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Permutations
x−1 + L(x)

A few definitions
Previous work

Permutations of finite fields

A polynomial

f (x) =

q−1∑
i=0

aix
i

is a PP (permutation polynomial) if it permutes the elements of Fq.

Characterisations:

Monomials axd + b iff gcd(d , q − 1) = 1
Dickson polynomials Dd(x) gcd(d , q2 − 1) = 1
Binomials xd + axe?
Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang;
Niederreiter, Robinson; Turnwald; D. Wan; Sarkar,
Bhattacharya, Çesmelioğlu;

Complete mappings: both f (x) and f (x) + x are PPs.
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Complete mappings: both f (x) and f (x) + x are PPs.
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Faruk Göloğlu On x−1 + L(x)



Permutations
x−1 + L(x)

A few definitions
Previous work

Permutations of finite fields

A polynomial

f (x) =

q−1∑
i=0

aix
i

is a PP (permutation polynomial) if it permutes the elements of Fq.

Characterisations:

Monomials axd + b iff gcd(d , q − 1) = 1
Dickson polynomials Dd(x) gcd(d , q2 − 1) = 1
Binomials xd + axe?
Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang;
Niederreiter, Robinson; Turnwald; D. Wan; Sarkar,
Bhattacharya, Çesmelioğlu;
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A few definitions
Previous work

Linearised polynomials:

L(x) = a0x + a1x
p + a2x

p2

+ · · ·+ am−1x
pm−1

(Generalized) Walsh transform

f̂ (α, β) =
∑
x∈Fq

χ(αf (x) + βx)

where χ(·) = ζTr(·).

A criterion for being PP: f is PP if and only if∑
x∈Fq

χ(αf (x)) = 0

for all α ∈ F∗q.
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x−1 + L(x)

A few definitions
Previous work

Consider polynomials of the form:

f (x) = L1(xd) + L2(x)

Now ∑
x∈Fq

χ(α[L1(xd) + L2(x)]) = 0

∑
x∈Fq

χ(L∗1(α)xd + L∗2(α)x) = 0

Where adjoint of L is defined as:

L∗(x) =
m−1∑
i=0

ap
m−i

i xp
m−i

.

If one can describe Walsh zeroes of xd , then one may find
permutation polynomials.
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A few definitions
Previous work

Previous work

Description of Walsh zeroes known for some d ,

i.e.,

p = 2 and d = 1, 3, 2k + 1, 22k − 2k + 1
p = odd, and d = 1, p + 1, pk + 1
Carlitz; Gold, Dillon, Dobbertin; Coulter

PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;

PPs of type P(x) + γTr (Q(x)) Charpin, Kyureghyan

If gcd(d , q − 1) > 1 then xd + L(x) (L(x) with binary coefficients)
are not permutations (p = 2) Pasalic
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Faruk Göloğlu On x−1 + L(x)



Permutations
x−1 + L(x)

A few definitions
Previous work

Previous work

Description of Walsh zeroes known for some d , i.e.,

p = 2 and d = 1, 3, 2k + 1, 22k − 2k + 1
p = odd, and d = 1, p + 1, pk + 1
Carlitz; Gold, Dillon, Dobbertin; Coulter

PPs coming from these ideas

Pasalic, Charpin; Y. Li, M. Wang;

PPs of type P(x) + γTr (Q(x)) Charpin, Kyureghyan

If gcd(d , q − 1) > 1 then xd + L(x) (L(x) with binary coefficients)
are not permutations (p = 2) Pasalic
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Related work
Our results

x−1 + L(x)

If p = 2 then x−1 + L(x) is not PP on F2n (for n ≥ 5) Li, Wang

Our exponential some now becomes:∑
x∈Fq

χ(x−1 + αL∗(α)x) = 0.

You only need f̂ (1, a) modulo some number for negative results.

Kloosterman sum is defined by

K (a) =
∑
x∈Fq

χ(x−1 + ax).

When p = 2, we know K (a) modulo 8, 16, . . . , 256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

When p = 3, we know K (a) modulo 9, 27 G., McGuire, Moloney; 4

When p > 3, no Kloosterman zeroes Kononen, Rinta-aho,
Väänänen
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x∈Fq

χ(x−1 + ax).

When p = 2, we know K (a) modulo 8, 16, . . . , 256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

When p = 3, we know K (a) modulo 9, 27 G., McGuire, Moloney; 4

When p > 3, no Kloosterman zeroes Kononen, Rinta-aho,
Väänänen

Faruk Göloğlu On x−1 + L(x)



Permutations
x−1 + L(x)

Related work
Our results

x−1 + L(x)

If p = 2 then x−1 + L(x) is not PP on F2n (for n ≥ 5) Li, Wang

Our exponential some now becomes:∑
x∈Fq

χ(x−1 + αL∗(α)x) = 0.

You only need f̂ (1, a) modulo some number for negative results.

Kloosterman sum is defined by

K (a) =
∑
x∈Fq

χ(x−1 + ax).

When p = 2, we know K (a) modulo 8, 16, . . . , 256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

When p = 3, we know K (a) modulo 9, 27 G., McGuire, Moloney; 4

When p > 3, no Kloosterman zeroes Kononen, Rinta-aho,
Väänänen
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Modulo 4 characterisation

Theorem (G. (’12), Garaschuk, Lisoněk (’08))

Let a ∈ F3m . Then

K (a) ≡



0 (mod 4) if a = 0 or a = b2 with Tr(b) = 1
and −b is not a square,

2m + 3 (mod 4) if a = t2 − t3 for some t ∈ Fq \ {0, 1}
and at least one of t, 1− t is a square,

2 (mod 4) if a = b2 with Tr(b) = 1
and −b is a square.

2m + 1 (mod 4) if a = t2 − t3 for some t ∈ Fq \ {0, 1}
and none of t, 1− t is a square.

Odd cases Garaschuk, Lisoněk; Even cases G.
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A theorem of Carlitz

Theorem (Carlitz)

Let f (x) be a polynomial over Fq[x ] such that f (0) = 0, f (1) = 1, and

η(f (a)− f (b)) = η(a− b) (1)

for all a, b ∈ Fq. Then f (x) = xp
d

for some 0 ≤ d < m.

We modify condition (1) as follows:

η(f (a)− f (b)) η(a− b) ∈ {0, 1}. (2)

If f = L is linearized then the condition (2) is equivalent to

η(aL(a)) ∈ {0, 1}.
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A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) ⊆ Sq ∪ {0} if and
only if L(x) = 0 or L(x) = axp

d

for some a ∈ Sq and some 0 ≤ d < m.

Sketch of Proof

H(c)
α = {x ∈ Fq : Tr(αx) = c}

S (c)
α =

∑
x∈H(c)

α

η(x)

We show the (exact) p-divisibility of S
(c)
α is m−1

2 when c 6= 0.

Faruk Göloğlu On x−1 + L(x)



Permutations
x−1 + L(x)

Related work
Our results

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) ⊆ Sq ∪ {0} if and
only if L(x) = 0 or L(x) = axp

d

for some a ∈ Sq and some 0 ≤ d < m.

Sketch of Proof

H(c)
α = {x ∈ Fq : Tr(αx) = c}

S (c)
α =

∑
x∈H(c)

α

η(x)

We show the (exact) p-divisibility of S
(c)
α is m−1

2 when c 6= 0.
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Sketch of Proof (cont’d)

Assume η(xL(x)) ∈ 0, 1 for all x and L(x) 6= 0 or axp
k

.

Let K be kernel of L and K ⊕ V = Fq.

For x ∈ K , η(L(x)) = 0.

For nonzero v ∈ V , since η((x + v)L(x + v)) = 1 we must have
η(x + v) = η(L(v)), i.e., η is constant on nonzero cosets of K .

Now since K ⊆ H
(0)
α and the (exact) p-divisibility of S

(c)
α is m−1

2 ,
dimension of K cannot be large, (viz., valp(t|K |) = m−1

2 ).

Since η(L(v)) is +1 and −1 equal number of times for v ∈ V ∗,

(note that
∑

x∈Fq
η(x) = 0), and V ⊆ H

(0)
β , we have S

(c)
β strictly

less than |K |, it cannot be small.

A number cannot be both small and large! QED.
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Faruk Göloğlu On x−1 + L(x)



Permutations
x−1 + L(x)

Related work
Our results

Sketch of Proof (cont’d)

Assume η(xL(x)) ∈ 0, 1 for all x and L(x) 6= 0 or axp
k

.

Let K be kernel of L and K ⊕ V = Fq.

For x ∈ K , η(L(x)) = 0.

For nonzero v ∈ V , since η((x + v)L(x + v)) = 1 we must have
η(x + v) = η(L(v)), i.e., η is constant on nonzero cosets of K .

Now since K ⊆ H
(0)
α and the (exact) p-divisibility of S

(c)
α is m−1

2 ,
dimension of K cannot be large,

(viz., valp(t|K |) = m−1
2 ).

Since η(L(v)) is +1 and −1 equal number of times for v ∈ V ∗,

(note that
∑

x∈Fq
η(x) = 0), and V ⊆ H

(0)
β , we have S

(c)
β strictly

less than |K |, it cannot be small.

A number cannot be both small and large! QED.
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The nonexistence result

Theorem (G., McGuire)

If p is odd then x−1 + L(x) is a PP if and only if

(i) L(x) = 0, or

(ii) q = 3 and L(x) = x, or

(iii) q = 9 and L(x) = ω2x3 or L(x) = ω6x3, where ω generates F∗9 .

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always

square or 0, then L(x) = 0 or L(x) = axp
k

.

We have to show now x−1 + axp
k

cannot be permutation.
Use Hermite condition.
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Use Hermite condition.
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Sketch of Proof (cont’d)

Theorem (Hermite’s criterion)

A polynomial f ∈ Fpm [x ] is a permutation polynomial if and only if

1 f has exactly one root in Fpm ,

2 for each d with 1 ≤ d ≤ pm − 2 and d 6≡ 0 (mod p), the degree of
f (x)d (mod xp

m − x) is less than pm − 1.

This leaves a few exceptions. For them we use the result giving
Kloosterman sums modulo 4.
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An announcement
F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

The Discrete Logarithm Problem on Finite Fields:

Fix a
generator g of F∗qn . Given c ∈ F∗qn , find i such that c = g i .

It is a challenge to compute Discrete Logarithms on the largest
possible Finite Field Fqn .

Highlights of our method: For q = 2l , when k | l and l/k ≥ 3, the
following family of polynomials has probability ≈ 1/23k of splitting:

x2
k+1 + ax2

k

+ bx + c , a, b, c ∈ Fq,

(the work on these polynomials due to Bluher and
Helleseth-Kholosha) which is much higher than the random
1/(2k + 1)!. We effectively use these polynomials in our polynomial
time relation generation (the first polynomial time algorithm for
relation generation).
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Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over Fq).

Highlights of our method: An Lqn(1/3, (2/3)2/3) overall
algorithm.

World record progress:

bitlength who/when running time
127 Coppersmith 1984 N/A
. . .
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
. . .
923 Hayashi et al. 2010 > 800000 core hours

1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours
1971 GGMZ 19/2/2013 3132 core hours
4080 Joux 22/3/2013 14100 core hours
6120 GGMZ 11/4/2013 750 core hours
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607 Thomé 2001 > 800000 core hours
. . .
923 Hayashi et al. 2010 > 800000 core hours

1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours
1971 GGMZ 19/2/2013 3132 core hours
4080 Joux 22/3/2013 14100 core hours
6120 GGMZ 11/4/2013 750 core hours
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Thanks for your attention.
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