On the normality of p-ary bent functions

A. Çeşmelioğlu¹ W. Meidl² A. Pott¹

¹Otto-von-Guericke University, Magdeburg, Germany

²Sabancı University, Istanbul, Turkey

Definition

Let p be a prime, $f : \mathbb{F}_p^n \to \mathbb{F}_p$ and $\epsilon_p = e^{\frac{2\pi i}{p}}$. For each $b \in \mathbb{F}_p^n$, the Walsh (Fourier) transform of f is defined as

$$\widehat{f}(b) = \sum_{x \in \mathbb{F}_p^n} \epsilon_p^{f(x) - \langle b, x \rangle}.$$

Definition

A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is called a bent function if for all $b \in \mathbb{F}_p^n$, $\left| \widehat{f}(b) \right| = p^{n/2}$.

Walsh Spectrum of Bent Functions

For a bent function $f: \mathbb{F}_p^n \to \mathbb{F}_p$,

$$\widehat{f}(b) = \zeta_b p^{n/2} \epsilon_p^{f^*(b)}.$$

For p = 2, for all $b \in \mathbb{F}_2^n$,

$$\hat{f}(b) = 2^{n/2} (-1)^{f^*(b)} \Rightarrow \zeta_b = 1.$$

For odd p [Kumar, Scholz, Welch '85]

$$\zeta_b = \begin{cases} \pm 1 & n \text{ is even or } n \text{ is odd and } p \equiv 1 \mod 4, \\ \pm i & n \text{ is odd and } p \equiv 3 \mod 4. \end{cases}$$

Definition

f is called **regular bent** if $\zeta_b = 1$ for all $b \in \mathbb{F}_p^n$.

Example

- A Boolean bent function is always regular bent.
- $f_1 : \mathbb{F}_{3^2} \to \mathbb{F}_3$ defined as $f_1(x) = \text{Tr}_2(x^2)$ Walsh spectrum: $\{3, 3\epsilon_3, 3\epsilon_3^2\} \Rightarrow$ regular bent.

Definition

f is called weakly regular bent if ζ_b is the same for all $b \in \mathbb{F}_p^n$.

Example

- $f_2 : \mathbb{F}_{3^4} \to \mathbb{F}_3$ defined as $f_2(x) = \text{Tr}_4(2x^{14})$ Walsh spectrum: $\{-9, -9\epsilon_3, -9\epsilon_3^2\} \Rightarrow$ weakly regular bent,
- $f_3 : \mathbb{F}_{3^3} \to \mathbb{F}_3$ defined as $f_3(x) = \text{Tr}_3(2x^2)$ Walsh spectrum: $\{i3\sqrt{3}, i3\sqrt{3}\epsilon_3, i3\sqrt{3}\epsilon_3^2\} \Rightarrow$ weakly regular bent.

Remark:

regular bent \Rightarrow weakly regular bent.

For odd p [Kumar, Scholz, Welch '85]

$$\zeta_b = \begin{cases} \pm 1 & n \text{ is even or } n \text{ is odd and } p \equiv 1 \mod 4, \\ \pm i & n \text{ is odd and } p \equiv 3 \mod 4. \end{cases}$$

Definition

If ζ_b changes sign with $b \in \mathbb{F}_p^n$ then f is called **not weakly regular bent**.

Example

 $\begin{array}{l} f_4: \mathbb{F}_{3^3} \to \mathbb{F}_3 \text{ defined as } f_4(x) = \operatorname{Tr}_3(x^8 + x^{22}) \\ \text{Walsh spectrum: } \{\mathbf{i}3\sqrt{3}, -\mathbf{i}3\sqrt{3}, -\mathbf{i}3\sqrt{3}\epsilon_3, -\mathbf{i}3\sqrt{3}\epsilon_3, \mathbf{i}3\sqrt{3}\epsilon_3^2, -\mathbf{i}3\sqrt{3}\epsilon_3^2\} \Rightarrow \\ \text{not weakly regular bent.} \end{array}$

Introduced by Dobbertin('94)

Definition

 $f: \mathbb{F}_p^n \to \mathbb{F}_p, \mathbf{n} = \mathbf{2m}$

f is normal if it is *constant* on an **m**-dimensional affine subspace of \mathbb{F}_{p}^{n} .

f is weakly normal if it is *affine* on an **m**-dimensional affine subspace of \mathbb{F}_p^n .

normal \Rightarrow weakly normal

In general, it is not easy to check the normality of functions.

Normal-Weakly normal

Normal-Weakly normal

Normal-Weakly normal

Normality is defined for arbitrary functions but we consider bent functions only.

• Maiorana-McFarland bent functions:

 $f: \mathbb{F}_p^m \times \mathbb{F}_p^m \to \mathbb{F}_p$ defined as

$$f(x,y) = < x, \pi(y) > +h(y),$$

 $\begin{aligned} \pi: \mathbb{F}_p^m \to \mathbb{F}_p^m : \text{ a permutation of } \mathbb{F}_p^m \\ h: \mathbb{F}_p^m \to \mathbb{F}_p: \text{ an arbitrary function} \end{aligned}$

Normality is defined for arbitrary functions but we consider bent functions only.

• Maiorana-McFarland bent functions:

 $f: \mathbb{F}_p^m \times \mathbb{F}_p^m \to \mathbb{F}_p$ defined as

$$f(x,y) = < x, \pi(y) > +h(y),$$

 $\pi: \mathbb{F}_p^m \to \mathbb{F}_p^m: \text{ a permutation of } \mathbb{F}_p^m$ $h: \mathbb{F}_p^m \to \mathbb{F}_p: \text{ an arbitrary function}$

f is **normal** since f(x, y) = 0 on the *m*-dimensional subspace $\mathbb{F}_p^m \times \{\pi^{-1}(0)\}.$

 $egin{aligned} V_i &: m\text{-dimensional subspace of } \mathbb{F}_2^{2m}, \ 1 \leq i \leq 2^{m-1}+1, \ f &: \mathbb{F}_2^{2m} o \mathbb{F}_2, \ f(x) &= 1 \ ext{on each } V_i. \end{aligned}$

 $V_i: m$ -dimensional subspace of \mathbb{F}_2^{2m} , $1 \le i \le 2^{m-1} + 1$, $f: \mathbb{F}_2^{2m} \to \mathbb{F}_2$, f(x) = 1 on each V_i .

f is normal.

 $egin{aligned} V_i &: m\text{-dimensional subspace of } \mathbb{F}_2^{2m}, \ 1 \leq i \leq 2^{m-1}+1, \ f &: \mathbb{F}_2^{2m} o \mathbb{F}_2, \ f(x) &= 1 \ ext{ on each } V_i. \end{aligned}$

f is **normal**.

- \mathcal{PS}_{ap} bent functions:
 - $g: \mathbb{F}_p^m \to \mathbb{F}_p$: a balanced function with g(0) = 0. $f: \mathbb{F}_p^m \times \mathbb{F}_p^m \to \mathbb{F}_p$ defined as $f(x, y) = g(xy^{p^m-2})$ is a bent function.

 $egin{aligned} V_i : m\mbox{-dimensional subspace of } \mathbb{F}_2^{2m}, \ 1 \leq i \leq 2^{m-1}+1, \ f : \mathbb{F}_2^{2m} &
ightarrow \mathbb{F}_2, \ f(x) = 1 \ \ \mbox{on each } V_i. \end{aligned}$

f is **normal**.

- \mathcal{PS}_{ap} bent functions:
 - $g: \mathbb{F}_p^m \to \mathbb{F}_p$: a balanced function with g(0) = 0. $f: \mathbb{F}_p^m \times \mathbb{F}_p^m \to \mathbb{F}_p$ defined as $f(x, y) = g(xy^{p^m-2})$ is a bent function.

$$f(x,y) = 0$$
 on $\{0\} \times \mathbb{F}_p^m \Rightarrow f$ is normal.

Lemma (Ç., Meidl, Pott 2013)

A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is weakly normal if and only if there exists $a \in \mathbb{F}_p^n$ such that $f(x) - a \cdot x$ is normal.

• **p** = 2 case:

For n = 2, 4, 6 all bent functions are **normal**.

n = 10 is the smallest dimension where a weakly normal but not normal bent function exists, [Canteaut, Daum, Dobbertin, Leander 2006]

n = 10 is the smallest dimension where a **not weakly normal** bent function exists, [Leander, McGuire 2009].

• **p** = 2 case:

For n = 2, 4, 6 all bent functions are **normal**.

n = 10 is the smallest dimension where a weakly normal but not normal bent function exists, [Canteaut, Daum, Dobbertin, Leander 2006]

n = 10 is the smallest dimension where a **not weakly normal** bent function exists, [Leander, McGuire 2009].

• odd p case:

One can easily find examples of **not weakly normal** bent functions even for n = 2.

p odd prime, n = 2m, $f : \mathbb{F}_p^n \to \mathbb{F}_p$ a bent function

(i) If f is weakly regular bent but not regular then f is not weakly normal.

p odd prime, n = 2m, $f : \mathbb{F}_p^n \to \mathbb{F}_p$ a bent function

- (i) If f is weakly regular bent but not regular then f is not weakly normal.
- (ii) If f is normal, constant on the affine subspace E + b for an m-dimensional subspace E and $b \in \mathbb{F}_p^n$, then f is balanced on the remaining cosets.

p odd prime, n = 2m, $f : \mathbb{F}_p^n \to \mathbb{F}_p$ a bent function

- (i) If f is weakly regular bent but not regular then f is not weakly normal.
- (ii) If *f* is normal, constant on the affine subspace E + b for an m-dimensional subspace *E* and $b \in \mathbb{F}_p^n$, then *f* is balanced on the remaining cosets. The dual of *f* is weakly normal on E^{\perp} .

Example 1:

$$\begin{split} f: \mathbb{F}_{3^4} &\to \mathbb{F}_3, \ \omega \text{ a primitive element of } \mathbb{F}_{3^4}.\\ f(x) &= \operatorname{Tr}_4(\omega^{10}x^{22} + x^4) \text{ is normal since } f(x) = 0 \text{ on }\\ E &= span\{\omega, \omega^3 + \omega^2\} \ . \end{split}$$

Example 1:

$$\begin{split} f: \mathbb{F}_{3^4} &\to \mathbb{F}_3, \ \omega \text{ a primitive element of } \mathbb{F}_{3^4}.\\ f(x) &= \operatorname{Tr}_4(\omega^{10}x^{22} + x^4) \text{ is normal since } f(x) = 0 \text{ on }\\ E &= span\{\omega, \omega^3 + \omega^2\} \ . \end{split}$$

Example 2:

 $f : \mathbb{F}_{3^6} \to \mathbb{F}_3, \omega$ a primitive element of \mathbb{F}_{3^6} . $f(x) = \operatorname{Tr}_6(\omega^7 x^{98})$ is not normal.

p odd prime, n = 2m, $f : \mathbb{F}_p^n \to \mathbb{F}_p$ a quadratic bent function

f is regular bent \Rightarrow f is in the completed Maiorana-McFarland class \Rightarrow f is weakly normal.

f is weakly regular (not regular) bent \Rightarrow f is not weakly normal

Definition

$$f_{\alpha}: \mathbb{F}_{3^n} \to \mathbb{F}_3$$
 defined as $f_{\alpha}(x) = \operatorname{Tr}_n(\alpha x^{\frac{3^k+1}{2}})$, k is odd, $\operatorname{gcd}(n,k) = 1$.

Lemma (Ç., Meidl, Pott 2013)

$$f_{\alpha} \text{ is regular bent if and only if } \begin{cases} n \equiv 0 \mod 4 \text{ and } \alpha \text{ is a nonsquare,} \\ \text{or} \\ n \equiv 2 \mod 4 \text{ and } \alpha \text{ is a square.} \end{cases}$$

Regular bent Coulter-Matthews functions are **normal**.

Summary/Open Problems-odd characteristic case

	N	WN but not N	NWN
R	MMF	quadratics	??
	PSap	in MMF	
WR but not R	_	-	All
NWR	Ex. 1	Ex. 2??	Ex. 2??

MMF: Mairoana-McFarland class, \overline{MMF} : completed Maiorana-McFarland class N: Normal, WN: Weakly normal, NWN: Not weakly normal R:Regular bent, WR:Weakly regular bent, NWR:Not weakly regular bent