When is $x^{-1} + L(x)$ a permutation?

Faruk Göloğlu

Claude Shannon Institute, University College Dublin

with Gary McGuire

WCC 2013 Bergen, April 18, 2013

Faruk Göloğlu On $x^{-1} + L(x)$

・ロト ・回ト ・ヨト

Permutations $x^{-1} + L(x)$

A few definitions Previous work

Permutations of finite fields

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

Faruk Göloğlu On $x^{-1} + L(x)$

◆□ → ◆□ → ◆ □ → ◆ □ → →

æ

• A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

イロト イヨト イヨト イヨト

크

• A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of $\mathbb{F}_q.$

• Characterisations:

イロト イヨト イヨト イヨト

æ

• A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

- Characterisations:
 - Monomials $ax^d + b$

イロト イヨト イヨト イヨト

• A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

• Characterisations:

• Monomials $ax^d + b$ iff gcd(d, q - 1) = 1

イロト イヨト イヨト イヨト

• A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

- Characterisations:
 - Monomials $ax^d + b$ iff gcd(d, q 1) = 1
 - Dickson polynomials $D_d(x)$

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

- Characterisations:
 - Monomials $ax^d + b$ iff gcd(d, q 1) = 1
 - Dickson polynomials $D_d(x) \operatorname{gcd}(d, q^2 1) = 1$

・ロト ・回ト ・ヨト

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

• Characterisations:

- Monomials $ax^d + b$ iff gcd(d, q 1) = 1
- Dickson polynomials $D_d(x) \operatorname{gcd}(d, q^2 1) = 1$
- Binomials $x^d + ax^e$?

・ロト ・回ト ・ヨト

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

• Characterisations:

- Monomials $ax^d + b$ iff gcd(d, q 1) = 1
- Dickson polynomials $D_d(x) \operatorname{gcd}(d, q^2 1) = 1$
- Binomials x^d + ax^e?
 Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;

<ロ> <同> <同> <三>

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

• Characterisations:

- Monomials $ax^d + b$ iff gcd(d, q 1) = 1
- Dickson polynomials $D_d(x) \operatorname{gcd}(d, q^2 1) = 1$
- Binomials x^d + ax^e?
 Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;
- Complete mappings:

- ◆ @ ▶ - ◆ 注 ▶

A polynomial

$$f(x) = \sum_{i=0}^{q-1} a_i x^i$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_q .

• Characterisations:

- Monomials $ax^d + b$ iff gcd(d, q 1) = 1
- Dickson polynomials $D_d(x) \operatorname{gcd}(d, q^2 1) = 1$
- Binomials x^d + ax^e?
 Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;
- Complete mappings: both f(x) and f(x) + x are PPs.

▲□→ < □→</p>

- Permutations
 $x^{-1} + L(x)$ A few definitions
Previous work
- Linearised polynomials:

$$L(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_{m-1} x^{p^{m-1}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Permutations
 $x^{-1} + L(x)$ A few definitions
Previous work
- Linearised polynomials:

$$L(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_{m-1} x^{p^{m-1}}$$

• (Generalized) Walsh transform

$$\widehat{f}(\alpha,\beta) = \sum_{x \in \mathbb{F}_q} \chi(\alpha f(x) + \beta x)$$

where $\chi(\cdot) = \zeta^{\operatorname{Tr}(\cdot)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Permutations
 $x^{-1} + L(x)$ A few definitions
Previous work
- Linearised polynomials:

$$L(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_{m-1} x^{p^{m-1}}$$

• (Generalized) Walsh transform

$$\widehat{f}(\alpha,\beta) = \sum_{x \in \mathbb{F}_q} \chi(\alpha f(x) + \beta x)$$

where $\chi(\cdot) = \zeta^{\operatorname{Tr}(\cdot)}$.

• A criterion for being PP:

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

- PermutationsA few definitions $x^{-1} + L(x)$ Previous work
- Linearised polynomials:

$$L(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_{m-1} x^{p^{m-1}}$$

• (Generalized) Walsh transform

$$\widehat{f}(\alpha,\beta) = \sum_{x \in \mathbb{F}_q} \chi(\alpha f(x) + \beta x)$$

where $\chi(\cdot) = \zeta^{\operatorname{Tr}(\cdot)}$.

• A criterion for being PP: f is PP if and only if

$$\sum_{x\in\mathbb{F}_q}\chi(\alpha f(x))=0$$

・ロン ・回と ・ヨン ・ヨン

크

for all $\alpha \in \mathbb{F}_q^*$.

$$f(x) = L_1(x^d) + L_2(x)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$f(x) = L_1(x^d) + L_2(x)$$

Now

$$\sum_{x \in \mathbb{F}_q} \chi(\alpha[L_1(x^d) + L_2(x)]) = 0$$

★□> ★@> ★E> ★E> = E

$$f(x) = L_1(x^d) + L_2(x)$$

Now

$$\sum_{x \in \mathbb{F}_q} \chi(\alpha[L_1(x^d) + L_2(x)]) = 0$$
$$\sum_{x \in \mathbb{F}_q} \chi(L_1^*(\alpha)x^d + L_2^*(\alpha)x) = 0$$

Where adjoint of L is defined as:

$$L^{*}(x) = \sum_{i=0}^{m-1} a_{i}^{p^{m-i}} x^{p^{m-i}}.$$

æ

$$f(x) = L_1(x^d) + L_2(x)$$

Now

$$\sum_{x \in \mathbb{F}_q} \chi(\alpha[L_1(x^d) + L_2(x)]) = 0$$
$$\sum_{x \in \mathbb{F}_q} \chi(L_1^*(\alpha)x^d + L_2^*(\alpha)x) = 0$$

Where adjoint of L is defined as:

$$L^{*}(x) = \sum_{i=0}^{m-1} a_{i}^{p^{m-i}} x^{p^{m-i}}.$$

イロン イヨン イヨン イヨン

臣

• If one can describe Walsh zeroes of x^d , then one may find permutation polynomials.

• Description of Walsh zeroes known for some d,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and $d = 1, p + 1, p^k + 1$

・ロト ・回ト ・ヨト ・ヨト

3

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter

イロト イヨト イヨト イヨト

æ

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;

・ロト ・回ト ・ヨト

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x) + \gamma \operatorname{Tr} (Q(x))$

イロト イヨト イヨト イヨト

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x) + \gamma \text{Tr}(Q(x))$ Charpin, Kyureghyan

イロト イヨト イヨト イヨト

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x) + \gamma \text{Tr}(Q(x))$ Charpin, Kyureghyan
- If gcd(d, q 1) > 1 then x^d + L(x) (L(x) with binary coefficients) are not permutations (p = 2)

イロン イヨン イヨン イヨン

- Description of Walsh zeroes known for some d, i.e.,
 - p = 2 and $d = 1, 3, 2^k + 1, 2^{2k} 2^k + 1$
 - p = odd, and d = 1, p + 1, p^k + 1 Carlitz; Gold, Dillon, Dobbertin; Coulter
- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x) + \gamma \text{Tr}(Q(x))$ Charpin, Kyureghyan
- If gcd(d, q 1) > 1 then x^d + L(x) (L(x) with binary coefficients) are not permutations (p = 2) Pasalic

イロン イヨン イヨン イヨン

PermutationsRelated work $x^{-1} + L(x)$ Our results

$x^{-1} + L(x)$

• If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Permutations Related work $x^{-1} + L(x)$ Our results

$x^{-1} + L(x)$

- If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang
- Our exponential some now becomes:

$$\sum_{\mathsf{x}\in\mathbb{F}_q}\chi(\mathsf{x}^{-1}+\alpha\mathsf{L}^*(\alpha)\mathsf{x})=\mathsf{0}.$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Permutations Related work $x^{-1} + L(x)$ Our results

$x^{-1} + L(x)$

- If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang
- Our exponential some now becomes:

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\hat{f}(1, a)$ modulo some number for negative results.

(ロ) (部) (E) (E) (E)

Permutations $x^{-1} + L(x)$ Related work Our results

$x^{-1} + L(x)$

- If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang
- Our exponential some now becomes:

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

• Kloosterman sum is defined by

$$\mathcal{K}(\mathsf{a}) = \sum_{x \in \mathbb{F}_q} \chi(x^{-1} + \mathsf{a}x).$$

(日) (同) (E) (E) (E)

Permutations $x^{-1} + L(x)$ Our r

Related work Our results

• If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang

• Our exponential some now becomes:

 $x^{-1} + L(x)$

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\hat{f}(1, a)$ modulo some number for negative results.

• Kloosterman sum is defined by

$$\mathcal{K}(\mathsf{a}) = \sum_{x \in \mathbb{F}_q} \chi(x^{-1} + \mathsf{a}x).$$

 When p = 2, we know K(a) modulo 8, 16, ..., 256 Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

ヘロン 人間と 人間と 人間と

Permutations $x^{-1} + L(x)$ Our related

Related work Our results

• If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang

• Our exponential some now becomes:

 $x^{-1} + L(x)$

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\hat{f}(1, a)$ modulo some number for negative results.

• Kloosterman sum is defined by

$$\mathcal{K}(\mathsf{a}) = \sum_{x \in \mathbb{F}_q} \chi(x^{-1} + \mathsf{a}x).$$

- When p = 2, we know K(a) modulo 8, 16, ..., 256 Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney;

ヘロン 人間と 人間と 人間と

Permutations $x^{-1} + L(x)$ Our related

Related work Our results

• If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang

• Our exponential some now becomes:

 $x^{-1} + L(x)$

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\hat{f}(1, a)$ modulo some number for negative results.

• Kloosterman sum is defined by

$$\mathcal{K}(\mathsf{a}) = \sum_{x \in \mathbb{F}_q} \chi(x^{-1} + \mathsf{a}x).$$

- When p = 2, we know K(a) modulo 8, 16, ..., 256 Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney; 4

ヘロン 人間と 人間と 人間と

Permutations $x^{-1} + L(x)$ Our related

Related work Our results

• If p = 2 then $x^{-1} + L(x)$ is not PP on \mathbb{F}_{2^n} (for $n \ge 5$) Li, Wang

• Our exponential some now becomes:

 $x^{-1} + L(x)$

$$\sum_{x\in\mathbb{F}_q}\chi(x^{-1}+\alpha L^*(\alpha)x)=0.$$

You only need $\hat{f}(1, a)$ modulo some number for negative results.

• Kloosterman sum is defined by

$$\mathcal{K}(\mathbf{a}) = \sum_{x \in \mathbb{F}_q} \chi(x^{-1} + \mathbf{a}x).$$

- When p = 2, we know K(a) modulo 8, 16, ..., 256 Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney; 4
- When p > 3, no Kloosterman zeroes Kononen, Rinta-aho, Väänänen

Modulo 4 characterisation

Theorem (G. ('12), Garaschuk, Lisoněk ('08))

Let $a \in \mathbb{F}_{3^m}.$ Then

	0	(mod 4)	if $a = 0$ or $a = b^2$ with $Tr(b) = 1$
	$2m \pm 3$	(mod A)	and $-b$ is not a square, if $a = t^2 - t^3$ for some $t \in \mathbb{F}_q \setminus \{0,1\}$
$K(a) \equiv \langle$	2111 + 3	(1100 4)	and at least one of $t, 1 - t$ is a square,
	2	(mod 4)	if $a=b^2$ with $Tr(b)=1$
			and -b is a square.
	2m + 1	(mod 4)	if $a = t^2 - t^3$ for some $t \in \mathbb{F}_q \setminus \{0,1\}$
			and none of $t, 1 - t$ is a square.

Odd cases Garaschuk, Lisoněk; Even cases G.

《曰》《聞》《臣》《臣》 三臣

A theorem of Carlitz

Theorem (Carlitz)

Let f(x) be a polynomial over $\mathbb{F}_q[x]$ such that f(0) = 0, f(1) = 1, and

$$\eta(f(a) - f(b)) = \eta(a - b) \tag{1}$$

◆□> ◆□> ◆豆> ◆豆> ● 目

for all $a, b \in \mathbb{F}_q$. Then $f(x) = x^{p^d}$ for some $0 \le d < m$.

A theorem of Carlitz

Theorem (Carlitz)

Let f(x) be a polynomial over $\mathbb{F}_q[x]$ such that f(0) = 0, f(1) = 1, and

$$\eta(f(a) - f(b)) = \eta(a - b) \tag{1}$$

for all
$$a, b \in \mathbb{F}_q$$
. Then $f(x) = x^{p^d}$ for some $0 \le d < m$.

We modify condition (1) as follows:

$$\eta(f(a) - f(b)) \ \eta(a - b) \in \{0, 1\}.$$
(2)

<ロ> (四) (四) (三) (三) (三)

A theorem of Carlitz

Theorem (Carlitz)

Let f(x) be a polynomial over $\mathbb{F}_q[x]$ such that f(0) = 0, f(1) = 1, and

$$\eta(f(a) - f(b)) = \eta(a - b) \tag{1}$$

for all
$$a, b \in \mathbb{F}_q$$
. Then $f(x) = x^{p^d}$ for some $0 \le d < m$.

We modify condition (1) as follows:

$$\eta(f(a) - f(b)) \ \eta(a - b) \in \{0, 1\}.$$
(2)

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

If f = L is linearized then the condition (2) is equivalent to

 $\eta(\mathsf{aL}(\mathsf{a})) \in \{0,1\}.$

Related work Our results

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then $Im(xL(x)) \subseteq Sq \cup \{0\}$ if and only if L(x) = 0 or $L(x) = ax^{p^d}$ for some $a \in Sq$ and some $0 \le d < m$.

(ロ) (同) (E) (E) (E)

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then $Im(xL(x)) \subseteq Sq \cup \{0\}$ if and only if L(x) = 0 or $L(x) = ax^{p^d}$ for some $a \in Sq$ and some $0 \le d < m$.

Sketch of Proof

$$H_{\alpha}^{(c)} = \{ x \in \mathbb{F}_q : \operatorname{Tr}(\alpha x) = c \}$$

・ロト ・回ト ・ヨト

크

- ∢ ≣ ▶

Related work Our results

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then $Im(xL(x)) \subseteq Sq \cup \{0\}$ if and only if L(x) = 0 or $L(x) = ax^{p^d}$ for some $a \in Sq$ and some $0 \le d < m$.

Sketch of Proof

$$H_{\alpha}^{(c)} = \{x \in \mathbb{F}_q : \operatorname{Tr}(\alpha x) = c\}$$

$$S^{(c)}_{lpha} = \sum_{x \in H^{(c)}_{lpha}} \eta(x)$$

On $x^{-1} + \overline{L(x)}$ Faruk Göloğlu

・ロト ・回ト ・ヨト

크

Related work Our results

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then $Im(xL(x)) \subseteq Sq \cup \{0\}$ if and only if L(x) = 0 or $L(x) = ax^{p^d}$ for some $a \in Sq$ and some $0 \le d < m$.

Sketch of Proof

$$H_{\alpha}^{(c)} = \{x \in \mathbb{F}_q : \operatorname{Tr}(\alpha x) = c\}$$

$$S^{(c)}_{lpha} = \sum_{x \in \mathcal{H}^{(c)}_{lpha}} \eta(x)$$

We show the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$ when $c \neq 0$.

イロト イヨト イヨト イヨト

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

◆□> ◆□> ◆豆> ◆豆> ● 目

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

• Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.

<ロ> <同> <同> <巨> <巨> <三> = 三

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.

◆□> ◆□> ◆豆> ◆豆> ● 目

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$,

(ロ) (同) (E) (E) (E)

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.

(ロ) (部) (注) (注) []

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.

• Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$,

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large,

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\operatorname{val}_p(t|K|) = \frac{m-1}{2}$).

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., val_p(t|K|) = $\frac{m-1}{2}$).
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^*$,

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., val_p(t|K|) = $\frac{m-1}{2}$).
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^*$, (note that $\sum_{x \in \mathbb{F}_q} \eta(x) = 0$),

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., val_p(t|K|) = $\frac{m-1}{2}$).
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^*$, (note that $\sum_{x \in \mathbb{F}_q} \eta(x) = 0$), and $V \subseteq H^{(0)}_{\beta}$,

イロト イヨト イヨト イヨト

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\operatorname{val}_p(t|K|) = \frac{m-1}{2}$).
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^*$, (note that $\sum_{x \in \mathbb{F}_q} \eta(x) = 0$), and $V \subseteq H_{\beta}^{(0)}$, we have $S_{\beta}^{(c)}$ strictly less than |K|, it cannot be small.

イロト イヨト イヨト イヨト

• Assume $\eta(xL(x)) \in 0, 1$ for all x and $L(x) \neq 0$ or ax^{p^k} .

Permutations

 $x^{-1} + L(x)$

Related work

Our results

- Let K be kernel of L and $K \oplus V = \mathbb{F}_q$.
- For $x \in K$, $\eta(L(x)) = 0$.
- For nonzero $v \in V$, since $\eta((x + v)L(x + v)) = 1$ we must have $\eta(x + v) = \eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) *p*-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\operatorname{val}_p(t|K|) = \frac{m-1}{2}$).
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^*$, (note that $\sum_{x \in \mathbb{F}_q} \eta(x) = 0$), and $V \subseteq H_{\beta}^{(0)}$, we have $S_{\beta}^{(c)}$ strictly less than |K|, it cannot be small.
- A number cannot be both small and large! QED.

イロン イヨン イヨン イヨン

Theorem (G., McGuire)

If p is odd then $x^{-1} + L(x)$ is a PP if and only if (i) L(x) = 0, or (ii) q = 3 and L(x) = x, or (iii) q = 9 and $L(x) = \omega^2 x^3$ or $L(x) = \omega^6 x^3$, where ω generates \mathbb{F}_9^* .

Theorem (G., McGuire)

If p is odd then $x^{-1} + L(x)$ is a PP if and only if (i) L(x) = 0, or (ii) q = 3 and L(x) = x, or (iii) q = 9 and $L(x) = \omega^2 x^3$ or $L(x) = \omega^6 x^3$, where ω generates \mathbb{F}_9^* .

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always square or 0, then L(x) = 0 or $L(x) = ax^{p^k}$.

Faruk Göloğlu On $x^{-1} + L(x)$

Theorem (G., McGuire)

If p is odd then $x^{-1} + L(x)$ is a PP if and only if (i) L(x) = 0, or (ii) q = 3 and L(x) = x, or (iii) q = 9 and $L(x) = \omega^2 x^3$ or $L(x) = \omega^6 x^3$, where ω generates \mathbb{F}_9^* .

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always square or 0, then L(x) = 0 or $L(x) = ax^{p^k}$. We have to show now $x^{-1} + ax^{p^k}$ cannot be permutation.

Theorem (G., McGuire)

If p is odd then $x^{-1} + L(x)$ is a PP if and only if (i) L(x) = 0, or (ii) q = 3 and L(x) = x, or (iii) q = 9 and $L(x) = \omega^2 x^3$ or $L(x) = \omega^6 x^3$, where ω generates \mathbb{F}_9^* .

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always square or 0, then L(x) = 0 or $L(x) = ax^{p^k}$. We have to show now $x^{-1} + ax^{p^k}$ cannot be permutation. Use Hermite condition.

Theorem (Hermite's criterion)

A polynomial $f \in \mathbb{F}_{p^m}[x]$ is a permutation polynomial if and only if

- **1** f has exactly one root in \mathbb{F}_{p^m} ,
- ② for each d with $1 \le d \le p^m 2$ and $d \ne 0 \pmod{p}$, the degree of $f(x)^d \pmod{x^{p^m} x}$ is less than $p^m 1$.

Theorem (Hermite's criterion)

A polynomial $f \in \mathbb{F}_{p^m}[x]$ is a permutation polynomial if and only if

① f has exactly one root in
$$\mathbb{F}_{p^m}$$
,

② for each d with $1 \le d \le p^m - 2$ and d ≠ 0 (mod p), the degree of $f(x)^d \pmod{x^{p^m} - x}$ is less than $p^m - 1$.

This leaves a few exceptions. For them we use the result giving Kloosterman sums modulo 4.

Permutations Related work $x^{-1} + L(x)$ Our results

An announcement F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

• The Discrete Logarithm Problem on Finite Fields:

イロト イヨト イヨト イヨト

æ

Permutations Related work $x^{-1} + L(x)$ Our results

An announcement F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

• The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^n}^*$. Given $c \in \mathbb{F}_{q^n}^*$, find i such that $c = g^i$.

<ロ> (四) (四) (三) (三) (三)

Permutations Related work $x^{-1} + L(x)$ Our results

An announcement F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^n}^*$. Given $c \in \mathbb{F}_{q^n}^*$, find i such that $c = g^i$.
- It is a challenge to compute Discrete Logarithms on the largest possible Finite Field 𝔽_{qⁿ}.

イロト イヨト イヨト イヨト

PermutationsRelated work $x^{-1} + L(x)$ Our results

An announcement F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^n}^*$. Given $c \in \mathbb{F}_{q^n}^*$, find i such that $c = g^i$.
- It is a challenge to compute Discrete Logarithms on the largest possible Finite Field 𝔽_{qⁿ}.
- Highlights of our method: For $q = 2^{l}$, when $k \mid l$ and $l/k \ge 3$, the following family of polynomials has probability $\approx 1/2^{3k}$ of splitting:

$$x^{2^k+1}+ax^{2^k}+bx+c, a, b, c \in \mathbb{F}_q,$$

(the work on these polynomials due to Bluher and Helleseth-Kholosha) which is much higher than the random $1/(2^k + 1)!$. We effectively use these polynomials in our polynomial time relation generation (the first polynomial time algorithm for relation generation).

・ロン ・回と ・ヨン ・ヨン

 Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over F_q).

・ロン ・回と ・ヨン ・ヨン

æ

- Permutations Related work $x^{-1} + L(x)$ Our results
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over F_q).
- Highlights of our method: An $L_{q^n}(1/3, (2/3)^{2/3})$ overall algorithm.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

- Permutations Related work $x^{-1} + L(x)$ Our results
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over 𝔽_q).
- Highlights of our method: An $L_{q^n}(1/3, (2/3)^{2/3})$ overall algorithm.

• World record progress:

bitlength	who/when	running time	
127	Coppersmith 1984	N/A	
521	Joux-Lercier 2001	> 3000 core hours	
607	Thomé 2001	> 800000 core hours	
923	Hayashi et al. 2010	> 800000 core hours	
1175	Joux Dec. 2012	> 30000 core hours	
1425	Joux Jan. 2013	> 30000 core hours	
1778	Joux 11/2/2013	215 core hours	

イロン イヨン イヨン イヨン

크

- Permutations Related work $x^{-1} + L(x)$ Our results
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over F_q).
- Highlights of our method: An $L_{q^n}(1/3, (2/3)^{2/3})$ overall algorithm.

bitlength who/when running time 127 Coppersmith 1984 N/A . . . 521 Joux-Lercier 2001 > 3000 core hours 607 Thomé 2001 > 800000 core hours . . . 923 Hayashi et al. 2010 > 800000 core hours 1175 Joux Dec. 2012 > 30000 core hours 1425 Joux Jan. 2013 > 30000 core hours 1778 Joux 11/2/2013 215 core hours 1971 GGMZ 19/2/2013 3132 core hours

World record progress:

<ロ> <同> <同> <同> < 同> < 同>

- Permutations Related work $x^{-1} + L(x)$ Our results
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over 𝔽_q).
- Highlights of our method: An $L_{q^n}(1/3, (2/3)^{2/3})$ overall algorithm.

bitlength		who/when	running time	
127		Coppersmith 1984	N/A	
	521	Joux-Lercier 2001	> 3000 core hours	
	607	Thomé 2001	> 800000 core hours	
	923	Hayashi et al. 2010	> 800000 core hours	
	1175	Joux Dec. 2012	> 30000 core hours	
	1425	Joux Jan. 2013	> 30000 core hours	
	1778	Joux 11/2/2013	215 core hours	
	1971	GGMZ 19/2/2013	3132 core hours	
	4080	Joux 22/3/2013	14100 core hours	
	1778 1971	Joux 11/2/2013 GGMZ 19/2/2013	215 core hours 3132 core hours	

• World record progress:

▲ □ ► ▲ □ ►

- Permutations Related work $x^{-1} + L(x)$ Our results
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over 𝔽_q).
- Highlights of our method: An $L_{q^n}(1/3, (2/3)^{2/3})$ overall algorithm.

bitlength		who/when	running time	
127		Coppersmith 1984	N/A	
	521	Joux-Lercier 2001	> 3000 core hours	
	607	Thomé 2001	> 800000 core hours	
	923	Hayashi et al. 2010	> 800000 core hours	
	1175	Joux Dec. 2012	> 30000 core hours	
	1425	Joux Jan. 2013	> 30000 core hours	
	1778	Joux 11/2/2013	215 core hours	
	1971	GGMZ 19/2/2013	3132 core hours	
	4080	Joux 22/3/2013	14100 core hours	
	6120	GGMZ 11/4/2013	750 core hours	

• World record progress:

・ロト ・回ト ・ヨト

Thanks for your attention.

Faruk Göloğlu On $x^{-1} + L(x)$

◆□ > ◆圖 > ◆ 国 > ◆ 国 > →

æ