corresponds to concatenation,
which is our case comes free.

12/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm (Cont.)

Thus, the iterative algorithm has the following subroutines :

1 PRE PROCESS of p.

2 PRE PROCESS of q.

3 Bitwise AND-ing of the leaves of the corresponding trees of p
and q, respectively.

4 POST PROCESS.

13/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm (Cont.)

Suppose, we want to multiply two 4-variable polynomial

p(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x1x2x4⊕
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x3x4

and

q(x1, x2, x3, x4) = x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x1x2x4.

Multiplying by hand, one can easily see that

pq = x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x3x4.

14/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm (Cont.)

The byte representation of p is 01010011 (= 202), 10010111
(= 233).

And the byte representaton of q is 00101111 (= 244),
10010000 (= 9), where the leftmost bit entry denotes the
LSB.

Therefore, the byte representation of pq is 00000011 (= 196),
11111000 (= 31).

15/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

PRE PROCESS of p

0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1

0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0

0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0

0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0

0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure: Figure depicting the PRE PROCESS step for a 4−variate polynomial p.

16/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

PRE PROCESS of q

0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0

0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1

0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0

0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1

0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure: Figure depicting the PRE PROCESS step for a 4−variate polynomial q.

17/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

POST PROCESS

0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1

0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure: Figure depicting the POST PROCESS step for a 4−variate polynomial and the final result pq.

18/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Using Table Look-ups

Extracting a bit from a byte is costly.

Hence, we use table - lookups.

Instead of going all the way down to the nth level, we stop at
level n − β.

Use table lookups to perform multiplication of two β-variable
polynomials.

The value of β is taken to be 3, because the table
corresponding to β = 4 becomes very large.

We thus pack the polynomials p and q in byte arrays and use
byte level XOR to multiply them.

19/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

An Iterative Algorithm using Table Look-ups

1 PRE PROCESS of p till n = 3.

2 PRE PROCESS of q till n = 3.

3 Table Look-ups to multiply two 3-variable polynomials at
once.

4 POST PROCESS.

20/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Further Improvements

One may use w -bit XOR instead of 8-bit, assuming the
architecture allows w -bit word arithmetic, where
w = 2k , k ≥ 3.

The motivation is to save on the number of 8-bit XOR’s.

Thus, using one w -bit XOR, one can save 2log2 w−3 many
XOR’s.

However, doing it this way one can only go up to n − log2 w
level.

Hence using w -bit words, involves, an additional task of
UNPACKING and PACKING the w -bit word into bytes so that
one can use the 8-bit table lookup.

21/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

1 Introduction

2 Our Results
A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

3 Conclusion

22/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

A w-bit Non-recursive Algorithm

1 PRE PROCESS of p till n = log2 w .

2 PRE PROCESS of q till n = log2 w .

3 UNPACK p.

4 UNPACK q

5 EXTRACT AND LOOKUP.

6 PACK.

7 POST PROCESS.

23/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

UNPACK

16-bit word→ 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 � 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 ← Mask1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ← temp

�
23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ← temp⊕

16-bit word→ 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 � 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 ← Mask2

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ← temp

�
22

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ← temp⊕

16-bit word→ 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 � 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 ← Mask3

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 ← temp

�2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 ← temp⊕

16-bit word→ 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 � 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ← Mask4

0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 ← temp

�1

0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 ← temp⊕

16-bit word→ 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

Figure: Figure depicting the UNPACKING step for a 4-bit word.

24/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

EXTRACT

16-bit word→ 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 � 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ← B2

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 ← temp

�8

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 ← temp

Figure: Figure depicting the extraction step for a 4-bit word.

25/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Cost Analysis

1 2log2 w−3 · 2n−log2 w = 2n−3 8-bit table look-ups.

2 2 · 2n−log2 w · 2log2 w−3 = 2n−2 w -bit operations for table
look-ups.

3 2n−log2 w · (3 · (3 · (log2 w − 3))) = 9 · (log2 w − 3) · 2n−log2 w

w -bit operations for PACKING and UNPACKING.

4 3 · (n − log2 w) · 2n−log2 w−1 w -bit XOR’s for the
PRE PROCESS and POST PROCESS.

26/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

1 Introduction

2 Our Results
A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

3 Conclusion

27/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison with MultANF8, MultANF32 and MultANF64

Average Average Speedup of Average Speedup of Speedup of

n Cycles Cycles 32-bit Cycles 64-bit 64-bit

for 8 bit for 32 bit w.r.t 8 bit for 64 bit w.r.t 8-bit w.r.t 32-bit

6 498.53 121.01 4.12 92.73 5.38 1.31

7 1138.23 428.95 2.65 199.38 5.71 2.15

8 2273.35 1032.89 2.20 1022.83 2.22 1.01

9 5013.86 1853.20 2.71 1276.61 3.93 1.45

10 11055.29 3871.94 2.86 2437.25 4.54 1.59

11 23608.47 8357.06 2.83 6010.26 3.93 1.39

12 34680.06 7711.84 4.50 5341.51 6.50 1.44

13 53976.73 16093.17 3.35 11153.91 4.84 1.44

14 103962.07 34223.26 3.04 23296.39 4.46 1.47

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit implementations.

28/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison with MultANF8, MultANF32 and MultANF64 (Cont.)

Average Average Speedup of Average Speedup of Speedup of

n Cycles Cycles 32-bit Cycles 64-bit 64-bit

for 8 bit for 32 bit w.r.t 8 bit for 64 bit w.r.t 8-bit w.r.t 32-bit

15 221928.42 73352.13 3.03 49992.79 4.44 1.47

16 466755.57 153265.65 3.05 101450.16 4.60 1.51

17 1014411.71 321682.42 3.15 212650.40 4.77 1.51

18 2075710.70 681210.39 3.05 441465.78 4.70 1.54

19 4401203.98 1433646.38 3.07 915821.38 4.81 1.57

20 9786430.84 3132142.40 3.13 2500430.46 3.91 1.25

21 20418478.40 6441914.73 3.17 5112594.99 3.99 1.26

22 43212647.62 13552823.50 3.19 10629153.25 4.07 1.28

23 89719530.45 28183683.11 3.18 21806265.54 4.11 1.29

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit implementations.

29/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison with MultANF8, MultANF32 and MultANF64 (Cont.)

Average Average Speedup of Average Speedup of Speedup of

n Cycles Cycles 32-bit Cycles 64-bit 64-bit

for 8 bit for 32 bit w.r.t 8 bit for 64 bit w.r.t 8-bit w.r.t 32-bit

24 190141764.33 59136263.78 3.22 45559914.11 4.17 1.30

25 401052397.73 130650693.03 3.07 106224818.55 3.78 1.23

26 838518978.22 299963811.34 2.80 272976258.05 3.07 1.10

27 1759215397.18 646245016.94 2.72 600701064.94 2.93 1.08

28 3635571731.89 1323794840.80 2.75 1239783643.15 2.93 1.07

29 7543793814.89 2735720452.18 2.76 2541063909.56 2.97 1.08

30 15606584912.85 5572652029.49 2.80 5109022401.64 3.06 1.09

Table: Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit implementations.

30/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison of MultANF8 with SAGE

n MultANF8 sage

3 0.80 ns 94773.05 ns

4 1.84 ns 127928.97 ns

5 55.55 ns 197319.98 ns

6 70.78 ns 354038.95 ns

7 161.31 ns 762128.12 ns

8 718.90 ns 1700400.83 ns

9 799.88 ns 3205805.06 ns

10 1644.70 ns 7070338.01 ns

11 7151.90 ns 14413833.62 ns

12 15372.56 ns 32285171.03 ns

13 18514.16 ns 69974661.11 ns

14 36287.44 ns 162460117.1 ns

15 77486.74 ns 336447609.9 ns

Table: Comprison with SAGE. In each case, the timings are averaged over 1000 runs.
31/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

1 Introduction

2 Our Results
A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

3 Conclusion

32/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Sparse Impelmentation

A monomial is represented by a w -bit word, where w is the
minimum machine word such that 2n ≤ w .
The two polynomials are given as two arrays A and B of w -bit
words.
Multiplication of two monomials corresponds to the bit-wise
OR of the corresponding w -bit words.
For sparse implementation, we take the input arrays A and B
and OR every element of array A with that of array B, and
store them in another array C .
The array C is then sorted using a non recursive (the process
stack is simulated internally) implementation of randomized
quick sort.
Repetitions are removed by either deleting the monomial (if
its number of repetitions is even) or replacing all the entries
by just one entry (if the number of repetitions is odd).

33/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison with SAGE

The experimental results show that the algorithm used by
SAGE is slower than the quadratic implementation.

It seems that the SAGE algorithm depends both on the sizes
of A and B (i. e., lp and lq) and the number of variables
involved.

But our sparse implementation only depends on lp and lq.

For example to multiply two polynomials each with 1000
monomials SAGE took 7.43 seconds for n = 30 and 34
seconds for n = 63, whereas the quadratic implementation
took 0.17 seconds for both n = 30 and n = 63.

34/38



Introduction
Our Results
Conclusion

A w-bit Non-recursive Algorithm
Experimental Results
Multiplying Sparse Polynomials

Comparison with MultANFw

Experimentally it was found that, if lp lq < 2n−α, then the
quadratic algorithm performs better than MultANF2α , where
α = 3, 5, 6.

35/38



Introduction
Our Results
Conclusion

1 Introduction

2 Our Results

3 Conclusion

36/38



Introduction
Our Results
Conclusion

Conclusion

We have proposed a new non-recursive algorithm MultANFw ,
which multiplies two Boolean functions in their ANF’s.

It tries to use the w -bit word arithmetic, if the architecture
supports it.

With this in mind, three variants of MultANFw were proposed
for w = 8, 32 and 64.

It was shown that the 64-bit implementation is better than
the other two.

A comparison study of MultANFw with a sparse
implementation tells us, when one should switch from the
sparse implementation to the dense implementation, i.e.,
MultANFw .

Lastly, a comparison between our implementations (sparse and
dense implementations) with that of the software package
SAGE shows that, our implementations are faster than SAGE.

37/38



Introduction
Our Results
Conclusion

Thank You!

38/38


	Introduction
	Our Results
	A w-bit Non-recursive Algorithm
	Experimental Results
	Multiplying Sparse Polynomials

	Conclusion

