On the decoding of quasi-BCH codes

Morgan Barbier ${ }^{1}$ Clément Pernet ${ }^{2}$ Guillaume Quintin ${ }^{3}$
${ }^{1}$ University of Caen GREYC, France.
${ }^{2}$ University Joseph Fourier, INRIA/LIG-MOAIS, France.
${ }^{3}$ École polytechnique, INRIA Grace/LIX CRYPTO, France.

WCC 2013, April 16th

Definition

Let $n=m \ell$, we say that $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ is ℓ-quasi-cyclic if

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{\ell}, \ldots, x_{\ell+1}, \ldots, x_{2 \ell}, x_{n-\ell+1}, \ldots, x_{n}\right) \in \mathcal{C} \\
& \quad \Rightarrow\left(x_{n-\ell+1}, \ldots, x_{n}, x_{1}, \ldots, x_{\ell}, \ldots, x_{\ell+1}, \ldots, x_{2 \ell}\right) \in \mathcal{C} .
\end{aligned}
$$

- They have been studied:
- Lally and Fitzpatrick [LF01],
- Ling and Solé [LS01] and
- Cayrel, Chabot and Necer [CCN10].
- Application to the McEliece cryptosystem:
- Berger, Cayrel, Gaborit and Otmani [BCGO09].

Definition

Let $\Gamma \in M_{\ell \times \ell}\left(\mathbb{F}_{q}\right)$. We say that Γ is a primitive m-th root of unity if

■ $\Gamma^{m}=l d_{\ell}$,

- $\forall 0<i<m, \quad \Gamma^{i} \neq I d_{\ell}$ and
- $\forall 0 \leq i \neq j<m, \quad \operatorname{det}\left(\Gamma^{i}-\Gamma^{j}\right) \neq 0$.

Definition

Let A be a any ring, we let A^{\times}be the group of units of A. In fact, $\gamma \in A$ is primitive m-th root of unity if $\gamma^{i}-1$ is a unit of A for $i=1, \ldots, m-1$ and $\gamma^{m}=1$.

Proposition

There exists, at least, one primitive $\left(q^{s \ell}-1\right)$-th root of unity in $M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)$.

Definition

Let $\Gamma \in M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)$ be a primitive m-th root of unity and $\delta>0$. The quasi-BCH with respect to Γ of designed distance δ is

$$
\begin{aligned}
& \mathrm{Q}-\mathrm{BCH}(\Gamma, \delta):=\left\{\left(c_{1}, \ldots, c_{m}\right) \in\left(\mathbb{F}_{q}^{\ell}\right)^{m}:\right. \\
&\left.\sum_{j=0}^{m-1}\left(\Gamma^{i}\right)^{j} c_{j+1}=0 \text { pour } i=1, \ldots, \delta-1\right\} .
\end{aligned}
$$

Definition

- Let $0<k \leq m$ be two integers.
- Let $\vec{x}=\left(x_{1}, \ldots, x_{m}\right) \in A^{m}$ and $\vec{v}=\left(v_{1}, \ldots, v_{m}\right) \in\left(A^{\times}\right)^{m}$ such that

$$
\begin{aligned}
& \text { ■ } x_{i}-x_{j} \in A^{\times} \text {and } \\
& x_{i} x_{j}=x_{j} x_{i}
\end{aligned}
$$

$$
\text { for all } i \neq j
$$

The left submodule of A^{m} generated by the vectors

$$
\left(f\left(x_{1}\right) \cdot v_{1}, \ldots, f\left(x_{m}\right) \cdot v_{m}\right) \in A^{m} \text { with } f \in A[X]_{<k}
$$

is called a left generalized Reed-Solomon code (LGRS) over A with parameters $[\vec{v}, \vec{x}, k]_{A}$ or $[n, k]$ or $[\vec{x}, k]_{A}$ if there is no confusion.

Generalized Reed-Solomon code over rings (2)

One can also define right generalized Reed-Solomon (RGRS) codes.

Definition

Let $f=\sum_{i=0}^{d} f_{i} X^{i} \in A[X]$ and $a \in A$. We call left evaluation of f at a the quantity

$$
f(a):=\sum_{i=0}^{d} f_{i} a^{i} \in A \quad \longrightarrow \text { for left } G R S
$$

and right evaluation of f at a the quantity

$$
\text { (a) } f:=\sum_{i=0}^{d} a^{i} f_{i} \in A . \quad \longrightarrow \text { for right } G R S
$$

1 In [BCQ12] M. Barbier, C. Chabot and G. Quintin found "good" \mathbb{F}_{4} linear codes using Reed-Solomon codes over

$$
\mathbb{F}_{4}\left[\left(\begin{array}{ccc}
0 & \omega & 0 \\
\omega & \omega^{2} & \omega^{2} \\
1 & \omega^{2} & 1
\end{array}\right)\right] \text { with } \omega \in F_{4} \text { and } \mathbb{F}_{2}[\omega]=\mathbb{F}_{4} .
$$

■ "Good" means that, over a fixed alphabet A, given n and k, the minimum distance of our $[n, k, \cdot]_{A}$-code is greater than the minimum distance of all the other known $[n, k, \cdot]_{A}$-codes.

- Thanks to Markus Grassl.

2 M. Barbier, C. Chabot and G. Quintin tried to find other good codes using Reed-Solomon codes over $M_{\ell \times \ell}\left(\mathbb{F}_{q}\right)$. These codes are bad.
3 We can solve our current problem with them.

Definition

Let $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\vec{y}=\left(y_{1}, \ldots, y_{m}\right)$ be two vectors of A^{m}. The inner product is defined as

$$
\langle\vec{x}, \vec{y}\rangle:=\sum_{i=0}^{m} x_{i} y_{i} .
$$

Definition

Let S be a subset of A^{m}. Then the set $\left\{\vec{x} \in A^{m}: \forall \vec{s} \in S,\langle\vec{s}, \vec{x}\rangle=0\right\}$ denoted by S^{\perp} is called the right dual of S and is a right submodule of A^{m}.
We define similarly the left dual of S which we will denote by ${ }^{\perp} S$.

Proposition

- Let $\gamma \in A$ be a primitive m-th root of unity.
- Let $\vec{x}=\left(1, \gamma, \gamma^{2}, \ldots, \gamma^{m-1}\right) \in A^{m}$.

Then the right (resp. left) dual of the LGRS (resp. RGRS) code with parameters $[\vec{x}, \vec{x}, k]_{A}$ is the RRS (resp. LRS) code with parameters $[\vec{x}, m-k]_{A}$.

Proposition

- Let $\Gamma \in M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)$ be a primitive
- m-th root of unity and $\mathcal{C}=\mathrm{Q}-\mathrm{BCH}_{q}(m, \ell, \delta, \Gamma)$.

Then there exists a $R R S$ code \mathcal{R} over the ring $M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)$ with parameters $[m, m-\delta+1, \delta]_{M_{\ell \times \ell}\left(\mathbb{F}_{q} s\right)}$ and an \mathbb{F}_{q}-linear, \mathbb{F}_{q}-isometric embedding $\psi: \mathcal{C} \rightarrow \mathcal{R}$.
ψ is a linear embedding

$$
\psi: \mathcal{C} \longrightarrow\left(M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)\right)^{m}
$$

defined by

$$
\begin{aligned}
& \left(c_{11}, \ldots, c_{1 \ell}, \ldots, c_{m 1}, \ldots, c_{m \ell}\right) \longmapsto \\
& {\left[\left(\begin{array}{cccc}
c_{11} & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
c_{1 \ell} & 0 & \ldots & 0
\end{array}\right), \ldots,\left(\begin{array}{cccc}
c_{m 1} & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
c_{m \ell} & 0 & \ldots & 0
\end{array}\right)\right]}
\end{aligned}
$$

Algorithm 1 Welch-Berlekamp for quasi-BCH codes
Require: a received vector $\vec{y} \in \mathbb{F}_{q}^{m \ell}$ with at most $\tau \leq\left\lfloor\frac{\delta-1}{2}\right\rfloor$ errors.
Ensure: the unique codeword within distance τ of \vec{y}.
1: $\left(Z_{1}, \ldots, Z_{m}\right) \leftarrow \psi(\vec{y})$.
2: Find $Q=Q_{0}(X)+Q_{1}(X) Y \in\left(M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)[X]\right)[Y]$ of degree 1 such that
$1\left(\Gamma^{i-1}, Z_{i}\right) Q=0$ for all $i=1, \ldots, m$,
$2 \operatorname{deg} Q_{0} \leq m-\tau-1$,
$3 \operatorname{deg} Q_{1} \leq m-\tau-1-(k-1)$.
3: $f \leftarrow$ the unique root of Q in $\left(M_{\ell \times \ell}\left(\mathbb{F}_{q^{s}}\right)\right)[X]_{<k}$ such that $d\left(\left(Z_{1}, \ldots, Z_{m}\right),\left(\left(I_{\ell}\right) f, \ldots,\left(\Gamma^{m-1}\right) f\right)\right) \leq \tau$.
4: return $\psi^{-1}\left(\left(I_{\ell}\right) f,(\Gamma) f, \ldots,\left(\Gamma^{m-1}\right) f\right)$.

Until now, we have

- generalized the known relation between Reed-Solomon codes and BCH codes,
- which allowed us to give an explicit decoding algorithm for quasi-BCH codes.

But

- the complexity analysis shows that the decoding algorithm is not polynomial.
- We have to find a way to make it polynomial.

■ We cannot apply list-decoding Guruswami-Sudan algorithms.

- We have to implement it.
- We have to find another approach.

Definition

Let $n=m \ell$. We define the ℓ-block weight of $x=\left(x_{11}, \ldots, x_{1 \ell}, \ldots, x_{m 1}, \ldots, x_{m \ell}\right) \in \mathbb{F}_{q}^{n}$ to be Block-w $_{\ell}(x):=\left|\left\{i:\left(x_{i 1}, \ldots, x_{i \ell}\right) \neq 0\right\}\right|$
and the ℓ-block distance between x and $y \in \mathbb{F}_{q}^{n}$ to be Block-w $_{\ell}(x-y)$.

Interleaved codes

Definition

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}$ be error correcting codes of length m over \mathbb{F}_{q}. The interleaved code \mathcal{C} with respect to $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}$ is a subset of

- $M_{\ell \times m}\left(\mathbb{F}_{q}\right)$, equipped with the ℓ-block distance with respect to the columns, such that $\vec{c} \in \mathcal{C}$ if and only if the i-th row of \vec{c} is a codeword of \mathcal{C}_{i} for $i=1, \ldots, \ell$, or (recall that $n=m \ell$)
- \mathbb{F}_{q}^{n}, equipped with the ℓ-block distance such that $x=\left(x_{11}, \ldots, x_{1 \ell}, \ldots, x_{m 1}, \ldots, x_{m \ell}\right) \in \mathcal{C}$ if and only if $\left(x_{1 i}, x_{2 i}, \ldots, x_{m i}\right) \in \mathcal{C}_{i}$ for all i.
We let $\ln \left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}\right):=\mathcal{C}$.

$$
\left(c_{11}, \ldots, c_{1 \ell}, \ldots, c_{m 1}, \ldots, c_{m \ell}\right) \leftrightarrow \begin{array}{|c|c|c|}
\hline c_{11} & \ldots & c_{m 1} \\
\hline \vdots & & \vdots \\
\hline c_{1 \ell} & \ldots & c_{m \ell} \\
\hline
\end{array} \in \mathcal{C}_{1}
$$

Proposition

The quasi-BCH code \mathcal{C} over \mathbb{F}_{q} is an interleaved code of ℓ subcodes of Reed-Solomon codes over $\mathbb{F}_{q^{s^{s}}}$ in the following sense:
there exist ℓ Reed-Solomon codes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}$ over \mathbb{F}_{q} and an isometric isomorphism from \mathcal{C}, equipped with the ℓ-block distance, to a subcode of the interleaved code with respect to $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}$.

There exists $s^{\prime} \in \mathbb{N}$ and $P \in G L\left(\mathbb{F}_{q^{s^{s}}}\right)$ such that the embedding σ of the previous slide is given by

$$
\sigma: \mathcal{C} \longrightarrow \ln \left(\mathcal{C}_{1}, \ldots, C_{\ell}\right)
$$

$$
\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 \ell} \\
\vdots \\
v_{m 1} \\
\vdots \\
v_{m \ell}
\end{array}\right)=\left(\begin{array}{ccc}
P^{-1} & & \\
& \ddots & \\
& & P^{-1}
\end{array}\right)\left(\begin{array}{c}
c_{11} \\
\vdots \\
c_{1 \ell} \\
\vdots \\
c_{m 1} \\
\vdots \\
c_{m \ell}
\end{array}\right)
$$

- We can decode quasi-BCH codes in polynomial time.
- We can use any known unique decoding algorithm for Reed-Solomon codes.
- We can use the Guruswami-Sudan list decoding algorithm.

■ We can also use the Bleichenbacher, Kiayias and Yung algorithm [BKY07] but only if $\mathcal{C}_{1}=\mathcal{C}_{2}=\cdots=\mathcal{C}_{\ell}$.
■ We must implement this algorithm.
■ What about the other quasi-cyclic codes? Are they interleaved codes?

圊 T. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length of the McEliece Cryptosystem. In Proceedings of the 2nd International Conference on Cryptology in Africa: Progress in Cryptology, AFRICACRYPT '09, pages 77-97, Berlin, Heidelberg, 2009. Springer-Verlag.
围 M. Barbier, C. Chabot, and G. Quintin.
On quasi-cyclic codes as a generalization of cyclic codes.
Finite Fields and Their Applications, 18(5):904-919, 2012.
R D. Bleichenbacher, A Kiayias, and M. Yung.
Decoding interleaved Reed-Solomon codes over noisy channels.
Theoretical Computer Science, 379(3):348-360, 2007.
Automata, Languages and Programming.

围 P．－L．Cayrel，C．Chabot，and A．Necer．
Quasi－cyclic codes as codes over rings of matrices．
Finite Fields and Their Applications，16（2）：100－115， 2010.
目 K．Lally and P．Fitzpatrick．
Algebraic structure of quasicyclic codes．
Discrete Applied Mathematics，111（1－2）：157－175， 2001.
㫫 S．Ling and P．Solé．
On the algebraic structure of quasi－cyclic codes ．I．Finite fields．
IEEE Trans．Inform．Theory，47（7）：2751－2760，nov 2001.

