On the normality of p-ary bent functions

A. Çeșmelioğlu ${ }^{1}$ W. Meidl ${ }^{2}$ A. Pott ${ }^{1}$
${ }^{1}$ Otto-von-Guericke University, Magdeburg, Germany
${ }^{2}$ Sabancı University, Istanbul, Turkey

Bent Functions

Definition

Let p be a prime, $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ and $\epsilon_{p}=e^{\frac{2 \pi i}{p}}$. For each $b \in \mathbb{F}_{p}^{n}$, the Walsh (Fourier) transform of f is defined as

$$
\widehat{f}(b)=\sum_{x \in \mathbb{F}_{p}^{n}} \epsilon_{p}^{f(x)-<b, x>}
$$

Definition

A function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ is called a bent function if for all $b \in \mathbb{F}_{p}^{n}$, $|\widehat{f}(b)|=p^{n / 2}$.

Walsh Spectrum of Bent Functions

For a bent function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$,

$$
\widehat{f}(b)=\zeta_{b} p^{n / 2} \epsilon_{p}^{f^{*}(b)}
$$

For $p=2$, for all $b \in \mathbb{F}_{2}^{n}$,

$$
\widehat{f}(b)=2^{n / 2}(-1)^{f^{*}(b)} \Rightarrow \zeta_{b}=1
$$

For odd p [Kumar, Scholz, Welch '85]

$$
\zeta_{b}= \begin{cases} \pm 1 & n \text { is even or } n \text { is odd and } p \equiv 1 \bmod 4 \\ \pm i & n \text { is odd and } p \equiv 3 \bmod 4\end{cases}
$$

Regular bent functions

Definition

f is called regular bent if $\zeta_{b}=1$ for all $b \in \mathbb{F}_{p}^{n}$.

Example

- A Boolean bent function is always regular bent.
- $f_{1}: \mathbb{F}_{3^{2}} \rightarrow \mathbb{F}_{3}$ defined as $f_{1}(x)=\operatorname{Tr}_{2}\left(x^{2}\right)$

Walsh spectrum: $\left\{3,3 \epsilon_{3}, 3 \epsilon_{3}^{2}\right\} \Rightarrow$ regular bent.

Weakly regular bent functions

Definition

f is called weakly regular bent if ζ_{b} is the same for all $b \in \mathbb{F}_{p}^{n}$.

Example

- $f_{2}: \mathbb{F}_{3^{4}} \rightarrow \mathbb{F}_{3}$ defined as $f_{2}(x)=\operatorname{Tr}_{4}\left(2 x^{14}\right)$ Walsh spectrum: $\left\{-9,-9 \epsilon_{3},-9 \epsilon_{3}^{2}\right\} \Rightarrow$ weakly regular bent,
- $f_{3}: \mathbb{F}_{3^{3}} \rightarrow \mathbb{F}_{3}$ defined as $f_{3}(x)=\operatorname{Tr}_{3}\left(2 x^{2}\right)$ Walsh spectrum: $\left\{i 3 \sqrt{3}, \mathrm{i} 3 \sqrt{3} \epsilon_{3}, \mathrm{i} 3 \sqrt{3} \epsilon_{3}^{2}\right\} \Rightarrow$ weakly regular bent.

Remark:

regular bent \Rightarrow weakly regular bent.

Kumar, Scholz, Welch result

For odd p [Kumar, Scholz, Welch '85]

$$
\zeta_{b}= \begin{cases} \pm 1 & n \text { is even or } n \text { is odd and } p \equiv 1 \bmod 4 \\ \pm i & n \text { is odd and } p \equiv 3 \bmod 4\end{cases}
$$

Not weakly regular bent functions

Definition

If ζ_{b} changes sign with $b \in \mathbb{F}_{p}^{n}$ then f is called not weakly regular bent.

Example

$f_{4}: \mathbb{F}_{3^{3}} \rightarrow \mathbb{F}_{3}$ defined as $f_{4}(x)=\operatorname{Tr}_{3}\left(x^{8}+x^{22}\right)$
Walsh spectrum: $\left\{\mathbf{i} 3 \sqrt{3},-\mathbf{i} 3 \sqrt{3},-\mathbf{i} 3 \sqrt{3} \epsilon_{3},-\mathbf{i} 3 \sqrt{3} \epsilon_{3}, \mathbf{i} 3 \sqrt{3} \epsilon_{3}^{2},-\mathbf{i} 3 \sqrt{3} \epsilon_{3}^{2}\right\} \Rightarrow$ not weakly regular bent.

Normal-Weakly normal

Introduced by Dobbertin('94)

Definition

$f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}, \mathbf{n}=\mathbf{2 m}$
f is normal if it is constant on an \mathbf{m}-dimensional affine subspace of \mathbb{F}_{p}^{n}.
f is weakly normal if it is affine on an \mathbf{m}-dimensional affine subspace of \mathbb{F}_{p}^{n}.

normal \Rightarrow weakly normal

In general, it is not easy to check the normality of functions.

Normal-Weakly normal

Normal-Weakly normal

Normal-Weakly normal

Normality of Classical Examples

Normality is defined for arbitrary functions but we consider bent functions only.

- Maiorana-McFarland bent functions:
$f: \mathbb{F}_{p}^{m} \times \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ defined as

$$
f(x, y)=<x, \pi(y)>+h(y)
$$

$\pi: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}^{m}:$ a permutation of \mathbb{F}_{p}^{m}
$h: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}:$ an arbitrary function

Normality of Classical Examples

Normality is defined for arbitrary functions but we consider bent functions only.

- Maiorana-McFarland bent functions:
$f: \mathbb{F}_{p}^{m} \times \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ defined as

$$
f(x, y)=<x, \pi(y)>+h(y)
$$

$\pi: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}^{m}:$ a permutation of \mathbb{F}_{p}^{m}
$h: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}:$ an arbitrary function
f is normal since $f(x, y)=0$ on the m-dimensional subspace $\mathbb{F}_{p}^{m} \times\left\{\pi^{-1}(0)\right\}$.

Normality of Classical Examples

- $\mathcal{P S}{ }^{+}$bent functions:
$V_{i}: m$-dimensional subspace of $\mathbb{F}_{2}^{2 m}, 1 \leq i \leq 2^{m-1}+1$, $f: \mathbb{F}_{2}^{2 m} \rightarrow \mathbb{F}_{2}$,

$$
f(x)=1 \text { on each } V_{i}
$$

Normality of Classical Examples

- $\mathcal{P S}{ }^{+}$bent functions:
$V_{i}: m$-dimensional subspace of $\mathbb{F}_{2}^{2 m}, 1 \leq i \leq 2^{m-1}+1$, $f: \mathbb{F}_{2}^{2 m} \rightarrow \mathbb{F}_{2}$,

$$
f(x)=1 \text { on each } V_{i}
$$

f is normal.

Normality of Classical Examples

- $\mathcal{P S}{ }^{+}$bent functions:
$V_{i}: m$-dimensional subspace of $\mathbb{F}_{2}^{2 m}, 1 \leq i \leq 2^{m-1}+1$,
$f: \mathbb{F}_{2}^{2 m} \rightarrow \mathbb{F}_{2}$,

$$
f(x)=1 \text { on each } V_{i}
$$

f is normal.

- $\mathcal{P} \mathcal{S}_{\text {ap }}$ bent functions:
$g: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}:$ a balanced function with $g(0)=0$.
$f: \mathbb{F}_{p}^{m} \times \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ defined as $f(x, y)=g\left(x y^{p^{m}-2}\right)$ is a bent function.

Normality of Classical Examples

- $\mathcal{P S} \mathcal{S}^{+}$bent functions:
$V_{i}: m$-dimensional subspace of $\mathbb{F}_{2}^{2 m}, 1 \leq i \leq 2^{m-1}+1$,
$f: \mathbb{F}_{2}^{2 m} \rightarrow \mathbb{F}_{2}$,

$$
f(x)=1 \text { on each } V_{i}
$$

f is normal.

- $\mathcal{P} \mathcal{S}_{\text {ap }}$ bent functions:
$g: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}:$ a balanced function with $g(0)=0$.
$f: \mathbb{F}_{p}^{m} \times \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ defined as $f(x, y)=g\left(x y^{p^{m}-2}\right)$ is a bent function.

$$
f(x, y)=0 \text { on }\{0\} \times \mathbb{F}_{p}^{m} \Rightarrow f \text { is normal. }
$$

Lemma (C.., Meidl, Pott 2013)

A function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ is weakly normal if and only if there exists $a \in \mathbb{F}_{p}^{n}$ such that $f(x)-a \cdot x$ is normal.

- $\mathbf{p}=\mathbf{2}$ case:

For $n=2,4,6$ all bent functions are normal.
$n=10$ is the smallest dimension where a weakly normal but not normal bent function exists, [Canteaut, Daum, Dobbertin, Leander 2006]
$n=10$ is the smallest dimension where a not weakly normal bent function exists, [Leander, McGuire 2009].

- $\mathbf{p}=\mathbf{2}$ case:

For $n=2,4,6$ all bent functions are normal.
$n=10$ is the smallest dimension where a weakly normal but not normal bent function exists, [Canteaut, Daum, Dobbertin, Leander 2006]
$n=10$ is the smallest dimension where a not weakly normal bent function exists, [Leander, McGuire 2009].

- odd p case:

One can easily find examples of not weakly normal bent functions even for $n=2$.

Normality for odd characteristic case

Theorem (C.., Meidl, Pott 2013)
p odd prime, $n=2 m, f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ a bent function
(i) If f is weakly regular bent but not regular then f is not weakly normal.

Normality for odd characteristic case

Theorem (C.., Meidl, Pott 2013)
p odd prime, $n=2 m, f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ a bent function
(i) If f is weakly regular bent but not regular then f is not weakly normal.
(ii) If f is normal, constant on the affine subspace $E+b$ for an m-dimensional subspace E and $b \in \mathbb{F}_{p}^{n}$, then f is balanced on the remaining cosets.

Normality for odd characteristic case

Theorem (C.., Meidl, Pott 2013)
p odd prime, $n=2 m, f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ a bent function
(i) If f is weakly regular bent but not regular then f is not weakly normal.
(ii) If f is normal, constant on the affine subspace $E+b$ for an m-dimensional subspace E and $b \in \mathbb{F}_{p}^{n}$, then f is balanced on the remaining cosets. The dual of f is weakly normal on E^{\perp}.

Not weakly regular functions?

Example 1:

$f: \mathbb{F}_{3^{4}} \rightarrow \mathbb{F}_{3}$, ω a primitive element of $\mathbb{F}_{3^{4}}$. $f(x)=\operatorname{Tr}_{4}\left(\omega^{10} x^{22}+x^{4}\right)$ is normal since $f(x)=0$ on $E=\operatorname{span}\left\{\omega, \omega^{3}+\omega^{2}\right\}$.

Not weakly regular functions?

Example 1:

$f: \mathbb{F}_{3^{4}} \rightarrow \mathbb{F}_{3}, \omega$ a primitive element of $\mathbb{F}_{3^{4}}$.
$f(x)=\operatorname{Tr}_{4}\left(\omega^{10} x^{22}+x^{4}\right)$ is normal since $f(x)=0$ on $E=\operatorname{span}\left\{\omega, \omega^{3}+\omega^{2}\right\}$.

Example 2:

$f: \mathbb{F}_{3^{6}} \rightarrow \mathbb{F}_{3}, \omega$ a primitive element of $\mathbb{F}_{3^{6}}$.
$f(x)=\operatorname{Tr}_{6}\left(\omega^{7} x^{98}\right)$ is not normal.

Quadratics?

Theorem (C.., Meidl, Pott 2013)

p odd prime, $n=2 m, f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ a quadratic bent function
f is regular bent $\Rightarrow f$ is in the completed Maiorana-McFarland class $\Rightarrow f$ is weakly normal.
f is weakly regular (not regular) bent $\Rightarrow f$ is not weakly normal

Coulter-Matthews bent functions?

Definition

$f_{\alpha}: \mathbb{F}_{3^{n}} \rightarrow \mathbb{F}_{3}$ defined as $f_{\alpha}(x)=\operatorname{Tr}_{\mathrm{n}}\left(\alpha x^{\frac{3^{k}+1}{2}}\right), k$ is odd, $\operatorname{gcd}(n, k)=1$.
Lemma (C.., Meidl, Pott 2013)
f_{α} is regular bent if and only if $\left\{\begin{array}{l}n \equiv 0 \bmod 4 \text { and } \alpha \text { is a nonsquare, } \\ \text { or } \\ n \equiv 2 \bmod 4 \text { and } \alpha \text { is a square. }\end{array}\right.$

Normality of Coulter-Matthews functions

Theorem (C., Meidl, Pott 2013)
 Regular bent Coulter-Matthews functions are normal.

Summary/Open Problems-odd characteristic case

	N	WN but not N	NWN
\mathbf{R}	MMF PSap	quadratics in $\overline{M M F}$	$? ?$
WR but not R	-	-	All
NWR	Ex. 1	Ex. 2??	Ex. 2??

MMF: Mairoana-McFarland class, $\overline{M M F}$: completed Maiorana-McFarland class
N: Normal, WN: Weakly normal, NWN: Not weakly normal
R:Regular bent, WR:Weakly regular bent, NWR:Not weakly regular bent

