A New Class of Optimal Variable-Weight Optical Orthogonal Codes

Jin-Ho Chung ${ }^{1}$ Kyeongcheol Yang ${ }^{2 *}$

${ }^{1}$ School of Electrical and Computer Engineering
Ulsan National Institute of Science and Technology (UNIST), Korea
${ }^{2}$ Department of Electrical Engineering
Pohang University of Science and Technology (POSTECH), Korea

> WCC 2013
> Bergen, Norway
> April 16, 2013

Outline

Outline

(2) New Construction of VW-OOCs

Outline

(1) Introduction
(2) New Construction of VW-OOCs
(3) Optimality and New Parameters

Outline

(1) Introduction
(2) New Construction of VW-OOCs
(3) Optimality and New Parameters

4 Conclusion

Optical Code-Division Multiple-Access

- Unipolar transmission: ' 0 ' (off) and ' 1 ' (on)
- Spreading codes: optical orthogonal codes
- Applications: optical fiber networks, radar, sonar systems, etc.

Optical Fiber

S_{2}

An OOC of Length 28

Correlation of Optical Orthogonal Codes

- Let $\mathcal{V}=\left\{V_{i} \mid 0 \leq i \leq L-1\right\}$ be a set of $\{0,1\}$-sequences $V_{i} \triangleq\left\{V_{i}(t)\right\}_{t=0}^{N-1}$.
- The correlation between V_{i} and $V_{i^{\prime}}$ is defined as

$$
\Lambda_{i, i^{\prime}}(\tau)=\sum_{t=0}^{N-1} V_{i}(t) V_{i^{\prime}}\left(\langle t+\tau\rangle_{N}\right)
$$

where $\langle x\rangle_{y}$ means x modulo y. If $i=i^{\prime}$, it is called the autocorrelation of V_{i}.

- If the weight of V_{i} is the same for all i, it is called a constant-weight OOC (CW-OOC).
Otherwise, it is a variable-weight OOC (VW-OOC).

Variable-Weight Optical Orthogonal Codes

The set \mathcal{V} is called an $\left(N, W, \Lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}, R\right) \mathrm{VW}-\mathrm{OOC}$ with

$$
\begin{aligned}
& W=\left\{w_{1}, \ldots, w_{m}\right\} \\
& \Lambda_{\mathrm{a}}=\left\{\lambda_{\mathrm{a}}(1), \ldots, \lambda_{\mathrm{a}}(m)\right\} \\
& R=\left\{r_{1}, \ldots, r_{m}\right\}
\end{aligned}
$$

if it satisfies the following three conditions:
a) there are exactly $r_{j}|\mathcal{V}|$ codewords with weight w_{j} for $1 \leq j \leq m$, where $r_{1}+\cdots+r_{m}=1$;
b) the autocorrelation of V_{i} with weight w_{j} in \mathcal{V} satisfies

$$
\Lambda_{i, i}(\tau) \leq \lambda_{\mathrm{a}}(j), \quad\langle\tau\rangle_{N} \neq 0
$$

c) the crosscorrelation between V_{i} and $V_{i^{\prime}}$ with $i \neq i^{\prime}$ in \mathcal{V} is upper bounded by

$$
\Lambda_{i, i^{\prime}}(\tau) \leq \lambda_{\mathrm{c}}
$$

Signal Sets for Unipolar and Bipolar Transmissions

- Both unipolar and bipolar transmissions employ $\{0,1\}$-sequences.
- However, the two transmissions require different characteristics of $\{0,1\}$-sequences.

	Unipolar	Bipolar
Measure	$\sum_{t=0}^{N-1} A(t) B(t+\tau)$	$\sum_{t=0}^{N-1}(-1)^{A(t)-B(t+\tau)}$
Weight	$w \ll N$	$w \approx \frac{N}{2}$

- Therefore, design of an OOC with small correlation values is different from that of a $\{0,1\}$-sequence family with low correlation for bipolar transmission.

Special Cases of $\left(N, W, \Lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}, R\right)$ VW-OOCs

- ($\left.N, w, \lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}\right) \mathrm{CW}-$ OOC \mathcal{C}
- All the codewords have the same weight, that is, $m=1$;
- $\Lambda_{\mathrm{a}}=\left\{\lambda_{\mathrm{a}}\right\}$ and $R=\{1\}$;
- Johnson bound (IT 1962):

$$
|\mathcal{C}| \leq\left\lfloor\frac{1}{w}\left\lfloor\frac{N-1}{w-1}\left\lfloor\frac{N-2}{w-2}\left\lfloor\cdots\left\lfloor\frac{N-\lambda}{w-\lambda}\right\rfloor \cdots\right\rfloor\right\rfloor\right\rfloor\right\rfloor .
$$

where $\lambda=\max \left\{\lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}\right\}$.

- ($N, W, \lambda, R)$ VW-OOC \mathcal{V}
- $\lambda_{\mathrm{a}}(1)=\cdots=\lambda_{\mathrm{a}}(m)=\lambda_{\mathrm{c}}=\lambda_{\text {; }}$
- We will focus on the case that $\lambda=1$.

The Johnson Bound (1)

- $\Psi(N, w, \lambda)$: the maximum number of $\{0,1\}$-vectors of length N such that
(the inner product of any pair of row vectors) $\leq \lambda$.
- Consider an $M \times N\{0,1\}$-matrix $(M=\Psi(N, w, \lambda))$ whose rows are of weight w and the inner product of any two distinct rows are $\leq \lambda$.
- (each column sum $) \leq \Psi(N-1, w-1, \lambda-1)$
- $($ the total sum by columns $) \leq N \cdot \Psi(N-1, w-1, \lambda-1)$
- (the total sum by rows $)=w \cdot \Psi(N, w, \lambda)$
- Hence,

$$
\begin{equation*}
\Psi(N, w, \lambda) \leq\left\lfloor\frac{N}{w} \cdot \Psi(N-1, w-1, \lambda-1)\right\rfloor \tag{1}
\end{equation*}
$$

The Johnson Bound (2)

- Note that

$$
\Psi(N-\lambda, d-\lambda, \lambda-\lambda)=\left\lfloor\frac{N-\lambda}{w-\lambda}\right\rfloor
$$

- By a recursive application of (1), we obtain

$$
\Psi(N, w, \lambda) \leq \frac{N}{w}\left\lfloor\frac{N-1}{w-1}\left\lfloor\cdots\left\lfloor\frac{N-\lambda}{w-\lambda}\right\rfloor \cdots\right\rfloor\right\rfloor
$$

- Since each codeword of an OOC has N cyclic shifts, we can get the Johnson bound.

Bound for VW-OOC

- Yang Bound ${ }^{1}$: The size of an $\left(N, W, \Lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}, R\right) \mathrm{VW}$-OOC \mathcal{V} satisfying $\lambda_{\mathrm{a}}(i) \geq \lambda_{\mathrm{c}}$ for any $1 \leq i \leq m$ is upper bounded by

$$
|\mathcal{V}| \leq\left\lfloor\frac{(N-1)(N-2) \cdots\left(N-\lambda_{\mathrm{c}}\right)}{\sum_{i=1}^{m} r_{i} w_{i}\left(w_{i}-1\right) \cdots\left(w_{i}-\lambda_{\mathrm{c}}\right) / \lambda_{\mathrm{a}}(i)}\right\rfloor .
$$

- In particular, the size of an $(N, W, 1, R) \mathrm{VW}-\mathrm{OOC} \mathcal{V}$ is upper bounded by

$$
|\mathcal{V}| \leq\left\lfloor\frac{N-1}{\sum_{i=1}^{m} r_{i} w_{i}\left(w_{i}-1\right)}\right\rfloor
$$

[^0]
History of OOCs (1)

- Introduction and guidelines for OOCs
- Salehi (TCOM 1989)
- Salehi and Brackett (TCOM 1989)
- Chung, Salehi and Wei (IT 1989)
- Some optimal CW-OOCs:
- $\lambda \geq 1$: Chung and Kumar (IT 1990),

Yang and Fuja (IT 1995),
Moreno et al. (IT 1995, IT 2007)

- $\lambda=1$: Fuji-Hara and Miao (IT 2001),

Ge and Yin (IT 2001),
Buratti (DESI 2002),
Chang et al. (IT 2003),
Chu and Golomb (IT 2003),
Ma and Chang (IT 2004)

History of OOCs (2)

- 2-dimensional OOCs
- Moreno and Kumar (Allerton 2003): Introduction
- Omrani et al. (IT 2012): Several optimal 2-D OOCs
- ($N, W, 1, R$) VW-OOCs
- G.-C. Yang (TCOM 1996): Bounds on VW-OOCs and some optimal $(N, W, 1, R)$ VW-OOCs
- Wu et al. (IT 2010): $w_{i} \leq 5$ and $m=2$
- Zhao et al. (JCD 2010): $w_{i} \leq 6$ and $m=2$
- Jiang et al. (IT 2011): $w_{i} \leq 7$ and $m \leq 5$
- Buratti et al. (IT 2011): $w_{i} \leq 6$ and $m \leq 4$

Objective

Constituent CW-OOC

- Length
$p=(q-1)(q-2) L+1$
- Set size L
- Weight $q-1$
- Optimal with respect to the Johnson bound

Objective

Constituent CW-00C

- Length
$p=(q-1)(q-2) L+1$
- Set size L
- Weight $q-1$
- Optimal with respect to the Johnson bound

New VW-OOC

- Length $(q-1) p$
- Set size $(q+1) L$
- Weight $q-2, q-1$
- Optimal with respect to the Yang bound

Construction Setting for VW-OOCs

- Let p be an odd prime such that there exist a prime power q and a positive integer L satisfying $p=(q-1)(q-2) L+1$.
- Let \mathbb{F}_{q} be the finite field of q elements and α a primitive element of \mathbb{F}_{q}.
- Assume that $\mathcal{C} \triangleq\left\{C_{0}, \ldots, C_{L-1}\right\}$ is an optimal ($p, q-1,1,1$) CW-OOC with respect to the Johnson bound (For example, see G.-C. Yang (1995)).
- For $0 \leq i \leq L-1$, let the set of the nonzero positions of C_{i} be given by

$$
\operatorname{supp}\left(C_{i}\right)=\left\{u_{i, 1}, u_{i, 2}, \ldots, u_{i, q-1}\right\}
$$

where $0 \leq u_{i, 1}<u_{i, 2}<\cdots<u_{i, q-1} \leq p-1$.

New Construction of VW-00Cs

Construction A

- Let η be a one-to-one mapping from \mathbb{F}_{q} to \mathbb{Z}_{q} with $\eta(0)=0$.
- For $0 \leq i \leq L-1$ and $j \in \mathbb{F}_{q} \cup\{\infty\}$, define $X_{i, j} \triangleq\left\{X_{i, j}(t)\right\}_{t=0}^{(q-1) p-1}$ as

$$
X_{i, j}(t)= \begin{cases}1, & \text { if } t_{1}=u_{i, \eta\left(\alpha^{t_{0}}+j\right)} \in \operatorname{supp}\left(C_{i}\right) \\ & \text { and } \eta\left(\alpha^{t_{0}}+j\right) \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

when $j \in \mathbb{F}_{q}$, and

$$
X_{i, \infty}(t)= \begin{cases}1, & \text { if } t_{0}=0 \text { and } t_{1} \in \operatorname{supp}\left(C_{i}\right) \\ 0, & \text { otherwise }\end{cases}
$$

where $t_{0}=\langle t\rangle_{q-1}$ and $t_{1}=\langle t\rangle_{p}$.

Main Result

Theorem 1

Let \mathcal{X} be the OOC defined as

$$
\mathcal{X}=\left\{X_{i, j} \mid 0 \leq i \leq L-1, j \in \mathbb{F}_{q} \cup\{\infty\}\right\}
$$

where $X_{i, j}$ are given in Construction A. Then \mathcal{X} is an optimal $\left((q-1) p,\{q-2, q-1\}, 1,\left\{\frac{q-1}{q+1}, \frac{2}{q+1}\right\}\right)$ VW-OOC of size $(q+1) L$.

- Set size: $0 \leq i \leq L-1$ and $j \in \mathbb{F}_{q} \cup\{\infty\}$

$$
\Rightarrow \quad L \cdot(q+1)
$$

- Weight: $\mathcal{X}_{i, j}, j \in \mathbb{F}_{q} \backslash\{0\}$ - weight $q-2$

$$
\mathcal{X}_{i, 0} \text { and } \mathcal{X}_{i, \infty} \text { - weight } q-1
$$

- Fraction: $\left\{\frac{q-1}{q+1}, \frac{2}{q+1}\right\}$

New Construction - Example

- Assume that $p=13=3 \cdot 2 \cdot 2+1, q=4$, and $L=2$. The length of $X_{i, j}$ will be given by $3 \cdot 13=39$.
- Let $\eta(0)=0, \eta(1)=1, \eta(\alpha)=2$, and $\eta\left(\alpha^{2}\right)=3$.
- $X_{i, 0}$ and $X_{i, \infty}$ have weight 3 , and $X_{i, 1}, X_{i, \alpha}$ and $X_{i, \alpha^{2}}$ have weight 2 for $i=0,1$.
- As an example, the support of $X_{0,1}$ is given by

$$
\operatorname{supp}\left(X_{0,1}\right)=\left\{\left(1, u_{1,3}\right),\left(2, u_{1,2}\right)\right\}
$$

since $\eta\left(\alpha^{0}+1\right)=0, \eta(\alpha+1)=3$, and $\eta\left(\alpha^{2}+1\right)=2$.

New Construction - Illustration

- For $i=0,1$, the codeword C_{i} of length 13 can be extended to 5 codewords of length 39 with variable weights.

- $N=39, W=\{2,3\}, \lambda=1$, and $R=\left\{\frac{3}{5}, \frac{2}{5}\right\}$.

Correlation of New VW-OOCs (1)

- For $0 \leq \tau \leq(q-1) p-1$, let $\tau_{0}=\langle\tau\rangle_{q-1}$ and $\tau_{1}=\langle\tau\rangle_{p}$. The correlation $\Lambda_{(i, j),\left(i^{\prime}, j^{\prime}\right)}(\tau)$ between $X_{i, j}$ and $X_{i^{\prime}, j^{\prime}}$ can be written as

$$
\begin{aligned}
& \Lambda_{(i, j),\left(i^{\prime}, j^{\prime}\right)}(\tau) \\
& =\sum_{t=0}^{(q-1) p-1} I\left[X_{i, j}(t)=1\right] \cdot I\left[X_{i^{\prime}, j^{\prime}}(t+\tau)=1\right] \\
& =\sum_{t_{0}=0}^{q-2} \sum_{t_{1}=0}^{p-1} I\left[X_{i, j}(t)=1\right] \cdot I\left[X_{i^{\prime}, j^{\prime}}(t+\tau)=1\right]
\end{aligned}
$$

- It can be proved that $\Lambda_{(i, j),\left(i^{\prime}, j^{\prime}\right)}(\tau) \leq 1$ for any cases such that $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ or $\tau \neq 0$.

Correlation of New VW-OOCs (2)

- Case $j, j^{\prime} \in \mathbb{F}_{q}$:

$$
\begin{aligned}
& \Lambda_{(i, j),\left(i^{\prime}, j^{\prime}\right)}(\tau) \\
& \begin{array}{l}
=\sum_{t_{0}=0}^{q-2} \sum_{t_{1}=0}^{p-1} I\left[t_{1}=u_{i, \eta\left(\alpha^{t_{0}}+j\right)} \in \operatorname{supp}\left(C_{i}\right)\right] \\
\quad \cdot I\left[\left\langle t_{1}+\tau_{1}\right\rangle_{p}=u_{i^{\prime}, \eta\left(\alpha^{\left.t_{0}+\tau_{0}+j^{\prime}\right)}\right.} \in \operatorname{supp}\left(C_{\left.i^{\prime}\right)}\right)\right] \\
=\sum_{t_{0}=0}^{q-2} I\left[\tau_{1}=u_{i^{\prime}, \eta\left(\alpha^{\left.t_{0}+\tau_{0}+j^{\prime}\right)}\right.}-u_{i, \eta\left(\alpha^{\left.t_{0}+j\right)}\right.} \bmod p\right] \\
\leq 1\left[\alpha^{t_{0}}+j \neq 0\right] \cdot I\left[\alpha^{t_{0}+\tau_{0}}+j^{\prime} \neq 0\right] \\
\leq 1
\end{array}
\end{aligned}
$$

when $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ or $\tau \neq 0$.

Optimality of New VW-00Cs

- Optimality with respect to the Yang bound

$$
\begin{aligned}
L^{*} & =\left\lfloor\frac{(q-1) p}{\frac{q-1}{q+1} \cdot(q-2)(q-3)+\frac{2}{q+1} \cdot(q-1)(q-2)}\right\rfloor \\
& =\left\lfloor\frac{(q+1)(q-1)^{2}(q-2) L+(q+1)(q-1)-1}{(q-1)^{2}(q-2)}\right\rfloor \\
& =(q+1) L .
\end{aligned}
$$

Therefore, the set \mathcal{X} in Construction A is optimal with respect to the Yang bound.

Some New VW-OOCs with $W=\{6,7\}$

Yang's CW-OOC $\left(N, w, \lambda_{\mathrm{a}}, \lambda_{\mathrm{c}}\right)$	New VW-OOC (N, W, λ, R)
$(421,7,1,1)$	$\left(2947,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(463,7,1,1)$	$\left(3241,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(631,7,1,1)$	$\left(4417,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(967,7,1,1)$	$\left(6769,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1009,7,1,1)$	$\left(7063,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1051,7,1,1)$	$\left(7357,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1093,7,1,1)$	$\left(7651,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1303,7,1,1)$	$\left(9121,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1429,7,1,1)$	$\left(10003,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1723,7,1,1)$	$\left(12061,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(1933,7,1,1)$	$\left(13531,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$
$(2017,7,1,1)$	$\left(14119,\{6,7\}, 1,\left\{\frac{7}{9}, \frac{2}{9}\right\}\right)$

Conclusion

- We constructed a new optimal VW-OOCs from an optimal CW-OOC.
- The new optimal VW-OOC can have larger weights than the previously known VW-OOCs.
- Finding new extension methods for optimal VW-OOCs may be an interesting problem.

[^0]: ${ }^{1}$ Guu-Chang Yang, "Variable-weight OOCs for CDMA Networks with multiple performance requirements," TCOM 1996

