When is $x^{-1}+L(x)$ a permutation?

Faruk Göloğlu

Claude Shannon Institute, University College Dublin

with Gary McGuire

WCC 2013
Bergen, April 18, 2013

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x)$

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x) \operatorname{gcd}\left(d, q^{2}-1\right)=1$

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x) \operatorname{gcd}\left(d, q^{2}-1\right)=1$
- Binomials $x^{d}+a x^{e}$?

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a $P P$ (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x) \operatorname{gcd}\left(d, q^{2}-1\right)=1$
- Binomials $x^{d}+a x^{e}$?

Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x) \operatorname{gcd}\left(d, q^{2}-1\right)=1$
- Binomials $x^{d}+a x^{e}$?

Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;

- Complete mappings:

Permutations of finite fields

- A polynomial

$$
f(x)=\sum_{i=0}^{q-1} a_{i} x^{i}
$$

is a PP (permutation polynomial) if it permutes the elements of \mathbb{F}_{q}.

- Characterisations:
- Monomials $a x^{d}+b$ iff $\operatorname{gcd}(d, q-1)=1$
- Dickson polynomials $D_{d}(x) \operatorname{gcd}\left(d, q^{2}-1\right)=1$
- Binomials $x^{d}+a x^{e}$?

Carlitz; Masuda, Zieve; X.D. Hou; Masuda, Panario, Wang; Niederreiter, Robinson; Turnwald; D. Wan; Sarkar, Bhattacharya, Çesmelioğlu;

- Complete mappings: both $f(x)$ and $f(x)+x$ are PPs.
- Linearised polynomials:

$$
L(x)=a_{0} x+a_{1} x^{p}+a_{2} x^{p^{2}}+\cdots+a_{m-1} x^{p^{m-1}}
$$

- Linearised polynomials:

$$
L(x)=a_{0} x+a_{1} x^{p}+a_{2} x^{p^{2}}+\cdots+a_{m-1} x^{p^{m-1}}
$$

- (Generalized) Walsh transform

$$
\widehat{f}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{q}} \chi(\alpha f(x)+\beta x)
$$

where $\chi(\cdot)=\zeta^{\operatorname{Tr}(\cdot)}$.

- Linearised polynomials:

$$
L(x)=a_{0} x+a_{1} x^{p}+a_{2} x^{p^{2}}+\cdots+a_{m-1} x^{p^{m-1}}
$$

- (Generalized) Walsh transform

$$
\widehat{f}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{q}} \chi(\alpha f(x)+\beta x)
$$

where $\chi(\cdot)=\zeta^{\operatorname{Tr}(\cdot)}$.

- A criterion for being PP:
- Linearised polynomials:

$$
L(x)=a_{0} x+a_{1} x^{p}+a_{2} x^{p^{2}}+\cdots+a_{m-1} x^{p^{m-1}}
$$

- (Generalized) Walsh transform

$$
\widehat{f}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{q}} \chi(\alpha f(x)+\beta x)
$$

where $\chi(\cdot)=\zeta^{\operatorname{Tr}(\cdot)}$.

- A criterion for being PP: f is PP if and only if

$$
\sum_{x \in \mathbb{F}_{q}} \chi(\alpha f(x))=0
$$

for all $\alpha \in \mathbb{F}_{q}^{*}$.

- Consider polynomials of the form:

$$
f(x)=L_{1}\left(x^{d}\right)+L_{2}(x)
$$

- Consider polynomials of the form:

$$
f(x)=L_{1}\left(x^{d}\right)+L_{2}(x)
$$

- Now

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(\alpha\left[L_{1}\left(x^{d}\right)+L_{2}(x)\right]\right)=0
$$

- Consider polynomials of the form:

$$
f(x)=L_{1}\left(x^{d}\right)+L_{2}(x)
$$

- Now

$$
\begin{aligned}
& \sum_{x \in \mathbb{F}_{q}} \chi\left(\alpha\left[L_{1}\left(x^{d}\right)+L_{2}(x)\right]\right)=0 \\
& \sum_{x \in \mathbb{F}_{q}} \chi\left(L_{1}^{*}(\alpha) x^{d}+L_{2}^{*}(\alpha) x\right)=0
\end{aligned}
$$

Where adjoint of L is defined as:

$$
L^{*}(x)=\sum_{i=0}^{m-1} a_{i}^{p^{m-i}} x^{p^{m-i}}
$$

- Consider polynomials of the form:

$$
f(x)=L_{1}\left(x^{d}\right)+L_{2}(x)
$$

- Now

$$
\begin{aligned}
& \sum_{x \in \mathbb{F}_{q}} \chi\left(\alpha\left[L_{1}\left(x^{d}\right)+L_{2}(x)\right]\right)=0 \\
& \sum_{x \in \mathbb{F}_{q}} \chi\left(L_{1}^{*}(\alpha) x^{d}+L_{2}^{*}(\alpha) x\right)=0
\end{aligned}
$$

Where adjoint of L is defined as:

$$
L^{*}(x)=\sum_{i=0}^{m-1} a_{i}^{p^{m-i}} x^{p^{m-i}}
$$

- If one can describe Walsh zeroes of x^{d}, then one may find permutation polynomials.

Previous work

- Description of Walsh zeroes known for some d,

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x)+\gamma \operatorname{Tr}(Q(x))$

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x)+\gamma \operatorname{Tr}(Q(x)) \quad$ Charpin, Kyureghyan

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x)+\gamma \operatorname{Tr}(Q(x)) \quad$ Charpin, Kyureghyan
- If $\operatorname{gcd}(d, q-1)>1$ then $x^{d}+L(x)(L(x)$ with binary coefficients $)$ are not permutations ($p=2$)

Previous work

- Description of Walsh zeroes known for some d, i.e.,
- $p=2$ and $d=1,3,2^{k}+1,2^{2 k}-2^{k}+1$
- $p=$ odd, and $d=1, p+1, p^{k}+1$

Carlitz; Gold, Dillon, Dobbertin; Coulter

- PPs coming from these ideas Pasalic, Charpin; Y. Li, M. Wang;
- PPs of type $P(x)+\gamma \operatorname{Tr}(Q(x)) \quad$ Charpin, Kyureghyan
- If $\operatorname{gcd}(d, q-1)>1$ then $x^{d}+L(x)(L(x)$ with binary coefficients $)$ are not permutations ($p=2$) Pasalic

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li , Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

- Kloosterman sum is defined by

$$
K(a)=\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+a x\right)
$$

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

- Kloosterman sum is defined by

$$
K(a)=\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+a x\right) .
$$

- When $p=2$, we know $K(a)$ modulo $8,16, \ldots, 256$ Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

- Kloosterman sum is defined by

$$
K(a)=\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+a x\right) .
$$

- When $p=2$, we know $K(a)$ modulo $8,16, \ldots, 256$ Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When $p=3$, we know $K(a)$ modulo 9, 27 G., McGuire, Moloney;

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1, a)$ modulo some number for negative results.

- Kloosterman sum is defined by

$$
K(a)=\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+a x\right) .
$$

- When $p=2$, we know $K(a)$ modulo $8,16, \ldots, 256$ Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When $p=3$, we know $K(a)$ modulo 9,27 G., McGuire, Moloney; 4

$x^{-1}+L(x)$

- If $p=2$ then $x^{-1}+L(x)$ is not PP on $\mathbb{F}_{2^{n}}$ (for $n \geq 5$) Li, Wang
- Our exponential some now becomes:

$$
\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+\alpha L^{*}(\alpha) x\right)=0
$$

You only need $\widehat{f}(1$, a) modulo some number for negative results.

- Kloosterman sum is defined by

$$
K(a)=\sum_{x \in \mathbb{F}_{q}} \chi\left(x^{-1}+a x\right) .
$$

- When $p=2$, we know $K(a)$ modulo $8,16, \ldots, 256$ Van der Geer, Van der Vlugt; Helleseth, Zinoviev; G., Lisonek, McGuire, Moloney;
- When $p=3$, we know $K(a)$ modulo 9,27 G., McGuire, Moloney; 4
- When $p>3$, no Kloosterman zeroes Kononen, Rinta-aho, Väänänen

Modulo 4 characterisation

Theorem (G. ('12), Garaschuk, Lisoněk ('08))

Let $a \in \mathbb{F}_{3^{m}}$. Then

$$
K(a) \equiv\left\{\begin{array}{rll}
0 & (\bmod 4) & \begin{array}{l}
\text { if } a=0 \text { or } a=b^{2} \text { with } \operatorname{Tr}(b)=1 \\
\text { and }-b \text { is not a square, }
\end{array} \\
2 m+3 & (\bmod 4) & \begin{array}{l}
\text { if } a=t^{2}-t^{3} \text { for some } t \in \mathbb{F}_{q} \backslash\{0,1\} \\
\text { and at least one of } t, 1-t \text { is a square, }
\end{array} \\
2(\bmod 4) & \begin{array}{l}
\text { if } a=b^{2} \text { with } \operatorname{Tr}(b)=1
\end{array} \\
\text { and }-b \text { is a square. } \\
\text { if } a=t^{2}-t^{3} \text { for some } t \in \mathbb{F}_{q} \backslash\{0,1\} \\
\text { and none of } t, 1-t \text { is a square. }
\end{array}\right.
$$

Odd cases Garaschuk, Lisoněk; Even cases G.

A theorem of Carlitz

Theorem (Carlitz)

Let $f(x)$ be a polynomial over $\mathbb{F}_{q}[x]$ such that $f(0)=0, f(1)=1$, and

$$
\begin{equation*}
\eta(f(a)-f(b))=\eta(a-b) \tag{1}
\end{equation*}
$$

for all $a, b \in \mathbb{F}_{q}$. Then $f(x)=x^{p^{d}}$ for some $0 \leq d<m$.

A theorem of Carlitz

Theorem (Carlitz)

Let $f(x)$ be a polynomial over $\mathbb{F}_{q}[x]$ such that $f(0)=0, f(1)=1$, and

$$
\begin{equation*}
\eta(f(a)-f(b))=\eta(a-b) \tag{1}
\end{equation*}
$$

for all $a, b \in \mathbb{F}_{q}$. Then $f(x)=x^{p^{d}}$ for some $0 \leq d<m$.
We modify condition (1) as follows:

$$
\begin{equation*}
\eta(f(a)-f(b)) \eta(a-b) \in\{0,1\} . \tag{2}
\end{equation*}
$$

A theorem of Carlitz

Theorem (Carlitz)

Let $f(x)$ be a polynomial over $\mathbb{F}_{q}[x]$ such that $f(0)=0, f(1)=1$, and

$$
\begin{equation*}
\eta(f(a)-f(b))=\eta(a-b) \tag{1}
\end{equation*}
$$

for all $a, b \in \mathbb{F}_{q}$. Then $f(x)=x^{p^{d}}$ for some $0 \leq d<m$.
We modify condition (1) as follows:

$$
\begin{equation*}
\eta(f(a)-f(b)) \eta(a-b) \in\{0,1\} . \tag{2}
\end{equation*}
$$

If $f=L$ is linearized then the condition (2) is equivalent to

$$
\eta(a L(a)) \in\{0,1\} .
$$

A related theorem

Theorem (G., McGuire)
Let $L(x)$ be a linearized polynomial. Then $\operatorname{Im}(x L(x)) \subseteq S q \cup\{0\}$ if and only if $L(x)=0$ or $L(x)=a x^{p^{d}}$ for some $a \in \mathrm{Sq}$ and some $0 \leq d<m$.

A related theorem

Theorem (G., McGuire)
Let $L(x)$ be a linearized polynomial. Then $\operatorname{Im}(x L(x)) \subseteq S q \cup\{0\}$ if and only if $L(x)=0$ or $L(x)=a x^{p^{d}}$ for some $a \in \mathrm{Sq}$ and some $0 \leq d<m$.

Sketch of Proof

$$
H_{\alpha}^{(c)}=\left\{x \in \mathbb{F}_{q}: \operatorname{Tr}(\alpha x)=c\right\}
$$

A related theorem

Theorem (G., McGuire)

Let $L(x)$ be a linearized polynomial. Then $\operatorname{Im}(x L(x)) \subseteq \mathrm{Sq} \cup\{0\}$ if and only if $L(x)=0$ or $L(x)=a x^{p^{d}}$ for some $a \in \mathrm{Sq}$ and some $0 \leq d<m$.

Sketch of Proof

$$
\begin{gathered}
H_{\alpha}^{(c)}=\left\{x \in \mathbb{F}_{q}: \operatorname{Tr}(\alpha x)=c\right\} \\
S_{\alpha}^{(c)}=\sum_{x \in H_{\alpha}^{(c)}} \eta(x)
\end{gathered}
$$

A related theorem

Theorem (G., McGuire)

Let $L(x)$ be a linearized polynomial. Then $\operatorname{Im}(x L(x)) \subseteq S q \cup\{0\}$ if and only if $L(x)=0$ or $L(x)=a x^{p^{d}}$ for some $a \in \mathrm{Sq}$ and some $0 \leq d<m$.

Sketch of Proof

$$
\begin{gathered}
H_{\alpha}^{(c)}=\left\{x \in \mathbb{F}_{q}: \operatorname{Tr}(\alpha x)=c\right\} \\
S_{\alpha}^{(c)}=\sum_{x \in H_{\alpha}^{(c)}} \eta(x)
\end{gathered}
$$

We show the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$ when $c \neq 0$.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$,

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$,

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large,

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^{*}$,

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^{*}$, (note that $\sum_{x \in \mathbb{F}_{q}} \eta(x)=0$),

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^{*}$, (note that $\sum_{x \in \mathbb{F}_{q}} \eta(x)=0$), and $V \subseteq H_{\beta}^{(0)}$,

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^{*}$, (note that $\sum_{x \in \mathbb{F}_{q}} \eta(x)=0$), and $V \subseteq H_{\beta}^{(0)}$, we have $S_{\beta}^{(c)}$ strictly less than $|K|$, it cannot be small.

Sketch of Proof (cont'd)

- Assume $\eta(x L(x)) \in 0,1$ for all x and $L(x) \neq 0$ or $a x^{p^{k}}$.
- Let K be kernel of L and $K \oplus V=\mathbb{F}_{q}$.
- For $x \in K, \eta(L(x))=0$.
- For nonzero $v \in V$, since $\eta((x+v) L(x+v))=1$ we must have $\eta(x+v)=\eta(L(v))$, i.e., η is constant on nonzero cosets of K.
- Now since $K \subseteq H_{\alpha}^{(0)}$ and the (exact) p-divisibility of $S_{\alpha}^{(c)}$ is $\frac{m-1}{2}$, dimension of K cannot be large, (viz., $\left.\operatorname{val}_{p}(t|K|)=\frac{m-1}{2}\right)$.
- Since $\eta(L(v))$ is +1 and -1 equal number of times for $v \in V^{*}$, (note that $\sum_{x \in \mathbb{F}_{q}} \eta(x)=0$), and $V \subseteq H_{\beta}^{(0)}$, we have $S_{\beta}^{(c)}$ strictly less than $|K|$, it cannot be small.
- A number cannot be both small and large! QED.

The nonexistence result

Theorem (G., McGuire)

If p is odd then $x^{-1}+L(x)$ is a PP if and only if
(i) $L(x)=0$, or
(ii) $q=3$ and $L(x)=x$, or
(iii) $q=9$ and $L(x)=\omega^{2} x^{3}$ or $L(x)=\omega^{6} x^{3}$, where ω generates \mathbb{F}_{9}^{*}.

The nonexistence result

Theorem (G., McGuire)

If p is odd then $x^{-1}+L(x)$ is a PP if and only if
(i) $L(x)=0$, or
(ii) $q=3$ and $L(x)=x$, or
(iii) $q=9$ and $L(x)=\omega^{2} x^{3}$ or $L(x)=\omega^{6} x^{3}$, where ω generates \mathbb{F}_{9}^{*}.

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if $x L(x)$ is always square or 0 , then $L(x)=0$ or $L(x)=a x^{p^{k}}$.

The nonexistence result

Theorem (G., McGuire)

If p is odd then $x^{-1}+L(x)$ is a PP if and only if
(i) $L(x)=0$, or
(ii) $q=3$ and $L(x)=x$, or
(iii) $q=9$ and $L(x)=\omega^{2} x^{3}$ or $L(x)=\omega^{6} x^{3}$, where ω generates \mathbb{F}_{9}^{*}.

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if $x L(x)$ is always square or 0 , then $L(x)=0$ or $L(x)=a x^{p^{k}}$.
We have to show now $x^{-1}+a x^{p^{k}}$ cannot be permutation.

The nonexistence result

Theorem (G., McGuire)

If p is odd then $x^{-1}+L(x)$ is a PP if and only if
(i) $L(x)=0$, or
(ii) $q=3$ and $L(x)=x$, or
(iii) $q=9$ and $L(x)=\omega^{2} x^{3}$ or $L(x)=\omega^{6} x^{3}$, where ω generates \mathbb{F}_{9}^{*}.

Sketch of Proof

By the result giving Kloosterman sums modulo 4, if $x L(x)$ is always square or 0 , then $L(x)=0$ or $L(x)=a x^{p^{k}}$.
We have to show now $x^{-1}+a x^{p^{k}}$ cannot be permutation.
Use Hermite condition.

Sketch of Proof (cont'd)

Theorem (Hermite's criterion)

A polynomial $f \in \mathbb{F}_{p^{m}}[x]$ is a permutation polynomial if and only if
(1) f has exactly one root in $\mathbb{F}_{p^{m}}$,
(2) for each d with $1 \leq d \leq p^{m}-2$ and $d \not \equiv 0(\bmod p)$, the degree of $f(x)^{d}\left(\bmod x^{p^{m}}-x\right)$ is less than $p^{m}-1$.

Sketch of Proof (cont'd)

Theorem (Hermite's criterion)

A polynomial $f \in \mathbb{F}_{p^{m}}[x]$ is a permutation polynomial if and only if
(1) f has exactly one root in $\mathbb{F}_{p^{m}}$,
(2) for each d with $1 \leq d \leq p^{m}-2$ and $d \not \equiv 0(\bmod p)$, the degree of $f(x)^{d}\left(\bmod x^{p^{m}}-x\right)$ is less than $p^{m}-1$.

This leaves a few exceptions. For them we use the result giving Kloosterman sums modulo 4.

An announcement
 F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields:

An announcement
 F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^{n}}^{*}$. Given $c \in \mathbb{F}_{q^{n}}^{*}$, find i such that $c=g^{i}$.

An announcement
 F.G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^{n}}^{*}$. Given $c \in \mathbb{F}_{q^{n}}^{*}$, find i such that $c=g^{i}$.
- It is a challenge to compute Discrete Logarithms on the largest possible Finite Field $\mathbb{F}_{q^{n}}$.

An announcement

F. G., Robert Granger, Gary McGuire, Jens Zumbrägel

- The Discrete Logarithm Problem on Finite Fields: Fix a generator g of $\mathbb{F}_{q^{n}}^{*}$. Given $c \in \mathbb{F}_{q^{n}}^{*}$, find i such that $c=g^{i}$.
- It is a challenge to compute Discrete Logarithms on the largest possible Finite Field $\mathbb{F}_{q^{n}}$.
- Highlights of our method: For $q=2^{\prime}$, when $k \mid I$ and $I / k \geq 3$, the following family of polynomials has probability $\approx 1 / 2^{3 k}$ of splitting:

$$
x^{2^{k}+1}+a x^{2^{k}}+b x+c, \quad a, b, c \in \mathbb{F}_{q}
$$

(the work on these polynomials due to Bluher and Helleseth-Kholosha) which is much higher than the random $1 /\left(2^{k}+1\right)$!. We effectively use these polynomials in our polynomial time relation generation (the first polynomial time algorithm for relation generation).

- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: An $L_{q^{n}}\left(1 / 3,(2 / 3)^{2 / 3}\right)$ overall algorithm.
- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: An $L_{q^{n}}\left(1 / 3,(2 / 3)^{2 / 3}\right)$ overall algorithm.
- World record progress:

bitlength	who/when	running time
127	Coppersmith 1984	N/A
\ldots		
521	Joux-Lercier 2001	>3000 core hours
607	Thomé 2001	>800000 core hours
\ldots		
923	Hayashi et al. 2010	>800000 core hours
1175	Joux Dec. 2012	>30000 core hours
1425	Joux Jan. 2013	>30000 core hours
1778	Joux 11/2/2013	215 core hours

- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: An $L_{q^{n}}\left(1 / 3,(2 / 3)^{2 / 3}\right)$ overall algorithm.
- World record progress:

bitlength	who/when	running time
127	Coppersmith 1984	N/A
\ldots		
521	Joux-Lercier 2001	>3000 core hours
607	Thomé 2001	>800000 core hours
\ldots		
923	Hayashi et al. 2010	>800000 core hours
1175	Joux Dec. 2012	>30000 core hours
1425	Joux Jan. 2013	>30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours

- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: An $L_{q^{n}}\left(1 / 3,(2 / 3)^{2 / 3}\right)$ overall algorithm.
- World record progress:

bitlength	who/when	running time
127	Coppersmith 1984	N/A
\ldots		
521	Joux-Lercier 2001	>3000 core hours
607	Thomé 2001	>800000 core hours
\ldots		
923	Hayashi et al.2010	>800000 core hours
1175	Joux Dec.2012	>30000 core hours
1425	Joux Jan. 2013	>30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours

- Highlights of our method: A very effective descent method to find individual logarithms (involves algorithms on polynomials over \mathbb{F}_{q}).
- Highlights of our method: An $L_{q^{n}}\left(1 / 3,(2 / 3)^{2 / 3}\right)$ overall algorithm.
- World record progress:

bitlength	who/when	running time
127	Coppersmith 1984	N/A
\ldots		
521	Joux-Lercier 2001	>3000 core hours
607	Thomé 2001	>800000 core hours
\ldots		
923	Hayashi et al.2010	>800000 core hours
1175	Joux Dec. 2012	>30000 core hours
1425	Joux Jan. 2013	>30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours
6120	GGMZ 11/4/2013	750 core hours

Thanks for your attention.

