On the decoding of quasi-BCH codes

Morgan Barbier¹ Clément Pernet² Guillaume Quintin³

¹University of Caen GREYC, France.

²University Joseph Fourier, INRIA/LIG-MOAIS, France.

³École polytechnique, INRIA Grace/LIX CRYPTO, France.

WCC 2013, April 16th

Definition

Let $n = m\ell$, we say that $\mathcal{C} \subseteq \mathbb{F}_q^n$ is ℓ -quasi-cyclic if

$$(x_1,\ldots,x_{\ell},\ldots,x_{\ell+1},\ldots,x_{2\ell},x_{n-\ell+1},\ldots,x_n) \in \mathcal{C}$$

$$\Rightarrow (x_{n-\ell+1},\ldots,x_n,x_1,\ldots,x_{\ell},\ldots,x_{\ell+1},\ldots,x_{2\ell}) \in \mathcal{C}.$$

- They have been studied:
 - Lally and Fitzpatrick [LF01],
 - Ling and Solé [LS01] and
 - Cayrel, Chabot and Necer [CCN10].
- Application to the McEliece cryptosystem:
 - Berger, Cayrel, Gaborit and Otmani [BCGO09].

Before defining quasi-BCH codes

Definition

Let $\Gamma\in M_{\ell\times\ell}(\mathbb{F}_q).$ We say that Γ is a primitive m-th root of unity if

$$\begin{aligned} & \Gamma^m = Id_{\ell}, \\ & \forall 0 < i < m, \quad \Gamma^i \neq Id_{\ell} \text{ and} \\ & \forall 0 \leq i \neq j < m, \quad \det(\Gamma^i - \Gamma^j) \neq 0 \end{aligned}$$

Definition

Let A be a any ring, we let A^{\times} be the group of units of A. In fact, $\gamma \in A$ is primitive m-th root of unity if $\gamma^i - 1$ is a unit of A for i = 1, ..., m - 1 and $\gamma^m = 1$.

Proposition

There exists, at least, one primitive $(q^{s\ell} - 1)$ -th root of unity in $M_{\ell \times \ell}(\mathbb{F}_{q^s})$.

Definition

Let $\Gamma \in M_{\ell \times \ell}(\mathbb{F}_{q^s})$ be a primitive m-th root of unity and $\delta > 0$. The **quasi-BCH** with respect to Γ of designed distance δ is

$$\mathsf{Q}\text{-}\mathsf{B}\mathsf{C}\mathsf{H}(\mathsf{\Gamma},\delta) := \left\{ (c_1,\ldots,c_m) \in \left(\mathbb{F}_q^\ell\right)^m : \\ \sum_{j=0}^{m-1} (\mathsf{\Gamma}^i)^j c_{j+1} = 0 \text{ pour } i = 1,\ldots,\delta-1 \right\}.$$

Generalized Reed-Solomon code over rings (1)

Definition

• Let $0 < k \le m$ be two integers.

• Let $\vec{x} = (x_1, \dots, x_m) \in A^m$ and $\vec{v} = (v_1, \dots, v_m) \in (A^{\times})^m$ such that

•
$$x_i - x_j \in A^{\times}$$
 and

•
$$x_i x_j = x_j x_i$$

for all $i \neq j$.

The left submodule of A^m generated by the vectors

$$(f(x_1) \cdot v_1, \ldots, f(x_m) \cdot v_m) \in A^m$$
 with $f \in A[X]_{< k}$

is called a left generalized Reed-Solomon code (LGRS) over A with parameters $[\vec{v}, \vec{x}, k]_A$ or [n, k] or $[\vec{x}, k]_A$ if there is no confusion.

Generalized Reed-Solomon code over rings (2)

One can also define **right generalized Reed-Solomon (RGRS)** codes.

Definition

Let $f = \sum_{i=0}^{d} f_i X^i \in A[X]$ and $a \in A$. We call left evaluation of f at a the quantity

$$f(a) := \sum_{i=0}^{d} f_i a^i \in A \quad \longrightarrow \textit{ for left GRS}$$

and right evaluation of f at a the quantity

$$(a)f := \sum_{i=0}^{d} a^{i} f_{i} \in A. \longrightarrow \textit{for right GRS}$$

Why Reed-Solomon codes over rings?

In [BCQ12] M. Barbier, C. Chabot and G. Quintin found "good" 𝔽₄ linear codes using **Reed-Solomon codes over**

$$\mathbb{F}_4 \left[egin{pmatrix} 0 & \omega & 0 \ \omega & \omega^2 & \omega^2 \ 1 & \omega^2 & 1 \end{pmatrix}
ight] ext{ with } \omega \in \mathit{F}_4 ext{ and } \mathbb{F}_2[\omega] = \mathbb{F}_4.$$

- "Good" means that, over a fixed alphabet A, given n and k, the minimum distance of our [n, k, ·]_A-code is greater than the minimum distance of all the other known [n, k, ·]_A-codes.
 Thanks to Markus Grassl.
- 2 M. Barbier, C. Chabot and G. Quintin tried to find other good codes using Reed-Solomon codes over M_{ℓ×ℓ}(F_q). These codes are bad.
- 3 We can solve our current problem with them.

Duality

Definition

Let $\vec{x} = (x_1, \dots, x_m)$ and $\vec{y} = (y_1, \dots, y_m)$ be two vectors of A^m . The **inner product** is defined as

$$\langle \vec{x}, \vec{y} \rangle := \sum_{i=0}^m x_i y_i.$$

Definition

Let S be a subset of A^m . Then the set $\{\vec{x} \in A^m : \forall \vec{s} \in S, \langle \vec{s}, \vec{x} \rangle = 0\}$ denoted by S^{\perp} is called the **right dual of** S and is a right submodule of A^m . We define similarly the **left dual of** S which we will denote by $^{\perp}S$.

Duality for Reed-Solomon codes

Proposition

• Let
$$\gamma \in A$$
 be a primitive m-th root of unity.

• Let
$$\vec{x} = (1, \gamma, \gamma^2, \dots, \gamma^{m-1}) \in A^m$$
.

Then the right (resp. left) dual of the LGRS (resp. RGRS) code with parameters $[\vec{x}, \vec{x}, k]_A$ is the RRS (resp. LRS) code with parameters $[\vec{x}, m - k]_A$.

Proposition

- Let $\Gamma \in M_{\ell imes \ell}(\mathbb{F}_{q^s})$ be a primitive
- *m*-th root of unity and C = Q-BCH_q $(m, \ell, \delta, \Gamma)$.

Then there exists a RRS code \mathcal{R} over the ring $M_{\ell \times \ell}(\mathbb{F}_{q^s})$ with parameters $[m, m - \delta + 1, \delta]_{M_{\ell \times \ell}(\mathbb{F}_{q^s})}$ and an \mathbb{F}_q -linear, \mathbb{F}_q -isometric embedding $\psi : \mathcal{C} \to \mathcal{R}$.

ψ is a linear embedding

$$\psi: \mathcal{C} \longrightarrow (M_{\ell \times \ell}(\mathbb{F}_{q^s}))^m$$

defined by

$$\begin{pmatrix} c_{11}, \dots, c_{1\ell}, \dots, c_{m1}, \dots, c_{m\ell} \end{pmatrix} \longmapsto \\ \begin{bmatrix} \begin{pmatrix} c_{11} & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ c_{1\ell} & 0 & \dots & 0 \end{pmatrix}, \dots, \begin{pmatrix} c_{m1} & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ c_{m\ell} & 0 & \dots & 0 \end{pmatrix} \end{bmatrix}$$

Algorithm 1 Welch-Berlekamp for quasi-BCH codes

Require: a received vector $\vec{y} \in \mathbb{F}_q^{m\ell}$ with at most $\tau \leq \lfloor \frac{\delta-1}{2} \rfloor$ errors. **Ensure:** the unique codeword within distance τ of \vec{y} .

- 1: $(Z_1,\ldots,Z_m) \leftarrow \psi(\vec{y}).$
- 2: Find $Q = Q_0(X) + Q_1(X)Y \in (M_{\ell imes \ell}(\mathbb{F}_{q^s})[X])[Y]$ of degree 1 such that

1
$$(\Gamma^{i-1}, Z_i)Q = 0$$
 for all $i = 1, ..., m$,

2 deg
$$Q_0 \le m - \tau - 1$$
,

3 deg
$$Q_1 \leq m - \tau - 1 - (k - 1)$$
.

3: $f \leftarrow$ the unique root of Q in $(M_{\ell \times \ell}(\mathbb{F}_{q^s}))[X]_{<k}$ such that $d\left((Z_1, \ldots, Z_m), ((I_\ell)f, \ldots, (\Gamma^{m-1})f)\right) \leq \tau$. 4: return $\psi^{-1}\left((I_\ell)f, (\Gamma)f, \ldots, (\Gamma^{m-1})f\right)$.

Advantages and drawbacks

Until now, we have

- generalized the known relation between Reed-Solomon codes and BCH codes,
- which allowed us to give an explicit decoding algorithm for quasi-BCH codes.

But

- the complexity analysis shows that the decoding algorithm is not polynomial.
- We have to find a way to make it polynomial.
- We cannot apply list-decoding Guruswami-Sudan algorithms.
- We have to **implement it**.
- We have to find **another approach**.

Definition

Let $n = m\ell$. We define the ℓ -block weight of $x = (x_{11}, \ldots, x_{1\ell}, \ldots, x_{m1}, \ldots, x_{m\ell}) \in \mathbb{F}_q^n$ to be

$$\mathsf{Block-w}_{\ell}(x) := |\{i : (x_{i1}, \dots, x_{i\ell}) \neq 0\}|$$

and the ℓ -block distance between x and $y \in \mathbb{F}_q^n$ to be Block-w $_\ell(x - y)$.

Interleaved codes

Definition

Let C_1, \ldots, C_ℓ be error correcting codes of length *m* over \mathbb{F}_q . The **interleaved code** C **with respect to** C_1, \ldots, C_ℓ is a subset of

• $M_{\ell \times m}(\mathbb{F}_q)$, equipped with the ℓ -block distance with respect to the columns, such that $\vec{c} \in C$ if and only if the *i*-th row of \vec{c} is a codeword of C_i for $i = 1, \ldots, \ell$,

or (recall that $n = m\ell$)

• $\mathbb{F}_{q^{\prime}}^{n}$, equipped with the ℓ -block distance such that $x = (x_{11}, \ldots, x_{1\ell}, \ldots, x_{m1}, \ldots, x_{m\ell}) \in \mathcal{C}$ if and only if $(x_{1i}, x_{2i}, \ldots, x_{mi}) \in \mathcal{C}_i$ for all i.

We let $In(\mathcal{C}_1,\ldots,\mathcal{C}_\ell) := \mathcal{C}$.

Proposition

The quasi-BCH code C over \mathbb{F}_q is an interleaved code of ℓ subcodes of Reed-Solomon codes over $\mathbb{F}_{a^{s'}}$ in the following sense:

there exist ℓ Reed-Solomon codes C_1, \ldots, C_ℓ over \mathbb{F}_q and an isometric isomorphism from C, equipped with the ℓ -block distance, to a subcode of the interleaved code with respect to C_1, \ldots, C_ℓ .

There exists $s' \in \mathbb{N}$ and $P \in GL(\mathbb{F}_{q^{s'}})$ such that the embedding σ of the previous slide is given by

$$\sigma: \mathcal{C} \longrightarrow \operatorname{In}(\mathcal{C}_{1}, \dots, \mathcal{C}_{\ell})$$

$$\begin{pmatrix} v_{11} \\ \vdots \\ v_{1\ell} \\ \vdots \\ v_{m1} \\ \vdots \\ v_{m\ell} \end{pmatrix} = \begin{pmatrix} P^{-1} & & \\ & \ddots & \\ & P^{-1} \end{pmatrix} \begin{pmatrix} c_{11} \\ \vdots \\ c_{1\ell} \\ \vdots \\ c_{m1} \\ \vdots \\ c_{m\ell} \end{pmatrix}$$

• We can decode quasi-BCH codes in **polynomial time**.

- We can use any known **unique decoding** algorithm for Reed-Solomon codes.
- We can use the **Guruswami-Sudan list decoding** algorithm.
- We can also use the **Bleichenbacher**, Kiayias and Yung algorithm [BKY07] but only if $C_1 = C_2 = \cdots = C_\ell$.
- We must **implement this algorithm**.
- What about the other quasi-cyclic codes? Are they interleaved codes?

References I

- T. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani.
 Reducing Key Length of the McEliece Cryptosystem.
 In Proceedings of the 2nd International Conference on Cryptology in Africa: Progress in Cryptology, AFRICACRYPT '09, pages 77–97, Berlin, Heidelberg, 2009. Springer-Verlag.
- M. Barbier, C. Chabot, and G. Quintin. On quasi-cyclic codes as a generalization of cyclic codes. *Finite Fields and Their Applications*, 18(5):904–919, 2012.
- D. Bleichenbacher, A Kiayias, and M. Yung. Decoding interleaved Reed-Solomon codes over noisy channels.

Theoretical Computer Science, 379(3):348–360, 2007. Automata, Languages and Programming.

P.-L. Cayrel, C. Chabot, and A. Necer.
 Quasi-cyclic codes as codes over rings of matrices.
 Finite Fields and Their Applications, 16(2):100–115, 2010.

K. Lally and P. Fitzpatrick.
 Algebraic structure of quasicyclic codes.
 Discrete Applied Mathematics, 111(1-2):157-175, 2001.

S. Ling and P. Solé.

On the algebraic structure of quasi-cyclic codes .I. Finite fields.

IEEE Trans. Inform. Theory, 47(7):2751–2760, nov 2001.