More Differentially 6-uniform Power Functions

The differential spectrum of $x \mapsto x^{2^{t}-1}$ for some t.

Céline Blondeau and Léo Perrin

Tuesday, April 16
WCC 2013, Bergen

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_{t}(x)=x^{2^{t}-1}$

Spectrum of $G_{t}(x)=x^{2^{t}-1}$ when $t=\frac{n-1}{2}$ and $t=\frac{k n+1}{3}$

Conclusion

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_{t}(x)=x^{2^{t}-1}$

Spectrum of $G_{t}(x)=x^{2^{t}-1}$ when $t=\frac{n-1}{2}$ and $t=\frac{k n+1}{3}$

Conclusion

Differential uniformity [Nyberg 1993]

Let $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{m}}$. Then:

$$
\delta(a, b)=\#\left\{x \in \mathbb{F}_{2^{n}}, F(x+a)+F(x)=b\right\}
$$

Differential uniformity of F :

$$
\delta(F)=\max _{a \neq 0, b \in \mathbb{F}_{2^{n}}} \delta(a, b)
$$

Almost-Perfect Non-linear (APN) function : $\delta(F)=2$

Monomials

$$
\begin{aligned}
F_{d}: & \mathbb{F}_{2 n} \\
x & \rightarrow \mathbb{F}_{2 n} \\
x & x^{d}
\end{aligned}
$$

Monomials

$$
\begin{aligned}
F_{d}: & \mathbb{F}_{2^{n}} \\
x & \rightarrow \mathbb{F}_{2^{n}}
\end{aligned}
$$

- $\delta(a, b)$: number of roots of $x^{d}+(x+a)^{d}=b$
- For $a \neq 0, \delta(a, b)=\delta\left(1, b / a^{d}\right)$

$$
\Rightarrow \delta(b)=\delta(1, b)
$$

Monomials

$$
\begin{aligned}
F_{d}: & \mathbb{F}_{2^{n}} \\
x & \rightarrow \mathbb{F}_{2^{n}}
\end{aligned}
$$

- $\delta(a, b)$: number of roots of $x^{d}+(x+a)^{d}=b$
- For $a \neq 0, \delta(a, b)=\delta\left(1, b / a^{d}\right)$

$$
\Rightarrow \delta(b)=\delta(1, b)
$$

- Permutation: $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$

$$
\delta(0)=\operatorname{gcd}\left(d, 2^{n}-1\right)-1
$$

Monomials

$$
\begin{aligned}
F_{d}: & \mathbb{F}_{2^{n}} \\
x & \rightarrow \mathbb{F}_{2^{n}}
\end{aligned}
$$

- $\delta(a, b)$: number of roots of $x^{d}+(x+a)^{d}=b$
- For $a \neq 0, \delta(a, b)=\delta\left(1, b / a^{d}\right)$

$$
\Rightarrow \delta(b)=\delta(1, b)
$$

- Permutation: $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$

$$
\delta(0)=\operatorname{gcd}\left(d, 2^{n}-1\right)-1
$$

- Literature: Differentially 2- and 4-uniform ones

Differential Spectrum

$$
\omega_{i}=\#\left\{b \in \mathbb{F}_{2^{n}}, \delta(b)=i\right\}
$$

The differential spectrum of a monomial F is:

$$
\mathbb{S}=\left\{\omega_{0}, \omega_{2}, \ldots, \omega_{\delta(F)}\right\}
$$

Differential Spectrum

$$
\omega_{i}=\#\left\{b \in \mathbb{F}_{2^{n}}, \delta(b)=i\right\}
$$

The differential spectrum of a monomial F is:

$$
\begin{gathered}
\mathbb{S}=\left\{\omega_{0}, \omega_{2}, \ldots, \omega_{\delta(F)}\right\} \\
\sum_{i=0}^{\delta(F)} \omega_{i}=2^{n}, \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_{i}=2^{n}
\end{gathered}
$$

Differential Spectrum

$$
\omega_{i}=\#\left\{b \in \mathbb{F}_{2^{n}}, \delta(b)=i\right\}
$$

The differential spectrum of a monomial F is:

$$
\mathbb{S}=\left\{\omega_{0}, \omega_{2}, \ldots, \omega_{\delta(F)}\right\}
$$

$$
\sum_{i=0}^{\delta(F)} \omega_{i}=2^{n}, \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_{i}=2^{n}
$$

$x \mapsto x^{e}$ has the same differential spectrum as $x \mapsto x^{d}$ if:

- $e \equiv 2^{k} \cdot d \bmod 2^{n}-1$
- $e \equiv d^{-1} \bmod 2^{n}-1$

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_{t}(x)=x^{2^{t}-1}$

Conclusion

General Results on $G_{t}(x)=x^{2^{t}-1}$

[Blondeau Canteaut Charpin 2011]

- Special values:

$$
\delta(0)=2^{\operatorname{gcd}(t, n)}-2, \delta(1)=2^{\operatorname{gcd}(t-1, n)},
$$

- Link with Linear Polynomials:
$\forall b \neq 0,1 \delta(b)=N_{b}-2$ where N_{b} is the number of roots of:

$$
P_{b}(x)=x^{2^{t}}+b x^{2}+(b+1) x
$$

- Link with System of Linear Equations:

$$
\left\{\begin{array}{l}
Q(y)=b y \\
\operatorname{Tr}(y)=0
\end{array}, Q(y)=\sum_{i=0}^{t-1} y^{2^{i}} .\right.
$$

The Symmetry Property

- Restricted Spectrum:

$$
\omega_{i}^{\prime}=\#\left\{b \in \mathbb{F}_{2^{n}} \backslash\{0,1\}, \delta(b)=i\right\}
$$

- Symmetry:

$$
G_{t}(x)=x^{2^{\mathrm{t}}-1}, \quad \mathbf{s}=n-\mathrm{t}+1, \quad G_{s}(x)=x^{2^{s}-1}
$$

G_{t} and G_{s} have the same restricted differential spectrum

Example for $n=14, G_{t}(x)=x^{2^{t}-1}$

The symmetry:

t	$\delta(0)$	$\delta(1)$	ω_{0}^{\prime}	ω_{2}^{\prime}	ω_{6}^{\prime}	ω_{14}^{\prime}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Example for $n=14, G_{t}(x)=x^{2^{t}-1}$

Gold: $x \rightarrow x^{3} \quad$ and \quad Inverse: $x \rightarrow x^{-1}$

t	$\delta(0)$	$\delta(1)$	ω_{0}^{\prime}	ω_{2}^{\prime}	ω_{6}^{\prime}	ω_{14}^{\prime}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Example for $n=14, G_{t}(x)=x^{2^{t}-1}$

n even: $t=\frac{n}{2}$$n$ odd: $t=\frac{n-1}{2}:$ Open

t	$\delta(0)$	$\delta(1)$	ω_{0}^{\prime}	ω_{2}^{\prime}	ω_{6}^{\prime}	ω_{14}^{\prime}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Example for $n=14, G_{t}(x)=x^{2^{t}-1}$

$x \rightarrow x^{7}$ and $x \rightarrow x^{22^{2-2}-1}$ [BCC11]

t	$\delta(0)$	$\delta(1)$	ω_{0}^{\prime}	ω_{2}^{\prime}	ω_{6}^{\prime}	ω_{14}^{\prime}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Example for $n=14, G_{t}(x)=x^{2^{t}-1}$

$$
t=\frac{n+1}{3} \text { and } s=\frac{2 n+2}{3}
$$

t	$\delta(0)$	$\delta(1)$	ω_{0}^{\prime}	ω_{2}^{\prime}	ω_{6}^{\prime}	ω_{14}^{\prime}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Differential Spectrum of $x \mapsto x^{7}$ [BCC11]

- If n is odd, then:

$$
\begin{aligned}
& \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \quad \omega_{4}=0 \\
& \omega_{2}=2^{n}-1-3 \omega_{6},
\end{aligned} \omega_{0}=2^{n-1}+2 \omega_{6}+1
$$

- If n is even,

Similar formulas but with $\omega_{4}=1$
$K(1)$ is the Kloosterman's sum:

$$
K(1)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}\left(x+x^{-1}\right)}
$$

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_{t}(x)=x^{2^{t}-1}$

Spectrum of $G_{t}(x)=x^{2^{t}-1}$ when $t=\frac{n-1}{2}$ and $t=\frac{k n+1}{3}$

Conclusion

$G_{t}(x)=x^{2^{t}-1}$ with $t=\frac{n-1}{2}$

- Condition: n odd

$G_{t}(x)=x^{2^{t}-1}$ with $t=\frac{n-1}{2}$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta\left(G_{t}\right)=8$ or $\delta\left(G_{t}\right)=6$

$$
G_{t}(x)=x^{2^{t}-1} \text { with } t=\frac{n-1}{2}
$$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta\left(G_{t}\right)=8$ or $\delta\left(G_{t}\right)=6$
- Differential spectrum:

$$
\begin{gathered}
\text { if } n \equiv \pm 1 \bmod 6, \quad \omega_{8}=0, \quad \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \\
\text { if } n \equiv 3 \bmod 6, \quad \omega_{8}=1, \quad \omega_{6}=\frac{2^{n-2}-8}{6}-\frac{K(1)}{8}, \\
\omega_{4}=0, \omega_{2}=2^{n-1}-3 \omega_{6}-4 \omega_{8} \text { and } \omega_{0}=2^{n-1}+2 \omega_{6}+3 \omega_{8}
\end{gathered}
$$

$$
G_{t}(x)=x^{2^{t}-1} \text { with } t=\frac{n-1}{2}
$$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta\left(G_{t}\right)=8$ or $\delta\left(G_{t}\right)=6$
- Differential spectrum:

$$
\begin{gathered}
\text { if } n \equiv \pm 1 \bmod 6, \quad \omega_{8}=0, \quad \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \\
\text { if } n \equiv 3 \bmod 6, \quad \omega_{8}=1, \quad \omega_{6}=\frac{2^{n-2}-8}{6}-\frac{K(1)}{8}, \\
\omega_{4}=0, \omega_{2}=2^{n-1}-3 \omega_{6}-4 \omega_{8} \text { and } \omega_{0}=2^{n-1}+2 \omega_{6}+3 \omega_{8}
\end{gathered}
$$

- Symmetric function:

$$
x \mapsto x^{2^{s}-1} \text { with } s=\frac{n+3}{2}
$$

Outline of the Proof (1/2)

1. Independent computation of $\delta(0)$ and $\delta(1)$.

Outline of the Proof (1/2)

1. Independent computation of $\delta(0)$ and $\delta(1)$.
2. $\forall b \neq 0,1, \delta(b)$ is equal to the number of roots

$$
\left\{\begin{array}{rl}
\mathcal{L}_{\beta}(x)=0 \\
\operatorname{Tr}\left(x^{2^{2}+1}\right)=1
\end{array} \quad \mathcal{L}_{\beta}(x)=x^{2^{2}+1}+x+\beta\right.
$$

where β is derived from b by a permutation.
Obtained in that case by studying the derivative of $F(x)=x^{\tau}$ with $\tau=\left(2^{t}-1\right)^{-1} \equiv-2-2^{t+1} \bmod 2^{n}-1$

[Helleseth and Kholosha 2008]

$$
\mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta . \quad \operatorname{gcd}(t, n)=1
$$

[Helleseth and Kholosha 2008]

$$
\mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta . \quad \operatorname{gcd}(t, n)=1
$$

- For any $\beta \in \mathbb{F}_{2^{n}}^{*}, \mathcal{L}_{\beta}$ has either 0,1 or 3 roots in $\mathbb{F}_{2^{n}}$
- Let $M_{i}=\#\left\{\beta \in \mathbb{F}_{2^{n}}^{*}, \mathcal{L}_{\beta}\right.$ has i roots $\}$

For n odd, $\quad M_{0}=\frac{2^{n+1}}{3}, \quad M_{1}=2^{n-1}-1, \quad M_{3}=\frac{2^{n-1}-1}{3}$.
For n even, $\quad M_{0}=\frac{2^{n-1}}{3}, \quad M_{1}=2^{n-1}, \quad M_{3}=\frac{2^{n-1}-2}{3}$.

- \mathcal{L}_{β} has exactly one root $x_{0} \in \mathbb{F}_{2^{n}}^{*}$ if and only if
$\operatorname{Tr}\left(\left(1+x_{0}^{-1}\right)^{\tau}\right)=1$ where $\tau \equiv\left(2^{t}-1\right)^{-1} \bmod 2^{n}-1$

Outline of the Proof (2/2)

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(x)=0 \\
\operatorname{Tr}\left(x^{2^{t}+1}\right)=1,
\end{array} \quad \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta\right.
$$

3. Computation of $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$

- \mathcal{L}_{β} does not have any roots

$$
\Rightarrow M_{0}
$$

Outline of the Proof (2/2)

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(x)=0 \\
\operatorname{Tr}\left(x^{2^{t}+1}\right)=1,
\end{array} \quad \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta\right.
$$

3. Computation of $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$

- \mathcal{L}_{β} does not have any roots

$$
\Rightarrow M_{0}
$$

- \mathcal{L}_{β} has 1 root x_{0} with $\operatorname{Tr}\left(x_{0}^{2^{t}+1}\right) \neq 1$.
\Rightarrow Formulation which involves the Kloosterman sum

Outline of the Proof (2/2)

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(x)=0 \\
\operatorname{Tr}\left(x^{2^{t}+1}\right)=1,
\end{array} \quad \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta\right.
$$

3. Computation of $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$

- \mathcal{L}_{β} does not have any roots

$$
\Rightarrow M_{0}
$$

- \mathcal{L}_{β} has 1 root x_{0} with $\operatorname{Tr}\left(x_{0}^{2^{t}+1}\right) \neq 1$.
\Rightarrow Formulation which involves the Kloosterman sum
- \mathcal{L}_{β} has 3 roots x_{0}, x_{1}, x_{2}

It is impossible than none satisfy the trace condition
\Rightarrow Do not influence the computation of ω_{0}

Outline of the Proof (2/2)

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(x)=0 \\
\operatorname{Tr}\left(x^{2^{t}+1}\right)=1,
\end{array} \quad \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta\right.
$$

3. Computation of $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$

- \mathcal{L}_{β} does not have any roots

$$
\Rightarrow M_{0}
$$

- \mathcal{L}_{β} has 1 root x_{0} with $\operatorname{Tr}\left(x_{0}^{2^{t}+1}\right) \neq 1$.
\Rightarrow Formulation which involves the Kloosterman sum
- \mathcal{L}_{β} has 3 roots x_{0}, x_{1}, x_{2}

It is impossible than none satisfy the trace condition
\Rightarrow Do not influence the computation of ω_{0}
4. Complete spectrum: $\sum \omega_{i}=2^{n}$ and $\sum i \cdot \omega_{i}=2^{n}$

$$
G_{t}(x)=x^{2^{t}-1} \text { with } t=\frac{k n+1}{3}
$$

- Condition: $n \not \equiv 0 \bmod 3$, $k=1,2$ such that t is an integer

$$
G_{t}(x)=x^{2^{t}-1} \text { with } t=\frac{k n+1}{3}
$$

- Condition: $n \not \equiv 0 \bmod 3$, $k=1,2$ such that t is an integer
- Permutation: Yes
- Differential uniformity: $\delta\left(G_{t}\right)=6$
$G_{t}(x)=x^{2^{t}-1}$ with $t=\frac{k n+1}{3}$
- Condition: $n \not \equiv 0 \bmod 3$, $k=1,2$ such that t is an integer
- Permutation: Yes
- Differential uniformity: $\delta\left(G_{t}\right)=6$
- Symmetric function:

$$
x \mapsto x^{2^{s}-1} \text { with } s=\frac{(3-k) n+2}{3}
$$

$t=\frac{k n+1}{3}:$ Proof Elements

- $\tau=1+2^{t}+2^{2 t}$ and

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(y)=y^{2^{t}+1}+y+\beta=0 \\
\operatorname{Tr}\left(y^{\tau}\right)=0
\end{array}\right.
$$

$t=\frac{k n+1}{3}:$ Proof Elements

- $\tau=1+2^{t}+2^{2 t}$ and

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(y)=y^{2^{t}+1}+y+\beta=0 \\
\operatorname{Tr}\left(y^{\tau}\right)=0
\end{array}\right.
$$

- $\omega_{0}=M_{0}+\#\left\{y \in \mathbb{F}_{2^{n}}, \operatorname{Tr}\left(y^{\tau}\right)=1, \operatorname{Tr}\left(\left(1+y^{-1}\right)^{\tau}\right)=1\right\}$
$t=\frac{k n+1}{3}:$ Proof Elements
- $\tau=1+2^{t}+2^{2 t}$ and

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(y)=y^{2^{t}+1}+y+\beta=0 \\
\operatorname{Tr}\left(y^{\tau}\right)=0
\end{array}\right.
$$

- $\omega_{0}=M_{0}+\#\left\{y \in \mathbb{F}_{2^{n}}, \operatorname{Tr}\left(y^{\tau}\right)=1, \operatorname{Tr}\left(\left(1+y^{-1}\right)^{\tau}\right)=1\right\}$
- Conjecture (checked for $n \leq 31$):

$$
\omega_{0}=M_{0}+\#\left\{y \in \mathbb{F}_{2^{n}}, \operatorname{Tr}(y)=1, \operatorname{Tr}\left(1+y^{-1}\right)=1\right\}
$$

$t=\frac{k n+1}{3}$: Proof Elements

- $\tau=1+2^{t}+2^{2 t}$ and

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(y)=y^{2^{t}+1}+y+\beta=0 \\
\operatorname{Tr}\left(y^{\tau}\right)=0
\end{array}\right.
$$

$-\omega_{0}=M_{0}+\#\left\{y \in \mathbb{F}_{2^{n}}, \operatorname{Tr}\left(y^{\tau}\right)=1, \operatorname{Tr}\left(\left(1+y^{-1}\right)^{\tau}\right)=1\right\}$

- Conjecture (checked for $n \leq 31$):

$$
\omega_{0}=M_{0}+\#\left\{y \in \mathbb{F}_{2^{n}}, \operatorname{Tr}(y)=1, \operatorname{Tr}\left(1+y^{-1}\right)=1\right\}
$$

- Differential spectrum (Conjecture):

Same restricted differential spectrum than the one the functions $G_{3}(x)=x^{7}$ and $G_{\frac{n-1}{2}}(x)=x^{2^{\frac{n-1}{2}}-1}$

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_{t}(x)=x^{2^{t}-1}$

Spectrum of $G_{t}(x)=x^{2^{t}-1}$ when $t=\frac{n-1}{2}$ and $t=\frac{k n+1}{3}$

Conclusion

Dickson Polynomials

- Dickson Polynomials:

$$
D_{d}(x, y): \quad D_{d}(x+y, x y)=x^{d}+y^{d}
$$

- Reversed Dickson Polynomial: [Hou. et al. 2009]

$$
R D_{d}(y)=D_{d}(1, y)
$$

- Equivalent definition of the differential spectrum:

$$
\omega_{2 k}=\#\left\{b \in \mathbb{F}_{2^{n}}, R D_{d}(y)=b \text { has } k \text { solutions in } \mathbb{F}_{2^{n} \mid\{\operatorname{Tr}(x)=0\}}\right\}
$$

- [Göloglu 2012]: When n is even, among the functions $G_{t}(x)=x^{2^{t}-1}$ only $G_{2}(x)=x^{3}$ is APN

Conclusion: Spectrum of $G_{t}(x)=x^{2^{t}-1}$

t	s	$\max _{b \neq 0,1} \delta(b)$	$\delta\left(G_{t}\right)$	$\delta\left(G_{s}\right)$	Spectrum
2	$n-1$	2	2	$(2,4)$	Gold/Inverse
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of $x^{2^{t}+1}$

Conclusion: Spectrum of $G_{t}(x)=x^{2^{t}-1}$

t	s	$\max _{b \neq 0,1} \delta(b)$	$\delta\left(G_{t}\right)$	$\delta\left(G_{s}\right)$	Spectrum
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of $x^{2^{t}+1}$
$\frac{n}{2}$	$\frac{n}{2}+1$	2	$2^{n / 2-2}$	$2^{n / 2}$	[BCC11]
3	$n-2$	6	6	$(6,8)$	[BCC11]

Conclusion: Spectrum of $G_{t}(x)=x^{2^{t}-1}$

t	s	$\max _{b \neq 0,1} \delta(b)$	$\delta\left(G_{t}\right)$	$\delta\left(G_{s}\right)$	Spectrum
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of $x^{2^{t}+1}$
$\frac{n}{2}$	$\frac{n}{2}+1$	2	$2^{n / 2-2}$	$2^{n / 2}$	[BCC11]
3	$n-2$	6	6	$(6,8)$	[BCC11]
$\frac{n-1}{2}$	$\frac{n+3}{2}$	6	$(6,8)$	6	This paper
$\frac{k n+1}{3}$	$\frac{(3-k) n+2}{3}$	6	6	6	This paper*

Conclusion: Spectrum of $G_{t}(x)=x^{2^{t}-1}$

t	s	$\max _{b \neq 0,1} \delta(b)$	$\delta\left(G_{t}\right)$	$\delta\left(G_{s}\right)$	Spectrum
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of $x^{2^{t}+1}$
$\frac{n}{2}$	$\frac{n}{2}+1$	2	$2^{n / 2-2}$	$2^{n / 2}$	[BCC11]
3	$n-2$	6	6	$(6,8)$	[BCC11]
$\frac{n-1}{2}$	$\frac{n+3}{2}$	6	$(6,8)$	6	This paper
$\frac{k n+1}{3}$	$\frac{(3-k) n+2}{3}$	6	6	6	This paper*
$\frac{k n}{3}$	$\frac{(3-k) n+3}{3}$	6	$2^{n / 3}-2$	$2^{n / 3}$	----

