Low Rank Parity Check codes and their application to cryptography

Philippe Gaborit1 \quad Gaetan Murat1 \quad Olivier Ruatta1 \quad Gilles Zémor2

1Université de Limoges, 2Université de Bordeaux

WCC 2013
Summary

1. Introduction and motivations
2. Rank metric codes
3. Rank metric and cryptography
4. LRPC codes and their decoding
5. LRPC codes for cryptography
Cryptography needs different difficult problems

- factorization
- discrete log
- SVP for lattices
- syndrome decoding problem

For code-based cryptography, the security of cryptosystems is usually related to the problem of syndrome decoding.
Syndrome decoding problem

Syndrome decoding

For a given syndrome s, find x of small Hamming weight such that $Hx^t = y$ with H a random matrix.

Problem studied for many years with a well known complexity.

Characteristics:

- NP-hard
- Usually fast
- A priori resisting to quantum computer

Best known attacks: Information Set Decoding and variations: FS '09, MMT '11, BJMT '12

Complexity of attacks seem converging to a certain stabilization.
Finding alternative to RSA and NT based system: major issue

- **McEliece cryptosystem**: usually lead to very large public keys (a few hundred thousand) - too large for general utilization

- **lattices**: very close to codes but with a different metric:
 - NTRU '95: double circulant structure: first non number theory based system with small keys, the LWE, Ring-LWE, ...

- **codes**: different systems proposed in the '00's: structure + structure \rightarrow too much structure for attack (30,000b)

- **recently 2012**: MDPC codes for crypto, NTRU like system, with random small weight double-circulant codes 4800b.

- **rank metric** ??
The rank metric is defined in finite extensions.

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q.
- $B = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q.
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q.

- C a linear code over \mathbb{F}_{q^m} of dimension k and length n.
- G a $k \times n$ generator matrix of the code C.
- H a $n \times (n - k)$ parity check matrix of C, $GH = 0$.
Words of the code \mathcal{C} are n-uplets with coordinates in \mathbb{F}_{q^m}.

$$v = (v_1, \ldots, v_n)$$

with $v_i \in \mathbb{F}_{q^m}$. Any coordinate $v_i = \sum_{j=1}^{m} v_{ij} b_j$ with $v_{ij} \in \mathbb{F}_q$.
Rank syndrome decoding problem (RSD)

Syndrome decoding

Let H be a $((n - k) \times n)$ matrix over F_{q^m} with $k \leq n$, $s \in F_{q^m}^k$ and r an integer. The problem is to find x such that $\text{rank}(x) = r$ and $Hx^t = s$

- induces short public keys
- not proven NP-hard (does not mean it is not!)
The **support of a word in Hamming metric** $x(x_1, x_2, \cdots, x_n)$ is the set of positions $x_i \neq 0$

- how to recover a small Hamming word associated to a given syndrome?

1) find the support of the word (guess!!)

2) solve a system to recover the coordinates values
• Support of a word in rank metric
The support of a word \(x(x_1, x_2, \cdots, x_n) \) of rank \(r \) is a space \(E \) of dim \(r \) such that \(\forall x_i, x_i \in E \).

- how to recover a word associated to a given syndrome?
1) find the support (guess it!)
2) solve a system from the syndrome equations to recover the \(x_i \in E \)

remark: for Hamming Newton binomial, for rank distance Gaussian binomial! \(\rightarrow \) complexity grows faster.
\(\Rightarrow \) rank metric induces smaller parameters for a given complexity
Best known attacks

A. Ourivski et T. Johannson ’02 :
- basis enumeration : \(\leq (k + r)^3 q^{(r-1)(m-r)+2} \) (improvement on the polynomial part of Chabaud-Stern ’96)
- coordinate enumeration : \(\leq (k + r)^3 r^3 q^{(r-1)(k+1)} \)

More recently (2012) Gaborit, Schrek, Ruatta :
- \((m(n - k))^3 q^{\frac{(k+1)(r-1)m}{n}} \), generalization of ISD for rank metrix
- \(O(r^3 k^3 q^r \left[\frac{(r+1)(k+1)-(n+1)}{r} \right]) \) with algebraic attacks
Introduction and motivations

Rank metric codes

Rank metric and cryptography

LRPC codes and their decoding

LRPC codes for cryptography

Classical setting for code based crypto: the MacELièce scheme

• Gabidulin codes are the analogous of Reed-Solomon codes
 → possible to design a system based on Gabidulin codes: GPT cryptosystem ’91
 problem: as Reed-Solomon codes: the Gabidulin codes are difficult to hide
 → attacks (OJ ’02,..) and new constructions (FL ’05) and new attacks (Overbeke ’06,..)
 probably possible to eventually find a resistant construction but doubt on structural attacks
Decoding in rank metric

- Gabidulin \([n, k]\) codes over \(F_{q^n}\) decode up to \(r = (n - k)/2\)
- simple construction possible to decode random errors up to GVR, but slow decoding and difficult to hide

Are there alternatives?
What does exist in Hamming distance?
- Reed-Solomon codes and derivatives (BCH, Goppa, ...)
- LDPC codes: dual matrix with low weight
LRPC codes

LDPC : dual with low weight (ie : small support)
→ equivalent for rank metric : dual with small rank support

Definition

A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over F_{q^m} is a code such that the code has for parity check matrix, a $(n - k) \times n$ matrix $H(h_{ij})$ such that the sub-vector space of F_{q^m} generated by its coefficients h_{ij} has dimension at most d. We call this dimension the weight of H.

In other terms : all coefficients h_{ij} of H belong to the same 'low' vector space $F < F_1, F_2, \cdots, F_d >$ of F_{q^m} of dimension d.
Decoding LRPC codes

Idea : as usual recover the support and then deduce the coordinates values.

Let \(e(e_1, \ldots, e_n) \) be an error vector of weight \(r \), i.e.: \(\forall e_i : e_i \in E \), and \(\dim(E) = r \). Suppose \(H.e^t = s = (s_1, \ldots, s_{n-k})^t \).

\[
e_i \in E < E_1, \ldots, E_r >, h_{ij} \in F < F_1, F_2, \ldots, F_d >
\]

\[
\Rightarrow s_k \in < E_1F_1, \ldots, E_rF_d >
\]

\(\Rightarrow \) if \(n - k \) is large enough, it is possible to recover the product space \(< E_1F_1, \ldots, E_rF_d > \)
Decoding LRPC codes

Syndrome \(s(s_1, \ldots, s_{n-k}) : S = \langle s_1, \ldots, s_{n-k} \rangle \subseteq \langle E_1 F_1, \ldots, E_r F_d \rangle \)

Suppose \(S = \langle E.F \rangle \implies \) possible to recover \(E \).

Let \(S_i = F_i^{-1}.S \), since

\[
S = \langle E.F \rangle = \langle F_i E_1, F_i E_2, \ldots, F_i E_r, \ldots \rangle \rightarrow E \subset S_i
\]

\[
E = S_1 \cap S_2 \cap \cdots \cap S_d
\]
General decoding of LRPC codes

Let $y = xG + e$

1. **Syndrome space computation**
 Compute the syndrome vector $H.y^t = s(s_1, \cdots, s_{n-k})$ and the syndrome space $S = \langle s_1, \cdots, s_{n-k} \rangle$.

2. **Recovering the support E of the error**
 $S_i = F_i^{-1}S$, $E = S_1 \cap S_2 \cap \cdots \cap S_d$.

3. **Recovering the error vector** e
 Write $e_i (1 \leq i \leq n)$ in the error support as $e_i = \sum_{j=1}^n e_{ij}E_j$, solve the system $H.e^t = s$.

4. **Recovering the message** x
 Recover x from the system $xG = y - e$.
Decoding of LRPC

- **Conditions of success**
 - $S = \langle F.E \rangle \Rightarrow rd \leq n-k$.
 - possibility that $\dim(S) \neq n-k \Rightarrow$ probabilistic decoding with error failure in $q^{-(n-k-rd)}$.
 - if $d = 2$ can decode up to $(n-k)/2$ errors.

- **Complexity of decoding** : very fast symbolic matrix inversion $O(m(n-k)^2)$

- **Comparison with Gabidulin codes** : probabilistic, decoding failure, but as fast.
Application to cryptography

- a new family of decodable codes with a low structure, no use of isometry

- McEliece setting:
 - **Public key**: G LRPC code: $[n, k]$ of weight d which can decode up to errors of weight r
 - **Public key**: $G' = MG$
 - **Secret key**: M

- **Encryption**
 - $c = mG' + e$, e of rank r

- **Decryption**
 - Decode $H.c^t$ in e, then recover m.

- Smaller size of key: double circulant LRPC codes: $H = (I \ A)$, A circulant matrix
Application to cryptography

- **Attacks on the system**
 - message attack: decode a word of weight r for a $[n, k]$ random code
 - structural attack: recover the LRPC structure
 → a $[n, n-k]$ LRPC matrix of weight d contains a word with $\frac{n}{d}$ first zero positions. Searching for a word of weight d in a $[n - \frac{n}{d}, n - k - \frac{n}{d}]$ code.

- **Attack on the double circulant structure**
 as for lattices or codes (with Hamming distance) no specific more efficient attack exists exponentially better than decoding random codes.
Parameters

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>m</th>
<th>q</th>
<th>d</th>
<th>r</th>
<th>failure</th>
<th>public key</th>
<th>security</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>37</td>
<td>41</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>-22</td>
<td>1517</td>
<td>80</td>
</tr>
<tr>
<td>94</td>
<td>47</td>
<td>47</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>-23</td>
<td>2397</td>
<td>120</td>
</tr>
<tr>
<td>68</td>
<td>34</td>
<td>23</td>
<td>2^4</td>
<td>4</td>
<td>4</td>
<td>-80</td>
<td>3128</td>
<td>100</td>
</tr>
</tbody>
</table>
Conclusion

- LRPC: new family of rank codes with an efficient probabilistic decoding algorithm
- Application to cryptography in the spirit of NTRU and MDPC
- Very small size of keys, comparable to RSA
- More studies need to be done but very good potentiality