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The Kakeya problem in finite vector spaces

How small can a Kakeya set be in R2?

The classical Kakeya problem

Rn

The Kakeya problem in Fn
q

How small can a subset K of Fn
q be, given that it

contains a line in every direction?

For every x ∈ Fn
q, there exists y ∈ Fn

q such that
{y + tx : t ∈ Fq} ⊆ K .

⇓
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Examples:

trivial: K = Fn
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|K | ≥ Cn · qn, where Cn depends only on n.
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“This conjecture has had a significant influence in the
subject, in particular inspiring work on the sum-product
phenomenon in finite fields, which has since proven to
have many applications in number theory and computer
science.”

– Terence Tao, 24 March, 2008
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The upper bound: q fixed, n grows

There exists a Kakeya set K ⊂ Fn
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[Kopparty, Lev, Saraf & Sudan, 2011]
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For a function f : Fq → Fq, define

If (t) := {f (x) + tx : x ∈ Fq}, t ∈ Fq.

If f (x) 6= ax , then K is a Kakeya set of cardinality
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If (t) := {f (x) + tx : x ∈ Fq}, t ∈ Fq.

Goal: Find a function f : Fq → Fq, s.t.

as small as possiblemax
t∈Fq

|If (t)|
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Choose such a function f

To estimate |If (t)| =
∣∣{f (x) + tx : x ∈ Fq}

∣∣.

Goal: Find a function f : Fq → Fq, s.t.

as small as possiblemax
t∈Fq

∣∣{f (x) + tx : x ∈ Fq}
∣∣

For all f , there always exists a t ∈ Fq, s.t.

|If (t)|> q/2
[Kopparty, Lev, Saraf & Sudan, 2011]
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Remark

f (x) is of the form Gold APN power+x2i

.
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For q = 2m, we gave the BEST known upper bounds
for Kakeya sets in Fn

q.

Conclusions and Problems

maxt∈Fq

∣∣{f (x) + tx : x ∈ Fq}
∣∣ < (1/2 + o(1))q ?

For m odd, up to m = 13, we made the BEST choice

among functions of the form APN power+x2i

.

For m odd, is there a function f : Fq → Fq, s.t.

known: (5/8 + o(1))q



References

S. Kakeya, Some problems on maximum and minimum
regarding ovals, Tohoku Science Reports , 6 (1917) 71–88.

A. Besicovitch, On Kakeya’s problem and a similar one,
Mathematische Zeitschrift, 27 (1928) 312–320.

T. Wolff, Recent work connected with the Kakeya problem,
Prospects in Mathematics, AMS, (1999) 129–162.

Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer.
Math. Soc., 22 (4) (2009) 1093–1097.

S. Saraf and M. Sudan, An improved lower bound on the size of
Kakeya sets over finite fields, Anal. PDE, (1) (2008), 375 –379.

A. Bluher, On xq+1 + ax + b, Finite Fields and Their
Applications, 10 (2004) 285-305.



References

S. Kopparty, V.F. Lev, S. Saraf, M. Sudan, Kakeya-type sets in
finite vector spaces, J. Algebraic Combin., (34) (2011), 337
–355.

Z. Dvir, S. Kopparty, S. Saraf and M. Sudan, Extensions to the
method of multiplicities with applications to Kakeya sets and
mergers, Proc. of 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), (2009)
181–190.


