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Quasi-cyclic codes

Definition

Let n = m`, we say that C ⊆ Fn
q is `-quasi-cyclic if

(x1, . . . , x`, . . . , x`+1, . . . , x2`, xn−`+1, . . . , xn) ∈ C
⇒ (xn−`+1, . . . , xn, x1, . . . , x`, . . . , x`+1, . . . , x2`) ∈ C.

They have been studied:

Lally and Fitzpatrick [LF01],
Ling and Solé [LS01] and
Cayrel, Chabot and Necer [CCN10].

Application to the McEliece cryptosystem:

Berger, Cayrel, Gaborit and Otmani [BCGO09].
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Before defining quasi-BCH codes

Definition

Let Γ ∈ M`×`(Fq). We say that Γ is a primitive m-th root of unity
if

Γm = Id`,

∀0 < i < m, Γi 6= Id` and

∀0 ≤ i 6= j < m, det(Γi − Γj) 6= 0.

Definition

Let A be a any ring, we let A× be the group of units of A. In fact,
γ ∈ A is primitive m-th root of unity if γ i − 1 is a unit of A for
i = 1, . . . ,m − 1 and γm = 1.

Proposition

There exists, at least, one primitive (qs` − 1)-th root of unity in
M`×`(Fqs ).
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Quasi-cyclic codes

Definition

Let Γ ∈ M`×`(Fqs ) be a primitive m-th root of unity and δ > 0.
The quasi-BCH with respect to Γ of designed distance δ is

Q-BCH(Γ, δ) :=

{
(c1, . . . , cm) ∈

(
F`q
)m

:

m−1∑
j=0

(Γi )jcj+1 = 0 pour i = 1, . . . , δ − 1

}
.

4 / 19



Generalized Reed-Solomon code over rings (1)

Definition

Let 0 < k ≤ m be two integers.

Let ~x = (x1, . . . , xm) ∈ Am and ~v = (v1, . . . , vm) ∈ (A×)
m

such that

xi − xj ∈ A× and
xixj = xjxi

for all i 6= j .

The left submodule of Am generated by the vectors

(f (x1) · v1, . . . , f (xm) · vm) ∈ Am with f ∈ A[X ]<k

is called a left generalized Reed-Solomon code (LGRS) over A
with parameters [~v ,~x , k]A or [n, k] or [~x , k]A if there is no
confusion.
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Generalized Reed-Solomon code over rings (2)

One can also define right generalized Reed-Solomon (RGRS)
codes.

Definition

Let f =
d∑

i=0

fiX
i ∈ A[X ] and a ∈ A. We call left evaluation of f

at a the quantity

f (a) :=
d∑

i=0

fia
i ∈ A −→ for left GRS

and right evaluation of f at a the quantity

(a)f :=
d∑

i=0

ai fi ∈ A. −→ for right GRS
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Why Reed-Solomon codes over rings?

1 In [BCQ12] M. Barbier, C. Chabot and G. Quintin found
“good” F4 linear codes using Reed-Solomon codes over

F4

0 ω 0
ω ω2 ω2

1 ω2 1

 with ω ∈ F4 and F2[ω] = F4.

“Good” means that, over a fixed alphabet A, given n and k,
the minimum distance of our [n, k , ·]A-code is greater than the
minimum distance of all the other known [n, k, ·]A-codes.
Thanks to Markus Grassl.

2 M. Barbier, C. Chabot and G. Quintin tried to find other good
codes using Reed-Solomon codes over M`×`(Fq). These
codes are bad.

3 We can solve our current problem with them.
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Duality

Definition

Let ~x = (x1, . . . , xm) and ~y = (y1, . . . , ym) be two vectors of Am.
The inner product is defined as

〈~x , ~y〉 :=
m∑
i=0

xiyi .

Definition

Let S be a subset of Am. Then the set
{~x ∈ Am : ∀~s ∈ S , 〈~s,~x〉 = 0} denoted by S⊥ is called the right
dual of S and is a right submodule of Am.
We define similarly the left dual of S which we will denote by ⊥S.
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Duality for Reed-Solomon codes

Proposition

Let γ ∈ A be a primitive m-th root of unity.

Let ~x = (1, γ, γ2, . . . , γm−1) ∈ Am.

Then the right (resp. left) dual of the LGRS (resp. RGRS) code
with parameters [~x ,~x , k]A is the RRS (resp. LRS) code with
parameters [~x ,m − k]A.

Proposition

Let Γ ∈ M`×`(Fqs ) be a primitive

m-th root of unity and C = Q-BCHq(m, `, δ, Γ).

Then there exists a RRS code R over the ring M`×`(Fqs ) with
parameters [m,m − δ + 1, δ]M`×`(Fqs )

and an Fq-linear,

Fq-isometric embedding ψ : C → R.
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ψ is explicit

ψ is a linear embedding

ψ : C −→ (M`×`(Fqs ))m

defined by

(c11, . . . , c1`, . . . , cm1, . . . , cm`) 7−→
c11 0 . . . 0

...
...

...
c1` 0 . . . 0

 , . . . ,

cm1 0 . . . 0
...

...
...

cm` 0 . . . 0
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So we can apply the Welch-Berlekamp algorithm

Algorithm 1 Welch-Berlekamp for quasi-BCH codes

Require: a received vector ~y ∈ Fm`
q with at most τ ≤

⌊
δ−1
2

⌋
errors.

Ensure: the unique codeword within distance τ of ~y .
1: (Z1, . . . ,Zm)← ψ(~y).
2: Find Q = Q0(X ) + Q1(X )Y ∈ (M`×`(Fqs )[X ])[Y ] of degree 1

such that

1 (Γi−1,Zi )Q = 0 for all i = 1, . . . ,m,

2 deg Q0 ≤ m − τ − 1,

3 deg Q1 ≤ m − τ − 1− (k − 1).

3: f ← the unique root of Q in (M`×`(Fqs ))[X ]<k such that
d
(
(Z1, . . . ,Zm), ((I`)f , . . . , (Γm−1)f )

)
≤ τ .

4: return ψ−1
(
(I`)f , (Γ)f , . . . , (Γm−1)f

)
.
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Advantages and drawbacks

Until now, we have

generalized the known relation between Reed-Solomon
codes and BCH codes,

which allowed us to give an explicit decoding algorithm for
quasi-BCH codes.

But

the complexity analysis shows that the decoding algorithm is
not polynomial.

We have to find a way to make it polynomial.

We cannot apply list-decoding Guruswami-Sudan
algorithms.

We have to implement it.

We have to find another approach.
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The block distance

Definition

Let n = m`. We define the `-block weight of
x = (x11, . . . , x1`, . . . , xm1, . . . , xm`) ∈ Fn

q to be

Block-w`(x) := |{i : (xi1, . . . , xi`) 6= 0}|

and the `-block distance between x and y ∈ Fn
q to be

Block-w`(x − y).
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Interleaved codes

Definition

Let C1, . . . , C` be error correcting codes of length m over Fq.
The interleaved code C with respect to C1, . . . , C` is a subset of

M`×m(Fq), equipped with the `-block distance with respect to
the columns, such that ~c ∈ C if and only if the i-th row of ~c is
a codeword of Ci for i = 1, . . . , `,

or (recall that n = m`)

Fn
q, equipped with the `-block distance such that

x = (x11, . . . , x1`, . . . , xm1, . . . , xm`) ∈ C if and only if
(x1i , x2i , . . . , xmi ) ∈ Ci for all i .

We let In(C1, . . . , C`) := C.

(c11, . . . , c1`, . . . , cm1, . . . , cm`)↔
c11 . . . cm1 ∈ C1

...
...

c1` . . . cm` ∈ C`
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Quasi-BCH codes and interleaved codes

Proposition

The quasi-BCH code C over Fq is an interleaved code of `
subcodes of Reed-Solomon codes over Fqs′ in the following sense:

there exist ` Reed-Solomon codes C1, . . . , C` over Fq and an
isometric isomorphism from C, equipped with the `-block distance,
to a subcode of the interleaved code with respect to C1, . . . , C`.
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Again the embedding is explicit

There exists s ′ ∈ N and P ∈ GL(Fqs′ ) such that the embedding σ
of the previous slide is given by

σ : C −→ In(C1, . . . ,C`)

v11
...

v1`
...

vm1
...

vm`


=

P−1

. . .

P−1





c11
...

c1`
...

cm1
...

cm`
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Advantages and drawbacks

We can decode quasi-BCH codes in polynomial time.

We can use any known unique decoding algorithm for
Reed-Solomon codes.
We can use the Guruswami-Sudan list decoding algorithm.
We can also use the Bleichenbacher, Kiayias and Yung
algorithm [BKY07] but only if C1 = C2 = · · · = C`.

We must implement this algorithm.

What about the other quasi-cyclic codes? Are they
interleaved codes?
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