

More Differentially 6-uniform Power Functions The differential spectrum of $x \mapsto x^{2^{t-1}}$ for some *t*.

Céline Blondeau and Léo Perrin

Tuesday, April 16 WCC 2013, *Bergen*

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_t(x) = x^{2^t-1}$

Spectrum of
$$G_t(x) = x^{2^t-1}$$
 when $t = \frac{n-1}{2}$ and $t = \frac{kn+1}{3}$

Conclusion

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_t(x) = x^{2^t-1}$

Spectrum of
$$G_t(x) = x^{2^t-1}$$
 when $t = \frac{n-1}{2}$ and $t = \frac{kn+1}{3}$

Conclusion

Differential uniformity [Nyberg 1993]

Let $F : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^m}$. Then:

$$\delta(a,b) = \#\{x \in \mathbb{F}_{2^n}, F(x+a) + F(x) = b\}$$

Differential uniformity of F:

$$\delta(F) = \max_{a \neq 0, b \in \mathbb{F}_{2^n}} \delta(a, b)$$

Almost-Perfect Non-linear (APN) function : $\delta(F) = 2$

$$egin{array}{rcl} F_d:&\mathbb{F}_{2^n}& o&\mathbb{F}_{2^n}\ & x&\mapsto&x^d \end{array}$$

$$\begin{array}{rccc} F_d: & \mathbb{F}_{2^n} & \to & \mathbb{F}_{2^n} \\ & x & \mapsto & x^d \end{array}$$

• $\delta(a, b)$: number of roots of $x^d + (x + a)^d = b$

For
$$a \neq 0$$
, $\delta(a, b) = \delta(1, b/a^d)$
 $\Rightarrow \delta(b) = \delta(1, b)$

$$\begin{array}{rccc} F_d: & \mathbb{F}_{2^n} & \to & \mathbb{F}_{2^n} \\ & x & \mapsto & x^d \end{array}$$

• $\delta(a, b)$: number of roots of $x^d + (x + a)^d = b$

For
$$a \neq 0$$
, $\delta(a, b) = \delta(1, b/a^d)$
 $\Rightarrow \delta(b) = \delta(1, b)$

► Permutation:
$$gcd(d, 2^n - 1) = 1$$

 $\delta(0) = gcd(d, 2^n - 1) - 1$

$$\begin{array}{rccc} F_d: & \mathbb{F}_{2^n} & \to & \mathbb{F}_{2^n} \\ & x & \mapsto & x^d \end{array}$$

• $\delta(a, b)$: number of roots of $x^d + (x + a)^d = b$

► For
$$a \neq 0$$
, $\delta(a, b) = \delta(1, b/a^d)$
 $\Rightarrow \delta(b) = \delta(1, b)$

► Permutation:
$$gcd(d, 2^n - 1) = 1$$

 $\delta(0) = gcd(d, 2^n - 1) - 1$

Literature: Differentially 2- and 4-uniform ones

Differential Spectrum

$$\omega_i = \#\{b \in \mathbb{F}_{2^n}, \delta(b) = i\}$$

The differential spectrum of a monomial *F* is:

$$\mathbb{S} = \{\omega_0, \omega_2, ..., \omega_{\delta(F)}\}$$

Differential Spectrum

$$\omega_i = \#\{b \in \mathbb{F}_{2^n}, \delta(b) = i\}$$

The differential spectrum of a monomial *F* is:

$$\mathbb{S} = \{\omega_0, \omega_2, ..., \omega_{\delta(F)}\}$$

$$\sum_{i=0}^{\delta(F)} \omega_i = 2^n \quad , \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_i = 2^n$$

Differential Spectrum

$$\omega_i = \#\{b \in \mathbb{F}_{2^n}, \delta(b) = i\}$$

The differential spectrum of a monomial *F* is:

$$\mathbb{S} = \{\omega_0, \omega_2, ..., \omega_{\delta(F)}\}$$

$$\sum_{i=0}^{\delta(F)} \omega_i = 2^n \quad , \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_i = 2^n$$

 $x \mapsto x^e$ has the same differential spectrum as $x \mapsto x^d$ if:

•
$$e \equiv 2^k \cdot d \mod 2^n - 1$$

•
$$e \equiv d^{-1} \mod 2^n - 1$$

Aalto University School of Science

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_t(x) = x^{2^t-1}$

Spectrum of
$$G_t(x) = x^{2^t-1}$$
 when $t = \frac{n-1}{2}$ and $t = \frac{kn+1}{3}$

Conclusion

General Results on $G_t(x) = x^{2^t-1}$

[Blondeau Canteaut Charpin 2011]

Special values:

$$\delta(0) = 2^{\gcd(t,n)} - 2, \ \delta(1) = 2^{\gcd(t-1,n)},$$

Link with Linear Polynomials:

 $\forall b \neq 0, 1 \ \delta(b) = N_b - 2$ where N_b is the number of roots of:

$$P_b(x) = x^{2^t} + bx^2 + (b+1)x$$

Link with System of Linear Equations:

$$\begin{cases} Q(y) = by \\ \operatorname{Tr}(y) = 0 \end{cases}, \ Q(y) = \sum_{i=0}^{t-1} y^{2^i}.$$

The Symmetry Property

Restricted Spectrum:

$$\omega_i' = \#\{b \in \mathbb{F}_{2^n} \setminus \{0, 1\}, \delta(b) = i\}$$

Symmetry:

$$G_t(x) = x^{2^{t}-1},$$
 $S = n - t + 1,$ $G_s(x) = x^{2^{s}-1}$

 G_t and G_s have the same restricted differential spectrum

The symmetry:

t	$\delta(0)$	$\delta(1)$	ω'_0	ω'_2	ω_6'	ω'_{14}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Gold: $x \to x^3$ and Inverse: $x \to x^{-1}$

t	$\delta(0)$	$\delta(1)$	ω'_0	ω'_2	ω_6'	ω'_{14}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

<i>n</i> even: <i>t</i> =	$=\frac{n}{2}$	<i>n</i> odd: $t = \frac{n-1}{2}$: Open					
	t	$\delta(0)$	$\delta(1)$	ω'_0	ω'_2	ω_6'	ω_{14}'
	2	2	2	8192	8190	-	-
	3	0	4	9578	6111	693	-
	4	2	2	9548	6216	588	30
	5	0	4	9578	6111	693	-
	6	2	2	9548	6216	588	30
	7	126	4	8255	8127	-	-
	8	2	128	8255	8127	-	-
	9	0	4	9548	6216	588	30
	10	2	2	9578	6111	693	-
	11	0	4	9548	6216	588	30
	12	2	2	9578	6111	693	-
	13	0	4	8192	8190	-	-

 $x \to x^7$ and $x \to x^{2^{n-2}-1}$ [BCC11]

t	$\delta(0)$	$\delta(1)$	ω'_0	ω'_2	ω_6'	ω'_{14}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

$$t = \frac{n+1}{3}$$
 and $s = \frac{2n+2}{3}$

t	$\delta(0)$	$\delta(1)$	ω'_0	ω'_2	ω_6'	ω'_{14}
2	2	2	8192	8190	-	-
3	0	4	9578	6111	693	-
4	2	2	9548	6216	588	30
5	0	4	9578	6111	693	-
6	2	2	9548	6216	588	30
7	126	4	8255	8127	-	-
8	2	128	8255	8127	-	-
9	0	4	9548	6216	588	30
10	2	2	9578	6111	693	-
11	0	4	9548	6216	588	30
12	2	2	9578	6111	693	-
13	0	4	8192	8190	-	-

Differential Spectrum of $x \mapsto x^7$ **[BCC11]**

If n is odd, then:

$$\omega_6 = \frac{2^{n-2}+1}{6} - \frac{K(1)}{8}, \qquad \omega_4 = 0 \\ \omega_2 = 2^n - 1 - 3\omega_6, \qquad \omega_0 = 2^{n-1} + 2\omega_6 + 1$$

If n is even,

Similar formulas but with $\omega_4 = 1$

K(1) is the Kloosterman's sum:

$$K(1) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(x+x^{-1})}$$

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_t(x) = x^{2^t-1}$

Spectrum of
$$G_t(x) = x^{2^t-1}$$
 when $t = \frac{n-1}{2}$ and $t = \frac{kn+1}{3}$

Conclusion

$$G_t(x) = x^{2^t-1}$$
 with $t = \frac{n-1}{2}$

Condition: n odd

 $G_t(x) = x^{2^t-1}$ with $t = \frac{n-1}{2}$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta(G_t) = 8$ or $\delta(G_t) = 6$

 $G_t(x) = x^{2^t-1}$ with $t = \frac{n-1}{2}$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta(G_t) = 8$ or $\delta(G_t) = 6$
- Differential spectrum:

if
$$n \equiv \pm 1 \mod 6$$
, $\omega_8 = 0$, $\omega_6 = \frac{2^{n-2} + 1}{6} - \frac{K(1)}{8}$,
if $n \equiv 3 \mod 6$, $\omega_8 = 1$, $\omega_6 = \frac{2^{n-2} - 8}{6} - \frac{K(1)}{8}$,

$$\omega_4=0,\,\omega_2=2^{n-1}-3\omega_6-4\omega_8$$
 and $\omega_0=2^{n-1}+2\omega_6+3\omega_8$

 $G_t(x) = x^{2^t-1}$ with $t = \frac{n-1}{2}$

- Condition: n odd
- Permutation: Yes
- Differential uniformity: $\delta(G_t) = 8$ or $\delta(G_t) = 6$
- Differential spectrum:

if
$$n \equiv \pm 1 \mod 6$$
, $\omega_8 = 0$, $\omega_6 = \frac{2^{n-2}+1}{6} - \frac{K(1)}{8}$,
if $n \equiv 3 \mod 6$, $\omega_8 = 1$, $\omega_6 = \frac{2^{n-2}-8}{6} - \frac{K(1)}{8}$,

$$\omega_4=0,\,\omega_2=2^{n-1}-3\omega_6-4\omega_8$$
 and $\omega_0=2^{n-1}+2\omega_6+3\omega_8$

Symmetric function:
$$x \mapsto x^{2^s-1}$$
 with $s = \frac{n+3}{2}$

1. Independent computation of $\delta(0)$ and $\delta(1)$.

1. Independent computation of $\delta(0)$ and $\delta(1)$.

2. $\forall b \neq 0, 1, \delta(b)$ is equal to the number of roots

$$\begin{cases} \mathcal{L}_{\beta}(x) = 0\\ \mathsf{Tr}(x^{2^{t}+1}) = 1 \end{cases} \qquad \mathcal{L}_{\beta}(x) = x^{2^{t}+1} + x + \beta$$

where β is derived from *b* by a permutation.

Obtained in that case by studying the derivative of $F(x) = x^{\tau}$ with $\tau = (2^t - 1)^{-1} \equiv -2 - 2^{t+1} \mod 2^n - 1$

[Helleseth and Kholosha 2008]

$$\mathcal{L}_{\beta}(x) = x^{2^t+1} + x + \beta.$$
 $gcd(t, n) = 1$

[Helleseth and Kholosha 2008]

$$\mathcal{L}_{\beta}(x) = x^{2^{t}+1} + x + \beta.$$
 $gcd(t, n) = 1$

• For any $\beta \in \mathbb{F}_{2^n}^*$, \mathcal{L}_{β} has either 0, 1 or 3 roots in \mathbb{F}_{2^n}

• Let $M_i = #\{\beta \in \mathbb{F}_{2^n}^*, \mathcal{L}_\beta \text{ has } i \text{ roots}\}$

For *n* odd,
$$M_0 = \frac{2^{n+1}}{3}$$
, $M_1 = 2^{n-1} - 1$, $M_3 = \frac{2^{n-1} - 1}{3}$.
For *n* even, $M_0 = \frac{2^{n-1}}{3}$, $M_1 = 2^{n-1}$, $M_3 = \frac{2^{n-1} - 2}{3}$.

•
$$\mathcal{L}_{\beta}$$
 has exactly one root $x_0 \in \mathbb{F}_{2^n}^*$ if and only if
 $\operatorname{Tr}\left((1+x_0^{-1})^{\tau}\right) = 1$ where $\tau \equiv (2^t - 1)^{-1} \mod 2^n - 1$

$$\left\{ \begin{array}{ll} \mathcal{L}_{\beta}(x)=0\\ \mathsf{Tr}(x^{2^{t}+1})=1, \end{array} \right. \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta$$

3. Computation of $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$

•
$$\mathcal{L}_{\beta}$$
 does not have any roots $\Rightarrow M_0$

$$\left\{ \begin{array}{ll} \mathcal{L}_{\beta}(x)=0\\ \mathsf{Tr}(x^{2^{t}+1})=1, \end{array} \right. \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta$$

3. Computation of $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$

- \mathcal{L}_{β} does not have any roots $\Rightarrow M_0$
- \mathcal{L}_{β} has 1 root x_0 with $\operatorname{Tr}(x_0^{2^t+1}) \neq 1$.

 \Rightarrow Formulation which involves the Kloosterman sum

$$\left\{ \begin{array}{ll} \mathcal{L}_{\beta}(x)=0\\ \mathsf{Tr}(x^{2^{t}+1})=1, \end{array} \right. \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta$$

3. Computation of $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$

- \mathcal{L}_{β} does not have any roots $\Rightarrow M_0$
- \mathcal{L}_{β} has 1 root x_0 with $\operatorname{Tr}(x_0^{2^t+1}) \neq 1$.

 \Rightarrow Formulation which involves the Kloosterman sum

• \mathcal{L}_{β} has 3 roots x_0, x_1, x_2

It is impossible than none satisfy the trace condition \Rightarrow Do not influence the computation of ω_{0}

$$\left\{ \begin{array}{ll} \mathcal{L}_{\beta}(x)=0\\ \mathsf{Tr}(x^{2^{t}+1})=1, \end{array} \right. \mathcal{L}_{\beta}(x)=x^{2^{t}+1}+x+\beta$$

3. Computation of $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$

- \mathcal{L}_{β} does not have any roots $\Rightarrow M_0$
- \mathcal{L}_{β} has 1 root x_0 with $\operatorname{Tr}(x_0^{2^t+1}) \neq 1$.

 \Rightarrow Formulation which involves the Kloosterman sum

• \mathcal{L}_{β} has 3 roots x_0, x_1, x_2

It is impossible than none satisfy the trace condition \Rightarrow Do not influence the computation of ω_0

4. Complete spectrum: $\sum \omega_i = 2^n$ and $\sum i \cdot \omega_i = 2^n$

$$G_t(x) = x^{2^t-1}$$
 with $t = \frac{kn+1}{3}$

• Condition: $n \neq 0 \mod 3$,

k = 1, 2 such that *t* is an integer

$$G_t(x) = x^{2^{t-1}}$$
 with $t = \frac{kn+1}{3}$

• Condition: $n \neq 0 \mod 3$,

k = 1, 2 such that *t* is an integer

- Permutation: Yes
- Differential uniformity: $\delta(G_t) = 6$

$$G_t(x) = x^{2^t-1}$$
 with $t = \frac{kn+1}{3}$

• Condition: $n \neq 0 \mod 3$,

k = 1, 2 such that t is an integer

- Permutation: Yes
- Differential uniformity: $\delta(G_t) = 6$
- Symmetric function:

$$x\mapsto x^{2^s-1}$$
 with $s=rac{(3-k)n+2}{3}$

$t = \frac{kn+1}{3} : \text{Proof Elements}$ $\star \tau = 1 + 2^{t} + 2^{2t} \text{ and}$ $\begin{cases} \mathcal{L}_{\beta}(y) = y^{2^{t}+1} + y + \beta = 0, \\ \text{Tr}(y^{\tau}) = 0 \end{cases}$

$$t = \frac{kn+1}{3} : \text{Proof Elements}$$

$$\star \tau = 1 + 2^{t} + 2^{2t} \text{ and}$$

$$\begin{cases} \mathcal{L}_{\beta}(y) = y^{2^{t+1}} + y + \beta = 0, \\ \text{Tr}(y^{T}) = 0 \end{cases}$$

•
$$\omega_0 = M_0 + \#\{y \in \mathbb{F}_{2^n}, \operatorname{Tr}(y^{\tau}) = 1, \operatorname{Tr}((1+y^{-1})^{\tau}) = 1\}$$

•
$$\omega_0 = M_0 + \#\{y \in \mathbb{F}_{2^n}, \operatorname{Tr}(y^{\tau}) = 1, \operatorname{Tr}((1+y^{-1})^{\tau}) = 1\}$$

• Conjecture (checked for $n \leq 31$):

$$\omega_0 = M_0 + \#\{y \in \mathbb{F}_{2^n}, \mathrm{Tr}(y) = 1, \mathrm{Tr}(1 + y^{-1}) = 1\}$$

$$t = \frac{kn+1}{3} : \text{Proof Elements}$$

$$\star \tau = 1 + 2^{t} + 2^{2t} \text{ and}$$

$$\begin{cases} \mathcal{L}_{\beta}(y) = y^{2^{t}+1} + y + \beta = 0, \\ \text{Tr}(y^{\tau}) = 0 \end{cases}$$

•
$$\omega_0 = M_0 + \#\{y \in \mathbb{F}_{2^n}, \operatorname{Tr}(y^{\tau}) = 1, \operatorname{Tr}((1+y^{-1})^{\tau}) = 1\}$$

• Conjecture (checked for $n \leq 31$):

$$\omega_0 = M_0 + \#\{y \in \mathbb{F}_{2^n}, \mathrm{Tr}(y) = 1, \mathrm{Tr}(1 + y^{-1}) = 1\}$$

▶ Differential spectrum (Conjecture): Same restricted differential spectrum than the one the functions $G_3(x) = x^7$ and $G_{\frac{n-1}{2}}(x) = x^{2^{\frac{n-1}{2}}-1}$

Outline

Differential Uniformity and Differential Spectrum

Previous work on the function $G_t(x) = x^{2^t-1}$

Spectrum of
$$G_t(x) = x^{2^t-1}$$
 when $t = \frac{n-1}{2}$ and $t = \frac{kn+1}{3}$

Conclusion

Dickson Polynomials

Dickson Polynomials:

$$D_d(x,y):$$
 $D_d(x+y,xy) = x^d + y^d$

▶ Reversed Dickson Polynomial: [Hou. et al. 2009]

$$RD_d(y) = D_d(1, y)$$

Equivalent definition of the differential spectrum:

$$\omega_{2k} = \#\{b \in \mathbb{F}_{2^n}, RD_d(y) = b \text{ has } k \text{ solutions in } \mathbb{F}_{2^n | \{\mathsf{Tr}(x) = 0\}} \}$$

► [Göloglu 2012]: When *n* is even, among the functions $G_t(x) = x^{2^t-1}$ only $G_2(x) = x^3$ is APN

t	S	$\max_{b\neq 0,1} \delta(b)$	$\delta(G_t)$	$\delta(G_s)$	Spectrum
2	<i>n</i> – 1	2	2	(2,4)	Gold/Inverse
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of x^{2^t+1}

t	S	$\max_{b\neq 0,1} \delta(b)$	$\delta(G_t)$	$\delta(G_s)$	Spectrum
2	<i>n</i> – 1	2	2	(2,4)	Gold/Inverse
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of x^{2^t+1}
n 2	$\frac{n}{2} + 1$	2	2 ^{n/2-2}	2 ^{n/2}	[BCC11]
3	n – 2	6	6	(6,8)	[BCC11]

t	S	$\max_{b\neq 0,1} \delta(b)$	$\delta(G_t)$	$\delta(G_s)$	Spectrum
2	<i>n</i> – 1	2	2	(2,4)	Gold/Inverse
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of x^{2^t+1}
$\frac{n}{2}$	$\frac{n}{2} + 1$	2	2 ^{n/2-2}	2 ^{n/2}	[BCC11]
3	n – 2	6	6	(6,8)	[BCC11]
<u>n – 1</u> 2	$\frac{n+3}{2}$	6	(6,8)	6	This paper
$\left \frac{kn+1}{3}\right $	$\left \frac{(3-k)n+2}{3}\right $	6	6	6	This paper*

t	S	$\max_{b\neq 0,1} \delta(b)$	$\delta(G_t)$	$\delta(G_s)$	Spectrum
2	<i>n</i> – 1	2	2	(2,4)	Gold/Inverse
$\frac{n+1}{2}$	$\frac{n+1}{2}$	2	2	2	Inverse of x^{2^t+1}
n 2	$\frac{n}{2} + 1$	2	2 ^{n/2-2}	2 ^{n/2}	[BCC11]
3	n – 2	6	6	(6,8)	[BCC11]
<u>n – 1</u> 2	$\frac{n+3}{2}$	6	(6,8)	6	This paper
$\frac{kn+1}{3}$	$\frac{(3-k)n+2}{3}$	6	6	6	This paper $*$
<u>kn</u> 3	$\frac{(3-k)n+3}{3}$	6	2 ^{<i>n</i>/3} – 2	2 ^{n/3}	

