Upper bounds on the size of Kakeya sets in finite vector spaces

Gohar Kyureghyan ${ }^{1}$, Peter Müller ${ }^{2}$ and Qi Wang ${ }^{1}$ ${ }^{1}$ Otto-von-Guericke University Magdeburg, Germany ${ }^{2}$ University of Würzburg, Germany

$$
\text { WCC } 2013
$$

a semi-circle of radius 1

a semi-circle of radius 1
a circle of diameter 1

The classical Kakeya problem

a semi-circle of radius 1
a circle of diameter 1

In the real plane \mathbb{R}^{2}, consider a point set which contains a unit segment in every direction.

How small can the area of such a point set be in \mathbb{R}^{2} ?
[Kakeya, 1917]

The classical Kakeya problem

a semi-circle of radius 1
a circle of diameter 1

In the real plane \mathbb{R}^{2}, consider a point set which contains a unit segment in every direction.
\rightarrow Kakeya set
How small can the area of such a point set be in \mathbb{R}^{2} ?
[Kakeya, 1917]

$\frac{\pi}{2}$
a semi-circle of radius 1

$\frac{\pi}{4}$
a circle of diameter 1

The classical Kakeya problem

$\frac{\pi}{8}$
a deltoid inscribed in a circle of diameter $\frac{3}{2}$

- There exist Kakeya sets in \mathbb{R}^{2} of arbitrarily small area.
[Besicovitch, 1928]

The classical Kakeya problem

- There exist Kakeya sets in \mathbb{R}^{2} of arbitrarily small area.
[Besicovitch, 1928]

- The classical Kakeya problem

How small can a Kakeya set be in \mathbb{R}^{2} ?

- The classical Kakeya problem

How small can a Kakeya set be in \mathbb{R}^{2} ? \mathbb{R}^{n}

The Kakeya problem in finite vector spaces

- The classical Kakeya problem

How small can a Kakeya set be in \mathbb{R}^{2} ?

```
\mp@subsup{\mathbb{R}}{}{n}
```

- The Kakeya problem in \mathbb{F}_{q}^{n}

How small can a subset K of \mathbb{F}_{q}^{n} be, given that it contains a line in every direction?

The Kakeya problem in finite vector spaces

- The classical Kakeya problem

How small can a Kakeya set be in \mathbb{R}^{2} ?

```
\mp@subsup{\mathbb{R}}{}{n}
```

- The Kakeya problem in \mathbb{F}_{q}^{n}

How small can a subset K of \mathbb{F}_{q}^{n} be, given that it contains a line in every direction?
\Downarrow
For every $\mathbf{x} \in \mathbb{F}_{q}^{n}$, there exists $\mathbf{y} \in \mathbb{F}_{q}^{n}$ such that $\left\{\mathbf{y}+t \mathbf{x}: t \in \mathbb{F}_{q}\right\} \subseteq K$.

Examples:

- trivial: $K=\mathbb{F}_{q}^{n}$

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$

The Kakeya problem in finite vector spaces

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$
- $K=\{(0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \subset \mathbb{F}_{2}^{3}$

The Kakeya problem in finite vector spaces

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$
- $K=\{(0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \subset \mathbb{F}_{2}^{3}$

$$
\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \left\{\mathbf{y}+t \mathbf{x}: t \in \mathbb{F}_{2}\right\} \\
\hline(0,0,1) & (1,0,0) & \{(1,0,0),(1,0,1)\} \nsubseteq K
\end{array}
$$

The Kakeya problem in finite vector spaces

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$
- $K=\{(0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \subset \mathbb{F}_{2}^{3}$

$$
\begin{array}{ccl}
\mathbf{x} & \mathbf{y} & \left\{\mathbf{y}+t \mathbf{x}: t \in \mathbb{F}_{2}\right\} \\
\hline(0,0,1) & (1,0,0) & \{(1,0,0),(1,0,1)\} \nsubseteq K \\
& (0,0,1) & \{(0,0,1),(0,0,0)\} \subseteq K
\end{array}
$$

The Kakeya problem in finite vector spaces

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$
- $K=\{(0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \subset \mathbb{F}_{2}^{3}$

$$
\begin{array}{ccl}
\mathbf{x} & \mathbf{y} & \left\{\mathbf{y}+t \mathbf{x}: t \in \mathbb{F}_{2}\right\} \\
\hline(0,0,1) & (1,0,0) & \{(1,0,0),(1,0,1)\} \nsubseteq K \\
& (0,0,1) & \{(0,0,1),(0,0,0)\} \subseteq K \\
(0,1,0) & (1,1,1) & \{(1,1,1),(1,0,1)\} \subseteq K
\end{array}
$$

The Kakeya problem in finite vector spaces

Examples:

- trivial: $K=\mathbb{F}_{q}^{n} \quad \Rightarrow \quad|K| \leq q^{n}$
- $K=\{(0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \subset \mathbb{F}_{2}^{3}$

$$
\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \left\{\mathbf{y}+t \mathbf{x}: t \in \mathbb{F}_{2}\right\} \\
\hline(0,0,1) & (1,0,0) & \{(1,0,0),(1,0,1)\} \nsubseteq K \\
& (0,0,1) & \{(0,0,1),(0,0,0)\} \subseteq K \\
(0,1,0) & (1,1,1) & \{(1,1,1),(1,0,1)\} \subseteq K
\end{array}
$$

Conjecture
[Wolff, 1999]
$|K| \geq C_{n} \cdot q^{n}$, where C_{n} depends only on n.

The Kakeya problem in finite vector spaces

Conjecture
[Wolff, 1999]
$|K| \geq C_{n} \cdot q^{n}$, where C_{n} depends only on n.
"This conjecture has had a significant influence in the subject, in particular inspiring work on the sum-product phenomenon in finite fields, which has since proven to have many applications in number theory and computer science."

- Terence Tao, 24 March, 2008

The Kakeya problem in finite vector spaces

Conjecture

[Wolff, 1999]
$|K| \geq C_{n} \cdot q^{n}$, where C_{n} depends only on n.

$$
|K| \geq(1 / n!) \cdot q^{n} \quad[\text { Dvir, 2009] }
$$

The Kakeya problem in finite vector spaces

Conjecture
[Wolff, 1999]
$|K| \geq C_{n} \cdot q^{n}$, where C_{n} depends only on n.

$$
|K| \geq(1 / n!) \cdot q^{n} \quad[\text { Dvir, 2009] }
$$

$|K| \geq\left(1 / 2^{n}\right) \cdot q^{n} \quad$ [Dvir, Kopparty, Saraf \& Sudan, 2009]

$$
|K| \geq\left(1 / 2^{n}\right) \cdot q^{n}
$$

[Dvir, Kopparty, Saraf \& Sudan, 2009]

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

The upper bound

$$
|K| \geq\left(1 / 2^{n}\right) \cdot q^{n}
$$

[Dvir, Kopparty, Saraf \& Sudan, 2009]
$|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)$
two regimes:

- n is fixed, q grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

The upper bound

$$
|K| \geq\left(1 / 2^{n}\right) \cdot q^{n}
$$

[Dvir, Kopparty, Saraf \& Sudan, 2009]
$|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)$
two regimes:

- n is fixed, q grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

The upper bound

$$
|K| \geq\left(1 / 2^{n}\right) \cdot q^{n}
$$

[Dvir, Kopparty, Saraf \& Sudan, 2009]
$|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)$
two regimes:

- n is fixed, q grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

- q is fixed, n grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

The upper bound

$$
|K| \geq\left(1 / 2^{n}\right) \cdot q^{n}
$$

[Dvir, Kopparty, Saraf \& Sudan, 2009]
$|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)$
two regimes:

- n is fixed, q grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

- q is fixed, n grows

$$
|K| \leq 2 \cdot\left(1 / 2^{n}\right) \cdot q^{n}+O\left(q^{n-1}\right)
$$

The upper bound: q fixed, n grows

[Kopparty, Lev, Saraf \& Sudan, 2011]

There exists a Kakeya set $K \subset \mathbb{F}_{q}^{n}$ bounded by

q odd	$C_{q} \cdot\left(\frac{q+1}{2}\right)^{n}$
$q=2^{m}$ m even	$C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}$
$q=2^{m}$ m odd	$\frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}$

The upper bound: q fixed, n grows

[Kopparty, Lev, Saraf \& Sudan, 2011]

There exists a Kakeya set $K \subset \mathbb{F}_{q}^{n}$ bounded by known

Our bounds

q odd	$C_{q} \cdot\left(\frac{q+1}{2}\right)^{n}$	
$q=2^{m}$ m even	$C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}$	$C_{q} \cdot\left(\frac{q+\sqrt{q}}{2}\right)^{n}$
$q=2^{m}$ m odd	$\frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}$	$C_{q} \cdot\left(\frac{5 q+2 \sqrt{q}+5}{8}\right)^{n}$

Proof idea

[Saraf \& Sudan, 2008]
For a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, define

$$
I_{f}(t):=\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}, t \in \mathbb{F}_{q}
$$

Proof idea

[Saraf \& Sudan, 2008]
For a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, define

$$
I_{f}(t):=\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}, t \in \mathbb{F}_{q}
$$

Construct
$K:=\left\{\left(x_{1}, \ldots, x_{j}, t, 0, \ldots, 0\right): 0 \leq j \leq n-1, t \in \mathbb{F}_{q}, x_{1}, \ldots, x_{j} \in I_{f}(t)\right\}$
If $f(x) \neq a x$, then K is a Kakeya set of cardinality

$$
|K|=\sum_{j=0}^{n-1} \sum_{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|^{j}=\sum_{t \in \mathbb{F}_{q}} \frac{\left|I_{f}(t)\right|^{n}-1}{\left|I_{f}(t)\right|-1}
$$

Proof idea

$$
I_{f}(t):=\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}, t \in \mathbb{F}_{q} .
$$

$$
|K|=\sum_{t \in \mathbb{F}_{q}} \frac{\left|I_{f}(t)\right|^{n}-1}{\left|I_{f}(t)\right|-1}
$$

$$
\Downarrow
$$

$|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}$

Proof idea

$I_{f}(t):=\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}, t \in \mathbb{F}_{q}$.

$$
|K|=\sum_{t \in \mathbb{F}_{q}} \frac{\left|I_{f}(t)\right|^{n}-1}{\left|I_{f}(t)\right|-1}
$$

\Downarrow
$|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}$

Goal: Find a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, s.t.
$\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|$ as small as possible $t \in \mathbb{F}_{q}$

Choose such a function f

Goal: Find a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, s.t.

$$
\max _{t \in \mathbb{F}_{q}}\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right| \text { as small as possible }
$$

- To estimate $\left|I_{f}(t)\right|=\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right|$.

Choose such a function f

Goal: Find a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, s.t.

$$
\max _{t \in \mathbb{F}_{q}}\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right| \text { as small as possible }
$$

- To estimate $\left|I_{f}(t)\right|=\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right|$.

■ For all f, there always exists a $t \in \mathbb{F}_{q}$, s.t.

$$
\left|I_{f}(t)\right|>q / 2
$$

[Kopparty, Lev, Saraf \& Sudan, 2011]

Previous choices

$$
|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}
$$

[Kopparty, Lev, Saraf \& Sudan, 2011]
■ q odd, $f(x)=x^{2} \Rightarrow\left|I_{f}(t)\right|=\frac{q+1}{2}$ for each $t \in \mathbb{F}_{q}$

Previous choices

$|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}$
[Kopparty, Lev, Saraf \& Sudan, 2011]
■ q odd, $f(x)=x^{2} \Rightarrow\left|I_{f}(t)\right|=\frac{q+1}{2}$ for each $t \in \mathbb{F}_{q}$

- q even power of $2, f(x)=x^{3}$

$$
\Rightarrow|K| \leq C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}
$$

Previous choices

$|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}$
[Kopparty, Lev, Saraf \& Sudan, 2011]
■ q odd, $f(x)=x^{2} \Rightarrow\left|I_{f}(t)\right|=\frac{q+1}{2}$ for each $t \in \mathbb{F}_{q}$

- q even power of $2, f(x)=x^{3}$

$$
\Rightarrow|K| \leq C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}
$$

- q odd power of $2, f(x)=x^{q-2}+x^{2}$

$$
\Rightarrow|K| \leq \frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}
$$

Previous choices

$|K|<C_{q} \cdot\left(\max _{t \in \mathbb{F}_{q}}\left|I_{f}(t)\right|\right)^{n}$
[Kopparty, Lev, Saraf \& Sudan, 2011]

- q odd, $f(x)=x^{2} \Rightarrow\left|I_{f}(t)\right|=\frac{q+1}{2}$ for each $t \in \mathbb{F}_{q}$ cannot do better!
- q even power of $2, f(x)=x^{3}$

$$
\Rightarrow|K| \leq C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}
$$

- q odd power of $2, f(x)=x^{q-2}+x^{2}$

$$
\Rightarrow|K| \leq \frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}
$$

NEW bound I: $q=2^{m}, m$ even

Choose $f(x)=x^{2^{i}+1} \quad 0 \leq i \leq m-1$

Choose $f(x)=x^{2^{i}+1}$

$$
0 \leq i \leq m-1
$$

- We explicitly determine $\left|I_{f}(t)\right|$ for each $t \in \mathbb{F}_{q}$

Using the results in [A. Bluher, On $x^{q+1}+a x+b$, FFTA, 2004].

Choose $f(x)=x^{2^{i}+1}$

$$
0 \leq i \leq m-1
$$

- We explicitly determine $\left|I_{f}(t)\right|$ for each $t \in \mathbb{F}_{q}$

Using the results in [A. Bluher, On $x^{q+1}+a x+b$, FFTA, 2004].

- Choose $f(x)=x^{2^{m / 2}+1}$

$$
\left|I_{f}(t)\right| \leq \frac{q+\sqrt{q}}{2}
$$

Choose $f(x)=x^{2^{i}+1}$

$$
0 \leq i \leq m-1
$$

- We explicitly determine $\left|I_{f}(t)\right|$ for each $t \in \mathbb{F}_{q}$

Using the results in [A. Bluher, On $x^{q+1}+a x+b$, FFTA, 2004].

- Choose $f(x)=x^{2^{m / 2}+1}$

$$
\left|I_{f}(t)\right| \leq \frac{q+\sqrt{q}}{2} \quad \Rightarrow \quad|K|<C_{q} \cdot\left(\frac{q+\sqrt{q}}{2}\right)^{n}
$$

Choose $f(x)=x^{2^{i}+1} \quad 0 \leq i \leq m-1$

- We explicitly determine $\left|I_{f}(t)\right|$ for each $t \in \mathbb{F}_{q}$

Using the results in [A. Bluher, On $x^{q+1}+a x+b$, FFTA, 2004].

- Choose $f(x)=x^{2^{m / 2}+1}$

$$
\begin{aligned}
\left|I_{f}(t)\right| \leq \frac{q+\sqrt{q}}{2} & \Rightarrow|K|<C_{q} \cdot\left(\frac{q+\sqrt{q}}{2}\right)^{n} \\
& \text { recall: }|K|<C_{q} \cdot\left(\frac{2 q+1}{3}\right)^{n}
\end{aligned}
$$

[Kopparty, Lev, Saraf \& Sudan, 2011]

NEW bound II: $q=2^{m}, m$ odd

Choose $f(x)=x^{4}+x^{3}$

$$
\left|I_{f}(t)\right| \leq \frac{5 q+2 \sqrt{q}+5}{8}
$$

NEW bound II: $q=2^{m}, m$ odd

Choose $f(x)=x^{4}+x^{3}$

$$
\left|I_{f}(t)\right| \leq \frac{5 q+2 \sqrt{q}+5}{8} \Rightarrow|K|<C_{q} \cdot\left(\frac{5 q+2 \sqrt{q}+5}{8}\right)^{n}
$$

Choose $f(x)=x^{4}+x^{3}$

$$
\begin{array}{r}
\left|I_{f}(t)\right| \leq \frac{5 q+2 \sqrt{q}+5}{8} \Rightarrow|K|<C_{q} \cdot\left(\frac{5 q+2 \sqrt{q}+5}{8}\right)^{n} \\
\text { recall: }|K| \leq \frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}
\end{array}
$$

Choose $f(x)=x^{4}+x^{3}$

$$
\begin{aligned}
&\left|I_{f}(t)\right| \leq \frac{5 q+2 \sqrt{q}+5}{8} \Rightarrow|K|<C_{q} \cdot\left(\frac{5 q+2 \sqrt{q}+5}{8}\right)^{n} \\
& \text { recall: }|K| \leq \frac{3}{2} \cdot\left(\frac{2(q+\sqrt{q}+1)}{3}\right)^{n}
\end{aligned}
$$

- Remark
$f(x)$ is of the form Gold APN power $+x^{2^{i}}$.

Conclusions and Problems

- For $q=2^{m}$, we gave the BEST known upper bounds for Kakeya sets in \mathbb{F}_{q}^{n}.

Conclusions and Problems

- For $q=2^{m}$, we gave the BEST known upper bounds for Kakeya sets in \mathbb{F}_{q}^{n}.
- For m odd, up to $m=13$, we made the BEST choice among functions of the form APN power $+x^{2^{i}}$.

Conclusions and Problems

- For $q=2^{m}$, we gave the BEST known upper bounds for Kakeya sets in \mathbb{F}_{q}^{n}.
- For m odd, up to $m=13$, we made the BEST choice among functions of the form APN power $+x^{2^{i}}$.
- For m odd, is there a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, s.t.

$$
\max _{t \in \mathbb{F}_{q}}\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right|<(1 / 2+o(1)) q ?
$$

Conclusions and Problems

- For $q=2^{m}$, we gave the BEST known upper bounds for Kakeya sets in \mathbb{F}_{q}^{n}.
- For m odd, up to $m=13$, we made the BEST choice among functions of the form APN power $+x^{2^{i}}$.
- For m odd, is there a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, s.t.

$$
\begin{array}{r}
\max _{t \in \mathbb{F}_{q}}\left|\left\{f(x)+t x: x \in \mathbb{F}_{q}\right\}\right|<(1 / 2+o(1)) q ? \\
\text { known: }(5 / 8+o(1)) q
\end{array}
$$

References

- S. Kakeya, Some problems on maximum and minimum regarding ovals, Tohoku Science Reports, 6 (1917) 71-88.
- A. Besicovitch, On Kakeya's problem and a similar one, Mathematische Zeitschrift, 27 (1928) 312-320.

■ T. Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics, AMS, (1999) 129-162.

■ S. Saraf and M. Sudan, An improved lower bound on the size of Kakeya sets over finite fields, Anal. PDE, (1) (2008), 375-379.

- Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc., 22 (4) (2009) 1093-1097.
- A. Bluher, On $x^{q+1}+a x+b$, Finite Fields and Their Applications, 10 (2004) 285-305.

References

- S. Kopparty, V.F. Lev, S. Saraf, M. Sudan, Kakeya-type sets in finite vector spaces, J. Algebraic Combin., (34) (2011), 337 -355.

■ Z. Dvir, S. Kopparty, S. Saraf and M. Sudan, Extensions to the method of multiplicities with applications to Kakeya sets and mergers, Proc. of 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), (2009) 181-190.

