Low Rank Parity Check codes and their application to cryptography

Philippe Gaborit¹ Gaetan Murat¹ Olivier Ruatta¹ Gilles Zémor²

¹Université de Limoges, ²Université de Bordeaux

WCC 2013

Philippe Gaborit, Gaetan Murat, Olivier Ruatta, Gilles Zémor Low Rank Parity Check codes and their application to cryptograf

- 同 ト - ヨ ト - - ヨ ト

- 2 Rank metric codes
- 3 Rank metric and cryptography
- 4 LRPC codes and their decoding
- 5 LRPC codes for cryptography

- - E - - E

A D

Coding and cryptography

Cryptography needs different difficult problems

- factorization
- discrete log
- SVP for lattices
- syndrome decoding problem

For code-based cryptography, the security of cryptosystems is usually related to the problem of syndrome decoding.

- 4 周 ト 4 戸 ト 4 戸 ト

Syndrome decoding problem

Syndrome decoding

For a given syndrome s, find x of small Hamming weight such that $Hx^t = y$ with H a random matrix.

Problem studied for many years with a well known complexity. Caracteristics :

- NP-hard
- usually fast
- A priori resisting to quantum computer

Best known attacks : Information Set Decoding and variations : FS '09, MMT '11, BJMT '12

Complexity of attacks seem converging to a certain stabilization.

- 4 同 6 4 日 6 4 日 6

Codes and cryptography

Finding alternative to RSA and NT based system : major issue

- McEliece cryptosystem : usually lead to very large public keys (a few hundred thousand) too large for general utilization
- lattices : very close to codes but with a different metric : NTRU '95 : double circulant structure : first non number theory based system with small keys, the LWE, Ring-LWE, ...
- **codes** : different systems proposed in the '00's : structure + structure \rightarrow too much structure for attack (30.000b)
- recently 2012 : MDPC codes for crypto, NTRU like system , with random small weight double-circulant codes 4800b.
- rank metric ??

・ロト ・同ト ・ヨト ・ヨト

Rank metric codes

The rank metric is defined in finite extensions.

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- $B = (b_1, ..., b_m)$ a basis of F_{q^m} over F_q .

 \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .

- C a linear code over \mathbb{F}_{q^m} of dimension k and length n.
- G a $k \times n$ generator matrix of the code C.
- *H* a $n \times (n k)$ parity check matrix of *C*, GH = 0.

イロト イポト イヨト イヨト

Rank metric

Words of the code C are *n*-uplets with coordinates in \mathbb{F}_{q^m} .

$$v = (v_1, \ldots, v_n)$$

with
$$v_i \in \mathbb{F}_{q^m}$$
.
Any coordinate $v_i = \sum_{j=1}^m v_{ij} b_j$ with $v_{ij} \in \mathbb{F}_q$.

Métrique rang

v has rank r iff the rank of $V = (v_{ij})_{ij}$ is r.

Philippe Gaborit, Gaetan Murat, Olivier Ruatta, Gilles Zémor Low Rank Parity Check codes and their application to cryptograf

< 日 > < 同 > < 三 > < 三 >

Rank syndrome decoding problem (RSD)

Syndrome decoding

Let H be a $((n - k) \times n)$ matrix over F_{q^m} with $k \le n$, $s \in F_{q^m}^k$ and r an integer. The problem is to find x such that rank(x) = r and $Hx^t = s$

- induces short public keys
- not proven NP-hard (does not mean it is not !)

- 4 回 ト 4 ヨト 4 ヨト

Support analogy

The support of a word in Hamming metric $x(x_1, x_2, \dots, x_n)$ is the set of positions $x_i \neq 0$

- how to recover a small Hamming word associated to a given syndrome?

- 1) find the support of the word (guess ! !)
- 2) solve a system to recover the coordinates values

< 日 > < 同 > < 三 > < 三 >

• Support of a word in rank metric

The support of a word $x(x_1, x_2, \dots, x_n)$ of rank r is a space E of dim r such that $\forall x_i, x_i \in E$.

- how to recover a word associated to a given syndrome?
- 1) find the support (guess it !)
- 2) solve a system from the syndrome equations to recover the $x_i \in E$
- **remark :** for Hamming Newton binomial, for rank distance Gaussian binomial $! \rightarrow$ complexity grows faster.
- \Rightarrow rank metric induces smaller parameters for a given complexity

(日)

Best known attacks

A.Ourivski et T.Johannson '02 :

- basis enumeration : $\leq (k + r)^3 q^{(r-1)(m-r)+2}$ (improvement on the polynomial part of Chabaud-Stern '96)
- coordinate enumeration : $\leq (k+r)^3 r^3 q^{(r-1)(k+1)}$

More recently (2012) Gaborit, Schrek, Ruatta :

- $(m(n-k))^3 q^{\frac{(k+1)(r-1)m}{n}}$, generalization of ISD for rank metrix - $O(r^3 k^3 q^{r \lceil \frac{(r+1)(k+1)-(n+1)}{r} \rceil})$ with algebraic attacks

Rank metric and cryptography

Classical setting for code based crypto : the MacELiece scheme

• Gabidulin codes are the analogous of Reed-Solomon codes

 \rightarrow possible to design a system based on Gabidulin codes : GPT cryptosystem '91

 $\operatorname{problem}$: as Reed-Solomon codes : the Gabidulin codes are difficult to hide

 \rightarrow attacks (OJ '02,..) and new constructions (FL '05) and new attacks (Overbeke '06,..) probably possible to eventually find a resistant construction but doubt on structural attacks

・ロト ・同ト ・ヨト ・ヨト

Decoding in rank metric

- Gabidulin [n, k] codes over F_{q^n} decode up to r = (n k)/2
- simple construction possible to decode random errors up to GVR, but slow decoding and difficult to hide

Are there alternatives?

What does exist in Hamming distance?

- Reed-Solomon codes and derivatives (BCH, Goppa, ...)
- LDPC codes : dual matrix with low weight

- 4 同 6 4 日 6 4 日 6

LRPC codes

LDPC : dual with low weight (ie : small support)

 \rightarrow equivalent for rank metric : dual with small rank support

Definition

A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over F_{q^m} is a code such that the code has for parity check matrix, a $(n - k) \times n$ matrix $H(h_{ij})$ such that the sub-vector space of F_{q^m} generated by its coefficients h_{ij} has dimension at most d. We call this dimension the weight of H.

In other terms : all coefficients h_{ij} of H belong to the same 'low' vector space $F < F_1, F_2, \dots, F_d >$ of F_{q^m} of dimension d.

・ロト ・得ト ・ヨト ・ヨト

Decoding LRPC codes

Idea : as usual recover the support and then deduce the coordinates values.

Let $e(e_1, ..., e_n)$ be an error vector of weight r, ie : $\forall e_i : e_i \in E$, and dim(E)=r. Suppose $H.e^t = s = (s_1, ..., s_{n-k})^t$.

 $e_i \in E < E_1, ..., E_r >, h_{ij} \in F < F_1, F_2, \cdots, F_d >$ $\Rightarrow s_k \in < E_1F_1, ..., E_rF_d >$

 \Rightarrow if n - k is large enough, it is possible to recover the product space $\langle E_1 F_1, ..., E_r F_d \rangle$

イロト イポト イヨト イヨト 三日

Decoding LRPC codes

Syndrome $s(s_1, ..., s_{n-k})$: $S = \langle s_1, ..., s_{n-k} \rangle \subset \langle E_1F_1, ..., E_rF_d \rangle$ Suppose $S = \langle E.F \rangle \Rightarrow$ possible to recover E. Let $S_i = F_i^{-1}.S$, since $S = \langle E.F \rangle = \langle F_iE_1, F_iE_2, ..., F_iE_r, ... \rangle \rightarrow E \subset S_i$

$\textbf{E}=\textbf{S}_1\cap\textbf{S}_2\cap\dots\cap\textbf{S}_d$

Philippe Gaborit, Gaetan Murat, Olivier Ruatta, Gilles Zémor Low Rank Parity Check codes and their application to cryptograf

- 4 回 ト 4 ヨ ト 4 ヨ ト

General decoding of LRPC codes

Let y = xG + e

- Syndrome space computation Compute the syndrome vector H.y^t = s(s₁, · · · , s_{n-k}) and the syndrome space S =< s₁, · · · , s_{n-k} >.
- **2** Recovering the support *E* of the error $S_i = F_i^{-1}S$, $E = S_1 \cap S_2 \cap \cdots \cap S_d$,
- **Orrection Set up and Set up and**

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Recovering the message x Recover x from the system xG = y - e.

Decoding of LRPC

• Conditions of success

- $S = \langle F.E \rangle \Rightarrow \mathsf{rd} \le \mathsf{n-k}.$
- possibility that $dim(S) \neq n-k \Rightarrow$ probabilistic decoding with error failure in $q^{-(n-k-rd)}$
- if d = 2 can decode up to (n k)/2 errors.
- Complexity of decoding : very fast symbolic matrix inversion $O(m(n-k)^2)$
- Comparison with Gabidulin codes : probabilistic, decoding failure, but as fast.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-

Application to cryptography

 \bullet a new family of decodable codes with a low structure, no use of isometry

McEliece setting :
Public key : G LRPC code : [n, k] of weight d which can decode up to errors of weight r
Public key : G' = MG
Secret key : M

• Encryption

c=mG' + e , e of rank r

• Decryption

Decode $H.c^t$ in e, then recover m.

• Smaller size of key : double circulant LRPC codes : H=(I A), A circulant matrix

Philippe Gaborit, Gaetan Murat, Olivier Ruatta, Gilles Zémor

Low Rank Parity Check codes and their application to cryptograp

Application to cryptography

• Attacks on the system

- message attack : decode a word of weight r for a [n, k] random code

- structural attack : recover the LRPC structure \rightarrow a [n, n-k] LRPC matrix of weight *d* contains a word with $\frac{n}{d}$ first zero positions. Searching for a word of weight *d* in a $[n - \frac{n}{d}, n - k - \frac{n}{d}]$ code.

• Attack on the double circulant structure

as for lattices or codes (with Hamming distance) no specific more efficient attack exists exponentially better than decoding random codes.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parameters

n	k	m	q	d	r	failure	public key	security
74	37	41	2	4	4	-22	1517	80
94	47	47	2	5	5	-23	2397	120
68	34	23	24	4	4	-80	3128	100

Philippe Gaborit, Gaetan Murat, Olivier Ruatta, Gilles Zémor Low Rank Parity Check codes and their application to cryptograg

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Conclusion

- LRPC : new family of rank codes with an efficient probabilistic decoding algorithm
- Application to cryptography in the spirit of NTRU and MDPC
- Very small size of keys, comparable to RSA
- More studies need to be done but very good potentiality

・ロト ・同ト ・ヨト ・ヨト