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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:

o Monomials ax9 + b
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:

o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x)
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:

o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x) ged(d,q*> —1) =1
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:

o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x) ged(d,q*> —1) =1
o Binomials x? + ax®?
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:
o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x) ged(d,q*> —1) =1
o Binomials x9 + ax¢?
Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang;

Niederreiter, Robinson; Turnwald; D. Wan; Sarkar,
Bhattacharya, Cesmelioglu;
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:
o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x) ged(d,q*> —1) =1
o Binomials x9 + ax¢?
Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang;

Niederreiter, Robinson; Turnwald; D. Wan; Sarkar,
Bhattacharya, Cesmelioglu;

@ Complete mappings:
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Permutations of finite fields

@ A polynomial

is a PP (permutation polynomial) if it permutes the elements of F,,.
@ Characterisations:
o Monomials ax? + b iff gcd(d,q — 1) =1
o Dickson polynomials Dy(x) ged(d,q*> —1) =1
o Binomials x9 + ax¢?
Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang;

Niederreiter, Robinson; Turnwald; D. Wan; Sarkar,
Bhattacharya, Cesmelioglu;

@ Complete mappings: both f(x) and f(x) + x are PPs.
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@ Linearised polynomials:

L(x) = aox + a1xP + azx”2 4+ am,lx”w1
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@ Linearised polynomials:

L(x) = aox + a1xP + azx”2 4+ am,lx”w1

@ (Generalized) Walsh transform

fla,8) = Y x(af(x) + Bx)

x€F,

where x(-) = ¢T0),
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@ Linearised polynomials:

L(x) = aox + a1xP + azx”2 4+ am,lx”w1

@ (Generalized) Walsh transform

fla,8) = Y x(af(x) + Bx)

x€F,

where x(-) = ¢Tre),
@ A criterion for being PP:
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@ Linearised polynomials:

L(x) = aox + a1xP + azx”2 4+ am,lx”w1

@ (Generalized) Walsh transform

fla,8) = Y x(af(x) + Bx)

x€F,

where x(-) = ¢T0),
@ A criterion for being PP: f is PP if and only if

> x(af(x)) =0

x€Fq

for all o € IE‘:;.
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@ Consider polynomials of the form:

f(x) = Li(x9) + La(x)
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@ Consider polynomials of the form:
f(x) = Li(x9) + La(x)

@ Now
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@ Consider polynomials of the form:

f(x) = Li(x9) + La(x)

@ Now
Y xlolta(x¥) + L)) = 0
x€F,
ZX(LT(Q)Xd-l-L;(a)x) = 0
x€F,

Where adjoint of L is defined as:

m—1

L*(x) = Z af-’m_ixpmfi.

i=0
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@ Consider polynomials of the form:

f(x) = Li(x9) + La(x)

@ Now
Y xlolta(x¥) + L)) = 0
x€F,
ZX(LT(Q)Xd-l-L;(a)x) = 0
x€F,

Where adjoint of L is defined as:

m—1 .

L*(x) = Z af-’m_lxpmfi.

i=0

@ If one can describe Walsh zeroes of x9, then one may find
permutation polynomials.
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@ Description of Walsh zeroes known for some d,
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@ Description of Walsh zeroes known for some d, i.e.,

o p=2andd=1,32K+1,22k 2k 41
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@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=1,3,2k+1,22k —2k 11
e p=odd, andd=1,p+1,p<+1
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@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=132k+12%_2k41
e p=odd, andd=1,p+1,p<+1
Carlitz; Gold, Dillon, Dobbertin: Coulter
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@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=132k+12%_2k41
e p=odd, andd=1,p+1,p<+1
Carlitz; Gold, Dillon, Dobbertin: Coulter

@ PPs coming from these ideas

Faruk Géloglu On x4 L(x)



Permutations A few definitions
Previous work

Previous work

@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=132k+12%_2k41
e p=odd, andd=1,p+1,p<+1
Carlitz; Gold, Dillon, Dobbertin: Coulter

@ PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
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@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=132k+12%_2k41
e p=odd, andd=1,p+1,p<+1
Carlitz; Gold, Dillon, Dobbertin: Coulter

@ PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
@ PPs of type P(x) +~Tr (Q(x))

Faruk Géloglu On x4 L(x)



Permutations A few definitions
Previous work

Previous work

@ Description of Walsh zeroes known for some d, i.e.,

e p=2andd=132k+12%_2k41
e p=odd, andd=1,p+1,p<+1
Carlitz; Gold, Dillon, Dobbertin: Coulter

@ PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
@ PPs of type P(x) +~Tr (Q(x)) Charpin, Kyureghyan
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@ Description of Walsh zeroes known for some d, i.e.,
o p=2andd=1,32k+12% 2k 1
e p=odd, andd=1,p+1,pFk+1
Carlitz; Gold, Dillon, Dobbertin: Coulter
@ PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
@ PPs of type P(x) +~Tr (Q(x)) Charpin, Kyureghyan
@ If gcd(d, g — 1) > 1 then x9 + L(x) (L(x) with binary coefficients)

are not permutations (p = 2)
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@ Description of Walsh zeroes known for some d, i.e.,
o p=2andd=1,32k+12% 2k 1
e p=odd, andd=1,p+1,pFk+1
Carlitz; Gold, Dillon, Dobbertin: Coulter
@ PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
@ PPs of type P(x) +~Tr (Q(x)) Charpin, Kyureghyan
@ If gcd(d, g — 1) > 1 then x9 + L(x) (L(x) with binary coefficients)

are not permutations (p = 2) Pasalic
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@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang
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@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang

@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,
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@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang

@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,

You only need ?(1, a) modulo some number for negative results.
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x~1 + L(x) QOur results

@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang

@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,
You only need f(1,a) modulo some number for negative results.

@ Kloosterman sum is defined by

K(a) = Z x(x7! 4 ax).

x€Fq
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@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang

@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,

You only need ?(1, a) modulo some number for negative results.

@ Kloosterman sum is defined by

K(a) = Z x(x7! 4 ax).

x€Fq

@ When p =2, we know K(a) modulo 8,16,...,256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
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@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang
@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,
You only need ?(1, a) modulo some number for negative results.
@ Kloosterman sum is defined by

K(a) = Z x(x7! 4 ax).

x€Fq

@ When p =2, we know K(a) modulo 8,16,...,256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

@ When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney;
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Related work
x~1 + L(x) QOur results

@ If p=2then x~! + L(x) is not PP on Fa (for n > 5) Li, Wang
@ Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,
You only need ?(1, a) modulo some number for negative results.
@ Kloosterman sum is defined by

K(a) = Z x(x7! 4 ax).

x€Fq

@ When p =2, we know K(a) modulo 8,16,...,256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

@ When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney; 4
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If p=2 then x~! + L(x) is not PP on Fy. (for n >5) Li, Wang
Our exponential some now becomes:

Z x(x7! +al*(a)x) =0.

x€F,
You only need ?(1, a) modulo some number for negative results.
Kloosterman sum is defined by

K(a) = Z x(x7! 4 ax).

x€Fq

When p = 2, we know K(a) modulo 8,16,...,256 Van der Geer,
Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

When p = 3, we know K(a) modulo 9,27 G., McGuire, Moloney; 4

When p > 3, no Kloosterman zeroes Kononen, Rinta-aho,
Vaananen
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Modulo 4 characterisation

Theorem (G. ('12), Garaschuk, Lisongk ('08))
Let a € F3m. Then

0 (mod4) ifa=0ora=b*with Tr(b) =1
and —b is not a square,
2m+3 (mod 4) ifa=1t>—1t3 forsomet e F,\ {0,1}
K(a) = and at least one of t,1 — t is a square,
2 (mod 4) ifa= b% with Tr(b) =1
and —b is a square.
2m+1 (mod 4) ifa=t>—t3 forsomet e F,\{0,1}
and none of t,1 — t is a square.

Odd cases Garaschuk, Lison&k; Even cases G.
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A theorem of Carlitz

Theorem (Carlitz)
Let f(x) be a polynomial over F4[x] such that f(0) =0, f(1) =1, and

n(f(a) = £(b)) = n(a - b) (1)

for all a,b € Fq. Then f(x) = xP" for some 0 < d < m.
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A theorem of Carlitz

Theorem (Carlitz)

Let f(x) be a polynomial over F4[x] such that f(0) =0, f(1) =1, and
n(f(a) = £(b)) = n(a - b) (1)

for all a,b € Fq. Then f(x) = xP" for some 0 < d < m.

We modify condition (1) as follows:

n(f(a) — (b)) n(a—b) € {0,1}. ()

Faruk Géloglu On x4 L(x)



Related work
x~1 + L(x) QOur results

A theorem of Carlitz

Theorem (Carlitz)
Let f(x) be a polynomial over F4[x] such that f(0) =0, f(1) =1, and

n(f(a) = £(b)) = n(a - b) (1)

for all a,b € Fq. Then f(x) = xP" for some 0 < d < m.

We modify condition (1) as follows:

n(f(a) — (b)) n(a—b) € {0,1}. ()

If f = L is linearized then the condition (2) is equivalent to

n(aL(a)) € {0,1}.
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A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) C Sq U {0} if and
only if L(x) =0 or L(x) = ax?’ for some a € Sq and some 0 < d < m.
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A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) C Sq U {0} if and
only if L(x) =0 or L(x) = ax?’ for some a € Sq and some 0 < d < m.

v

Sketch of Proof

H) = {x e Fy : Tr(ax) = c}
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A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) C Sq U {0} if and
only if L(x) =0 or L(x) = ax?’ for some a € Sq and some 0 < d < m.

Sketch of Proof

| A

H) = {x e Fy : Tr(ax) = c}

S =3 n(x)

XEH((;)

Faruk Géloglu On x— ! 4 L(x)



Related work
x—1 + L(x) Our results

A related theorem

Theorem (G., McGuire)

Let L(x) be a linearized polynomial. Then Im(xL(x)) C Sq U {0} if and
only if L(x) =0 or L(x) = ax?’ for some a € Sq and some 0 < d < m.

v

Sketch of Proof

H) = {x e Fy : Tr(ax) = c}

S =3 n(x)

XEH((;)

We show the (exact) p-divisibility of S{ is m=1 when ¢ # 0.
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have

n(x + v) = n(L(v)),
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.
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Sketch of Proof (cont'd)

Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O)
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Sketch of Proof (cont'd)

Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of Séc) is mTfl
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Sketch of Proof (cont'd)

Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of Séc) is mTfl
dimension of K cannot be large,
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Sketch of Proof (cont'd)

Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

1

o Now since K C H and the (exact) p-divisibility of 5 s m-1
dimension of K cannot be large, (viz., val,(t|K]) = Z1).
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of 5 i mTfl
dimension of K cannot be large, (viz., val,(t|K|) = &5 1).

@ Since n(L(v)) is +1 and —1 equal number of times for v € V*,
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of 5 i mTfl
dimension of K cannot be large, (viz., val,(t|K|) = &5 1).

@ Since n(L(v)) is +1 and —1 equal number of times for v € V*,
(note that >, . n(x) = 0),
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of 5 i mTfl
dimension of K cannot be large, (viz., val,(t|K|) = &5 1).

@ Since n(L(v)) is +1 and —1 equal number of times for v € V*,
(note that >, cp 1(x) =0), and V C HL(_;O),

Faruk Géloglu On x4 L(x)



Related work
x4 L(x) Our results

Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of 5 i mTfl
dimension of K cannot be large, (viz., val,(t|K|) = &5 1).

@ Since n(L(v)) is +1 and —1 equal number of times for v € V*,
(note that 3, . 7(x) =0), and V C H( ), we have Séc) strictly
less than |K|, it cannot be small.
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Sketch of Proof (cont'd)

@ Assume 7(xL(x)) € 0,1 for all x and L(x) # 0 or axP".
@ Let K be kernel of L and K @ V =T,
@ For x € K, n(L(x)) = 0.

@ For nonzero v € V, since n((x + v)L(x + v)) = 1 we must have
n(x + v) =n(L(v)), i.e., n is constant on nonzero cosets of K.

@ Now since K C H&O) and the (exact) p-divisibility of 5 i mTfl
dimension of K cannot be large, (viz., val,(t|K|) = &5 1).

@ Since n(L(v)) is +1 and —1 equal number of times for v € V*,
(note that 3, . 7(x) =0), and V C H( ), we have Séc) strictly
less than |K|, it cannot be small.

@ A number cannot be both small and large! QED.
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The nonexistence result

Theorem (G., McGuire)

If p is odd then x~1 + L(x) is a PP if and only if
(i) L(x)=0, or

(i) g =3 and L(x) = x, or

(i) g =9 and L(x) = w?x3 or L(x) = w®x3, where w generates F.
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The nonexistence result

Theorem (G., McGuire)

If p is odd then x~1 + L(x) is a PP if and only if
(i) L(x)=0, or
(i) g =3 and L(x) = x, or

(i) g =9 and L(x) = w?x3 or L(x) = w®x3, where w generates F.

v

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always
square or 0, then L(x) =0 or L(x) = axP".
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The nonexistence result

Theorem (G., McGuire)
If p is odd then x~1 + L(x) is a PP if and only if

(i) L(x)=0, or
(i) g =3 and L(x) = x, or

(i) g =9 and L(x) = w?x3 or L(x) = w®x3, where w generates F.

| A

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always
square or 0, then L(x) =0 or L(x) = axP".

We have to show now x~1 + ax? cannot be permutation.
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The nonexistence result

Theorem (G., McGuire)
If p is odd then x~1 + L(x) is a PP if and only if

(i) L(x)=0, or
(i) g =3 and L(x) = x, or
(i) g =9 and L(x) = w?x3 or L(x) = w®x3, where w generates F.

| A

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if xL(x) is always
square or 0, then L(x) =0 or L(x) = axP".

We have to show now x~1 + ax? cannot be permutation.

Use Hermite condition.
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Sketch of Proof (cont'd)

Theorem (Hermite's criterion)
A polynomial f € F,m[x] is a permutation polynomial if and only if
@ f has exactly one root in Fpm,

@ foreach d withl < d < p™—2 and d #0 (mod p), the degree of
f(x)¢ (mod xP” — x) is less than p™ — 1.
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Sketch of Proof (cont'd)

Theorem (Hermite's criterion)

A polynomial f € F,m[x] is a permutation polynomial if and only if
@ f has exactly one root in Fpm,

@ foreach d withl < d < p™—2 and d #0 (mod p), the degree of
f(x)¢ (mod xP” — x) is less than p™ — 1.

This leaves a few exceptions. For them we use the result giving
Kloosterman sums modulo 4.
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An announcement
F.G., Robert Granger, Gary McGuire, Jens Zumbragel

@ The Discrete Logarithm Problem on Finite Fields:
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An announcement
F.G., Robert Granger, Gary McGuire, Jens Zumbragel

@ The Discrete Logarithm Problem on Finite Fields: Fix a
generator g of Fy,. Given ¢ € Fg,, find / such that ¢ = g
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An announcement

F.G., Robert Granger, Gary McGuire, Jens Zumbragel

@ The Discrete Logarithm Problem on Finite Fields: Fix a
generator g of Fy,. Given ¢ € Fg,, find / such that ¢ = g

@ It is a challenge to compute Discrete Logarithms on the largest
possible Finite Field Fn.
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An announcement

F.G., Robert Granger, Gary McGuire, Jens Zumbragel

@ The Discrete Logarithm Problem on Finite Fields: Fix a
generator g of Fy,. Given ¢ € Fg,, find / such that ¢ = g

@ It is a challenge to compute Discrete Logarithms on the largest
possible Finite Field Fn.

@ Highlights of our method: For g = 2/, when k | / and //k > 3, the
following family of polynomials has probability ~ 1/23 of splitting:

2k+bx+c, a,b,c ey,

x2H 4 ax
(the work on these polynomials due to Bluher and
Helleseth-Kholosha) which is much higher than the random
1/(2k + 1)!. We effectively use these polynomials in our polynomial
time relation generation (the first polynomial time algorithm for
relation generation).
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).

o Highlights of our method: An L,(1/3,(2/3)%3) overall
algorithm.
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).

o Highlights of our method: An L,(1/3,(2/3)%3) overall
algorithm.
@ World record progress:

bitlength who/when running time
127 Coppersmith 1984 N/A
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
923 Hayashi et al. 2010 | > 800000 core hours
1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).

o Highlights of our method: An L,(1/3,(2/3)%3) overall
algorithm.

@ World record progress:

bitlength who/when running time
127 Coppersmith 1984 N/A
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
923 Hayashi et al. 2010 | > 800000 core hours
1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours

1971 GGMZ 19/2/2013 3132 core hours
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).

o Highlights of our method: An L,(1/3,(2/3)%3) overall
algorithm.

@ World record progress:

bitlength who/when running time
127 Coppersmith 1984 N/A
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
923 Hayashi et al. 2010 | > 800000 core hours
1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours
1971 GGMZ 19/2/2013 3132 core hours
4080 Joux 22/3/2013 14100 core hours
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@ Highlights of our method: A very effective descent method to find
individual logarithms (involves algorithms on polynomials over F).

o Highlights of our method: An L,(1/3,(2/3)%3) overall

algorithm.
@ World record progress:
bitlength who/when running time
127 Coppersmith 1984 N/A
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
923 Hayashi et al. 2010 | > 800000 core hours
1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours
1971 GGMZ 19/2/2013 3132 core hours
4080 Joux 22/3/2013 14100 core hours
6120 GGMZ 11/4/2013 750 core hours

Faruk Gologlu

On x4 L(x)



Thanks for your attention.
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