On canonical forms of ring-linear codes

Thomas Feulner

University of Bayreuth

April 2013

Goal : A canonization algorithm

Let G be a group, which acts on a set X. For some arbitrary element $x \in X$ compute:

Canonical Form A unique representative $CF_G(x)$ of the orbit Gx of x, i.e. $CF_G(x) = CF_G(gx)$ for all $g \in G$

Transporter Element A group element $TR_G(x) := g \in G$ such that $gx = CF_G(x)$.

Automorphism Group The stabilizer

 $\operatorname{Stab}_G(x) := \{g \in G \mid gx = x\} \text{ of } x.$

Goal : A canonization algorithm

Let G be a group, which acts on a set X.

For some arbitrary element $x \in X$ compute:

Canonical Form A unique representative $CF_G(x)$ of the orbit Gx of x, i.e. $CF_G(x) = CF_G(gx)$ for all $g \in G$

Transporter Element A group element $TR_G(x) := g \in G$ such that $gx = CF_G(x)$.

Automorphism Group The stabilizer

 $\operatorname{Stab}_G(x) := \{g \in G \mid gx = x\} \text{ of } x.$

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X.

For some arbitrary element $x \in X$ compute:

Canonical Form A unique representative $CF_G(x)$ of the orbit Gx of x, i.e. $CF_G(x) = CF_G(gx)$ for all $g \in G$

Transporter Element A group element $TR_G(x) := g \in G$ such that $gx = CF_G(x)$.

Automorphism Group The stabilizer Stab_G(x) := $\{g \in G \mid gx = x\}$ of x.

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X.

For some arbitrary element $x \in X$ compute:

Canonical Form A unique representative $CF_G(x)$ of the orbit Gx of x, i.e. $CF_G(x) = CF_G(gx)$ for all $g \in G$

Transporter Element A group element $TR_G(x) := g \in G$ such that $gx = CF_G(x)$.

Automorphism Group The stabilizer

 $\operatorname{Stab}_G(x) := \{g \in G \mid gx = x\} \text{ of } x.$

Section 1

Introduction

Chain Rings

The (finite, associative) ring R is a *chain ring* if the set of left ideals forms a chain:

$$\mathsf{R} \rhd \mathsf{N} \rhd \mathsf{N}^2 \rhd \ldots \rhd \mathsf{N}^m = \{\mathsf{0}_R\}$$

The maximal ideal $N := R\theta$ is generated by $\theta \in R$. $(N^i = R\theta^i = \theta^i R \text{ and } R/N \simeq \mathbb{F}_q.)$

- finite fields $\mathbb{F}_{p'}$
- integers modulo some prime power \mathbb{Z}_{p^r}
- Galois rings $GR(q^r, p^r)$

Chain Rings

The (finite, associative) ring R is a *chain ring* if the set of left ideals forms a chain:

$$\mathsf{R} \rhd \mathsf{N} \rhd \mathsf{N}^2 \rhd \ldots \rhd \mathsf{N}^m = \{\mathsf{0}_R\}$$

The maximal ideal $N := R\theta$ is generated by $\theta \in R$. $(N^i = R\theta^i = \theta^i R \text{ and } R/N \simeq \mathbb{F}_q.)$

- finite fields \mathbb{F}_{p^r}
- integers modulo some prime power \mathbb{Z}_{p^r}
- Galois rings $GR(q^r, p^r)$

Chain Rings

The (finite, associative) ring R is a *chain ring* if the set of left ideals forms a chain:

$$\mathsf{R} \rhd \mathsf{N} \rhd \mathsf{N}^2 \rhd \ldots \rhd \mathsf{N}^m = \{\mathsf{0}_R\}$$

The maximal ideal $N := R\theta$ is generated by $\theta \in R$. $(N^i = R\theta^i = \theta^i R \text{ and } R/N \simeq \mathbb{F}_q.)$

- finite fields \mathbb{F}_{p^r}
- integers modulo some prime power \mathbb{Z}_{p^r}
- Galois rings $GR(q^r, p^r)$

Chain Rings

The (finite, associative) ring R is a *chain ring* if the set of left ideals forms a chain:

$$\mathsf{R} \rhd \mathsf{N} \rhd \mathsf{N}^2 \rhd \ldots \rhd \mathsf{N}^m = \{\mathsf{0}_R\}$$

The maximal ideal $N := R\theta$ is generated by $\theta \in R$. $(N^i = R\theta^i = \theta^i R \text{ and } R/N \simeq \mathbb{F}_q.)$

- finite fields \mathbb{F}_{p^r}
- integers modulo some prime power \mathbb{Z}_{p^r}
- Galois rings $GR(q^r, p^r)$

Chain Rings

The (finite, associative) ring R is a *chain ring* if the set of left ideals forms a chain:

$$\mathsf{R} \rhd \mathsf{N} \rhd \mathsf{N}^2 \rhd \ldots \rhd \mathsf{N}^m = \{\mathsf{0}_R\}$$

The maximal ideal $N := R\theta$ is generated by $\theta \in R$. $(N^i = R\theta^i = \theta^i R \text{ and } R/N \simeq \mathbb{F}_q.)$

- finite fields \mathbb{F}_{p^r}
- integers modulo some prime power \mathbb{Z}_{p^r}
- Galois rings $GR(q^r, p^r)$

Linear Code

A linear code C is a R-submodule of R^n .

Shape of a linear code

$$C\simeq R/N^{\lambda_0}\oplus\ldots\oplus R/N^{\lambda_{k-1}}$$

- shp(C) := λ is called the shape of C.
- rk(C) := k is called the rank of C.

Linear Code

A linear code C is a R-submodule of R^n .

Shape of a linear code

$$C\simeq R/N^{\lambda_0}\oplus\ldots\oplus R/N^{\lambda_{k-1}}$$

- $shp(C) := \lambda$ is called the shape of C.
- rk(C) := k is called the rank of C.

Linear Code

A linear code C is a R-submodule of R^n .

Shape of a linear code

$$C\simeq R/N^{\lambda_0}\oplus\ldots\oplus R/N^{\lambda_{k-1}}.$$

- $shp(C) := \lambda$ is called the shape of C.
- rk(C) := k is called the rank of C.

Linear Code

A linear code C is a R-submodule of R^n .

Shape of a linear code

$$C\simeq R/N^{\lambda_0}\oplus\ldots\oplus R/N^{\lambda_{k-1}}.$$

- $shp(C) := \lambda$ is called the shape of C.
- rk(C) := k is called the rank of C.

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

- rows of Γ generate the module C
- $R\Gamma_{i,*} \simeq R/N^{\lambda_i}$ for all $i \in \{0, \dots, k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup GL_λ(R) ≤ GL_k(R) such that GL_λ(R)Γ is equal to the set of generator matrices of C.
- $\mathsf{GL}_\lambda(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

• $R\Gamma_{i,*} \simeq R/N^{\lambda_i}$ for all $i \in \{0, \dots, k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup GL_λ(R) ≤ GL_k(R) such that GL_λ(R)Γ is equal to the set of generator matrices of C.
- $\mathsf{GL}_\lambda(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

•
$$R\Gamma_{i,*}\simeq R/N^{\lambda_i}$$
 for all $i\in\{0,\ldots,k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup GL_λ(R) ≤ GL_k(R) such that GL_λ(R)Γ is equal to the set of generator matrices of C.
- $\mathsf{GL}_\lambda(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

•
$$R\Gamma_{i,*}\simeq R/N^{\lambda_i}$$
 for all $i\in\{0,\ldots,k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup $GL_{\lambda}(R) \leq GL_{k}(R)$ such that $GL_{\lambda}(R)\Gamma$ is equal to the set of generator matrices of C.
- $\mathsf{GL}_{\lambda}(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

•
$$R\Gamma_{i,*}\simeq R/N^{\lambda_i}$$
 for all $i\in\{0,\ldots,k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup $GL_{\lambda}(R) \leq GL_{k}(R)$ such that $GL_{\lambda}(R)\Gamma$ is equal to the set of generator matrices of C.
- $\mathsf{GL}_{\lambda}(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

•
$$R\Gamma_{i,*}\simeq R/N^{\lambda_i}$$
 for all $i\in\{0,\ldots,k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup GL_λ(R) ≤ GL_k(R) such that GL_λ(R)Γ is equal to the set of generator matrices of C.
- $\mathsf{GL}_{\lambda}(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Generator matrix

A matrix $\Gamma \in \mathbb{R}^{k \times n}$ is called a generator matrix of a linear code C with shp $(C) = \lambda = (\lambda_0, \dots, \lambda_{k-1})$, if

• rows of Γ generate the module C

•
$$R\Gamma_{i,*}\simeq R/N^{\lambda_i}$$
 for all $i\in\{0,\ldots,k-1\}$

Warning

- For some arbitrary A ∈ GL_k(R), the matrix AΓ must not be a generator matrix of C (but the rows do generate C).
- But, there is a subgroup $GL_{\lambda}(R) \leq GL_{k}(R)$ such that $GL_{\lambda}(R)\Gamma$ is equal to the set of generator matrices of C.
- $\mathsf{GL}_{\lambda}(R) = \mathsf{GL}_k(R) \Longleftrightarrow \lambda = (m, \dots, m)$ (the codes are free)

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

 $(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$

Fheorem

- Hamming distance
- homogeneous distance

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

 $(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$

Fheorem

- Hamming distance
- homogeneous distance

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

$$(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$$

[heorem]

- Hamming distance
- homogeneous distance

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

$$(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$$

Theorem

- Hamming distance
- homogeneous distance

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

$$(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$$

Theorem

- Hamming distance
- homogeneous distance

Isometry

We will not specify the distance d defined on \mathbb{R}^n . But the group of linear isometries defined by d should be equal to the monomial group

 $R^{*n} \rtimes S_n$

acting on a vector $v \in R^n$ via

$$(\varphi;\pi)(v_0,\ldots,v_{n-1}):=(v_{\pi^{-1}(0)}\varphi_0^{-1},\ldots,v_{\pi^{-1}(n-1)}\varphi_{n-1}^{-1})$$

Theorem

- Hamming distance
- homogeneous distance

Convention

The shape and the rank of a linear code is invariant under the action of the monomial group. Hence, we *fix k* and $\lambda = (\lambda_0, \dots, \lambda_{k-1})$ for the rest of the talk.

Set of all generator matrices

Define

$$R^{\lambda \times n} := \{ \Gamma \in R^{k \times n} \mid \mathsf{shp}(_R \langle \Gamma \rangle) = \lambda \}$$

dentification

We can identify the linear code C with the orbit $GL_{\lambda}(R)\Gamma$. There is a natural bijection

$$\{C \mid \operatorname{shp}(C) = \lambda\} \to R^{\lambda \times n} / \operatorname{GL}_{\lambda}(R)$$

Convention

The shape and the rank of a linear code is invariant under the action of the monomial group. Hence, we *fix k* and $\lambda = (\lambda_0, \dots, \lambda_{k-1})$ for the rest of the talk.

Set of all generator matrices

Define

$$R^{\lambda \times n} := \{ \Gamma \in R^{k \times n} \mid \mathsf{shp}(_R \langle \Gamma \rangle) = \lambda \}$$

dentification

We can identify the linear code C with the orbit ${\rm GL}_\lambda(R)\Gamma$. There is a natural bijection

$$\{C \mid \operatorname{shp}(C) = \lambda\} \to R^{\lambda \times n} / \operatorname{GL}_{\lambda}(R)$$

Convention

The shape and the rank of a linear code is invariant under the action of the monomial group. Hence, we fix k and $\lambda = (\lambda_0, \dots, \lambda_{k-1})$ for the rest of the talk.

Set of all generator matrices

Define

$$R^{\lambda \times n} := \{ \Gamma \in R^{k \times n} \mid \mathsf{shp}(_R \langle \Gamma \rangle) = \lambda \}$$

Identification

We can identify the linear code C with the orbit $GL_{\lambda}(R)\Gamma$. There is a natural bijection

$$\{C \mid \operatorname{shp}(C) = \lambda\} \to R^{\lambda \times n} / \operatorname{GL}_{\lambda}(R)$$

A group action

Equivalent generator matrices

We call two generator matrices *equivalent*, if they generate linearly isometric codes.

In terms of a group action

Two generator matrices $\Gamma, \Gamma' \in R^{\lambda imes n}$ are equivalent, if and only if

 $\exists (A,\varphi;\pi) \in (\mathsf{GL}_{\lambda}(R) \times {R^*}^n) \rtimes S_n : (A,\varphi;\pi) \Gamma = \Gamma'$

A group action

Equivalent generator matrices

We call two generator matrices *equivalent*, if they generate linearly isometric codes.

In terms of a group action

Two generator matrices $\Gamma, \Gamma' \in R^{\lambda \times n}$ are equivalent, if and only if

$$\exists (A,\varphi;\pi) \in (\mathsf{GL}_{\lambda}(R) \times {R^*}^n) \rtimes S_n : (A,\varphi;\pi) \Gamma = \Gamma'$$

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape $\lambda.$ Compute:

Canonical Form A unique representative $CF(\Gamma)$ of $((GL_{\lambda}(R) \times R^{*n}) \rtimes S_n)\Gamma$

Transporter Element A group element $TR(\Gamma) := (A, \varphi; \pi) \in (GL_{\lambda}(R) \times R^{*n}) \rtimes S_n$ such that $(A, \varphi; \pi)\Gamma = CF(\Gamma).$

Automorphism Group The stabilizer $\operatorname{Stab}_{(\operatorname{GL}_{\lambda}(R)\times R^{*n})\rtimes S_n}(\Gamma)$ of Γ .

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape $\lambda.$ Compute:

Canonical Form A unique representative $CF(\Gamma)$ of $((GL_{\lambda}(R) \times R^{*n}) \rtimes S_n)\Gamma$

Transporter Element A group element $TR(\Gamma) := (A, \varphi; \pi) \in (GL_{\lambda}(R) \times R^{*n}) \rtimes S_n$ such that $(A, \varphi; \pi)\Gamma = CF(\Gamma).$

Automorphism Group The stabilizer $\operatorname{Stab}_{(\operatorname{GL}_{\lambda}(R)\times R^{*n})\rtimes S_n}(\Gamma)$ of Γ .

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape $\lambda.$ Compute:

Canonical Form A unique representative $CF(\Gamma)$ of $((GL_{\lambda}(R) \times R^{*n}) \rtimes S_n)\Gamma$

Transporter Element A group element $\mathsf{TR}(\Gamma) := (A, \varphi; \pi) \in (\mathsf{GL}_{\lambda}(R) \times R^{*n}) \rtimes S_n$ such that $(A, \varphi; \pi)\Gamma = \mathsf{CF}(\Gamma).$

Automorphism Group The stabilizer $\text{Stab}_{(\text{GL}_{\lambda}(R) \times R^{*n}) \rtimes S_n}(\Gamma)$ of Γ .

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape $\lambda.$ Compute:

Canonical Form A unique representative $CF(\Gamma)$ of $((GL_{\lambda}(R) \times R^{*n}) \rtimes S_n)\Gamma$

Transporter Element A group element $TR(\Gamma) := (A, \varphi; \pi) \in (GL_{\lambda}(R) \times R^{*n}) \rtimes S_n$ such that $(A, \varphi; \pi)\Gamma = CF(\Gamma).$

Automorphism Group The stabilizer $\operatorname{Stab}_{(\operatorname{GL}_{\lambda}(R) \times R^{*n}) \rtimes S_{n}}(\Gamma)$ of Γ .

Section 2

General Canonization Algorithms

We use the ideas of partition refinements, similar to the computation of a canonical labeling of a graph (McKay, \dots). There is a nice description of this idea for a group action of G on X in

Kaski & Östergård : Classification algorithms for codes and designs definitions $\mathcal{L}(G) := \{H \mid H \leq G\},\ \mathcal{C}(G) := \{Hg \mid H \leq G, g \in G\}$ refinement $r : X \times \mathcal{C}(G) \rightarrow \mathcal{C}(G), (x, Hg) \mapsto H'hg \subseteq Hg$ with $r(g_0x, Hgg_0^{-1}) = r(x, Hg)g_0^{-1}$ (G-Homomorphism) partitioning $p : X \times \mathcal{C}(G) \rightarrow \mathcal{L}(G), (x, Hg) \mapsto H' \leq H$ with $p(g_0x, Hgg_0^{-1}) = p(x, Hg)$ (G-invariant)

We use the ideas of partition refinements, similar to the computation of a canonical labeling of a graph (McKay, \dots). There is a nice description of this idea for a group action of G on X in

Kaski & Östergård : Classification algorithms for codes and designs definitions $\mathcal{L}(G) := \{H \mid H \leq G\},\ C(G) := \{Hg \mid H \leq G, g \in G\}$ refinement $r : X \times C(G) \rightarrow C(G), (x, Hg) \mapsto H'hg \subseteq Hg$ with $r(g_0 x, Hgg_0^{-1}) = r(x, Hg)g_0^{-1}$ (G-Homomorphism) partitioning $p : X \times C(G) \rightarrow \mathcal{L}(G), (x, Hg) \mapsto H' \leq H$ with $p(g_0 x, Hgg_0^{-1}) = p(x, Hg)$ (G-invariant)

We use the ideas of partition refinements, similar to the computation of a canonical labeling of a graph (McKay, \dots). There is a nice description of this idea for a group action of G on X in

Kaski & Östergård : Classification algorithms for codes and designs definitions $\mathcal{L}(G) := \{H \mid H \leq G\},\ \mathcal{C}(G) := \{Hg \mid H \leq G, g \in G\}$ refinement $r : X \times \mathcal{C}(G) \to \mathcal{C}(G), (x, Hg) \mapsto H'hg \subseteq Hg$ with $r(g_0x, Hgg_0^{-1}) = r(x, Hg)g_0^{-1}$ (G-Homomorphism) partitioning $p : X \times \mathcal{C}(G) \to \mathcal{L}(G), (x, Hg) \mapsto H' \leq H$ with $p(g_0x, Hgg_0^{-1}) = p(x, Hg)$ (G-invariant)

We use the ideas of partition refinements, similar to the computation of a canonical labeling of a graph (McKay, \dots). There is a nice description of this idea for a group action of G on X in

Kaski & Östergård : Classification algorithms for codes and designs definitions $\mathcal{L}(G) := \{H \mid H \leq G\},\ C(G) := \{Hg \mid H \leq G, g \in G\}$ refinement $r : X \times C(G) \rightarrow C(G), (x, Hg) \mapsto H'hg \subseteq Hg$ with $r(g_0x, Hgg_0^{-1}) = r(x, Hg)g_0^{-1}$ (G-Homomorphism) partitioning $p : X \times C(G) \rightarrow \mathcal{L}(G), (x, Hg) \mapsto H' \leq H$ with $p(g_0x, Hgg_0^{-1}) = p(x, Hg)$ (G-invariant)

$$G \\ | \\ r(x, G) =: Hg$$

Properties

Theorem

Isomorphic inputs define isomorphic search trees.

Canonical Form

Define the canonical form by

$$\mathsf{CF}(x) = \min_{\{g\} \text{ leaf in } \mathcal{T}(x,G)} gx$$

Transporter Element

The transporter element g by one of those leafs $\{g\}$ leading to the canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

 $\mathsf{Stab}_G(x) = \{\mathsf{TR}(x)^{-1}g \mid \{g\} \text{ leaf in } T(x,G) \text{ and } gx = \mathsf{CF}(x)\}$

Canonical Form

Define the canonical form by

$$CF(x) = \min_{\substack{\{g\} \text{ leaf in } T(x,G) \\ gg_0^{-1}\} \text{ leaf in } T(g_0x,G)}} gx$$
$$= \min_{\substack{\{gg_0^{-1}\} \text{ leaf in } T(g_0x,G) \\ gg_0^{-1}g_0x = CF(g_0x)$$

Transporter Element

The transporter element g by one of those leafs $\{g\}$ leading to the canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

 $Stab_G(x) = \{ TR(x)^{-1}g \mid \{g\} \text{ leaf in } T(x,G) \text{ and } gx = CF(x) \}$

Canonical Form

Define the canonical form by

$$\mathsf{CF}(x) = \min_{\{g\} \text{ leaf in } \mathcal{T}(x,G)} gx$$

Transporter Element

The transporter element g by one of those leafs $\{g\}$ leading to the canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

 $\mathsf{Stab}_G(x) = \{\mathsf{TR}(x)^{-1}g \mid \{g\} \text{ leaf in } T(x,G) \text{ and } gx = \mathsf{CF}(x)\}$

Canonical Form

Define the canonical form by

$$\mathsf{CF}(x) = \min_{\{g\} \text{ leaf in } \mathcal{T}(x,G)} gx$$

Transporter Element

The transporter element g by one of those leafs $\{g\}$ leading to the canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

$$\operatorname{Stab}_G(x) = \{\operatorname{TR}(x)^{-1}g \mid \{g\} \text{ leaf in } T(x,G) \text{ and } gx = \operatorname{CF}(x)\}$$

Pruning

by known automorphisms

Use the subgroup $A \leq \text{Stab}_G(x)$ of known automorphisms to define pruning mechanisms \rightsquigarrow traverse the tree in a depth-first search manner

by refinements

- Let $f_H : X \to Y$ be an *H*-Homomorphism
- $r(x, Hg) := \operatorname{Stab}_H(\operatorname{CF}_H(f_H(gx))) \cdot \operatorname{TR}_H(f_H(gx))$

• Hg_1 , Hg_2 two nodes in T(x, G) with $CF_H(f_H(g_1x)) < CF_H(f_H(g_2x))$ \implies prune the subtree rooted in Hg_2 (Homomorphism Principle)

Pruning

by known automorphisms

Use the subgroup $A \leq \operatorname{Stab}_G(x)$ of known automorphisms to define pruning mechanisms \rightsquigarrow traverse the tree in a depth-first search manner

by refinements

- Let $f_H: X \to Y$ be an *H*-Homomorphism
- $r(x, Hg) := \operatorname{Stab}_H(\operatorname{CF}_H(f_H(gx))) \cdot \operatorname{TR}_H(f_H(gx))$
- Hg_1 , Hg_2 two nodes in T(x, G) with $CF_H(f_H(g_1x)) < CF_H(f_H(g_2x))$ \implies prune the subtree rooted in Hg_2 (Homomorphism Principle)

Pruning

by known automorphisms

Use the subgroup $A \leq \operatorname{Stab}_G(x)$ of known automorphisms to define pruning mechanisms \rightsquigarrow traverse the tree in a depth-first search manner

by refinements

- Let $f_H: X \to Y$ be an *H*-Homomorphism
- $r(x, Hg) := \operatorname{Stab}_H(\operatorname{CF}_H(f_H(gx))) \cdot \operatorname{TR}_H(f_H(gx))$

• Hg_1 , Hg_2 two nodes in T(x, G) with $CF_H(f_H(g_1x)) < CF_H(f_H(g_2x))$ \implies prune the subtree rooted in Hg_2 (Homomorphism Principle)

Section 3

Canonization of linear codes

The algorithm for linear codes

An equivalent group action

Instead of

$$\underbrace{(\mathsf{GL}_{\lambda}(R)\times R^{*n})}_{=:G}\rtimes S_n$$

acting on $R^{\lambda \times n}$ we will investigate the group action of S_n on the set of orbits $R^{\lambda \times n}/G := \{G\Gamma \mid \Gamma \in R^{\lambda \times n}\}.$

- We can efficiently compute canonical representatives for the orbits GF.
- Permutation groups are much simpler.
- The algorithm is well-studied for the action of the symmetric group. (efficient data types & prunings)

The algorithm for linear codes

An equivalent group action

Instead of

$$\underbrace{(\mathsf{GL}_{\lambda}(R) \times R^{*n})}_{=:G} \rtimes S_n$$

acting on $R^{\lambda \times n}$ we will investigate the group action of S_n on the set of orbits $R^{\lambda \times n}/G := \{G\Gamma \mid \Gamma \in R^{\lambda \times n}\}.$

- We can efficiently compute canonical representatives for the orbits *G*Γ.
- Permutation groups are much simpler.
- The algorithm is well-studied for the action of the symmetric group. (efficient data types & prunings)

The algorithm for linear codes

An equivalent group action

Instead of

$$\underbrace{(\mathsf{GL}_{\lambda}(R)\times R^{*n})}_{=:G}\rtimes S_n$$

acting on $R^{\lambda \times n}$ we will investigate the group action of S_n on the set of orbits $R^{\lambda \times n}/G := \{G\Gamma \mid \Gamma \in R^{\lambda \times n}\}.$

- We can efficiently compute canonical representatives for the orbits *G*Γ.
- Permutation groups are much simpler.
- The algorithm is well-studied for the action of the symmetric group. (efficient data types & prunings)

The algorithm for linear codes

An equivalent group action

Instead of

$$\underbrace{(\mathsf{GL}_{\lambda}(R)\times R^{*n})}_{=:G}\rtimes S_n$$

acting on $R^{\lambda \times n}$ we will investigate the group action of S_n on the set of orbits $R^{\lambda \times n}/G := \{G\Gamma \mid \Gamma \in R^{\lambda \times n}\}.$

- We can efficiently compute canonical representatives for the orbits *G*Γ.
- Permutation groups are much simpler.
- The algorithm is well-studied for the action of the symmetric group. (efficient data types & prunings)

Section 4

A selection of important refinements

$$w \in \mathbb{R}^k$$
 : shp($\langle w \rangle$) = $(m-1)$

Draw colored edges depending on the maximal Ideal containing $c_i = u\Gamma_i$.

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m)$$

$$w \in R^k$$
 : shp $(\langle w \rangle) = (m)$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m-1)$$

Distinguish nodes by the number of neighbors of some fixed color connected by an edge of fixed color.

$$w \in R^k$$
 : shp $(\langle w \rangle) = (m)$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m)$$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m-1)$$

Continue process until stable (relabellings might be necessary).

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m)$$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m)$$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m-1)$$

Interpret new coloring as refinement.

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m)$$

$$w \in R^k$$
 : shp $(\langle w \rangle) = (m)$

$$w \in R^k : \operatorname{shp}(\langle w \rangle) = (m-1)$$

A second "refinement"

Preparation

For each occurring node $S_{\mathfrak{p}}\pi$ in $T(G\Gamma, S_n)$ choose an injective sequence $F = F(S_{\mathfrak{p}}, \pi\Gamma) \subseteq \operatorname{Fix}_{S_{\mathfrak{p}}}(\{0, \ldots, n-1\}).$

An invariant for pruning subtrees

At the node $S_{\mathfrak{p}}\pi$ of $T(G\Gamma, S_n)$, compute

$$f_{\mathcal{S}_{\mathfrak{p}}}(\pi\Gamma) := \mathsf{CF}_{\mathcal{G}}\left((\Gamma_{*,\pi^{-1}(i)})_{i\in \mathcal{F}}\right)$$

and use the result to potentially prune the subtree rooted in this node. (There will be no refinement of \mathfrak{p} .)

A second "refinement"

Preparation

For each occurring node $S_{\mathfrak{p}}\pi$ in $T(G\Gamma, S_n)$ choose an injective sequence $F = F(S_{\mathfrak{p}}, \pi\Gamma) \subseteq \operatorname{Fix}_{S_{\mathfrak{p}}}(\{0, \ldots, n-1\}).$

An invariant for pruning subtrees

At the node $S_{p}\pi$ of $T(G\Gamma, S_n)$, compute

$$f_{\mathcal{S}_{\mathfrak{p}}}(\pi\Gamma) := \mathsf{CF}_{\mathcal{G}}\left((\Gamma_{*,\pi^{-1}(i)})_{i\in \mathcal{F}}\right)$$

and use the result to potentially prune the subtree rooted in this node. (There will be no refinement of p.)

How can you use it!

Finite fields, \mathbb{Z}_4 , $\mathbb{F}_2[x]/(x^2)$

An implementation in C++ and an online calculator is available at http://codes.uni-bayreuth.de/CanonicalForm/index.html

Sage

- Finite Fields: Ticket 13771 (Reviewers wanted!)
- Finite Chain Rings: hopefully soon available!

Network Codes & \mathbb{F}_q -linear codes over \mathbb{F}_{q^r}

An implementation in C++ exists. \rightarrow Write me an email.