On Construction D and Related Constructions of Lattices from Linear Codes

Wittawat Kositwattanarerk and Frédérique Oggier

Division of Mathematical Sciences
Nanyang Technological University, Singapore

April 18, 2013

Notation
$\mathbb{F}_{2}=\{0,1\}$ is the binary field.
$\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ is the set of integers.
\mathbb{R} is the set of real numbers.

Notation

$\mathbb{F}_{2}=\{0,1\}$ is the binary field.
$\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ is the set of integers.
\mathbb{R} is the set of real numbers.
A binary linear code C of length n is a subspace of \mathbb{F}_{2}^{n}. Elements of C are called codewords.

A lattice Λ of dimension n is a discrete additive subgroup of \mathbb{R}^{n}.

Notation

$\mathbb{F}_{2}=\{0,1\}$ is the binary field.
$\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ is the set of integers.
\mathbb{R} is the set of real numbers.
A binary linear code C of length n is a subspace of \mathbb{F}_{2}^{n}. Elements of C are called codewords.

A lattice Λ of dimension n is a discrete additive subgroup of \mathbb{R}^{n}.

Let ψ be the natural embedding of \mathbb{F}_{2}^{n} into \mathbb{Z}^{n}.

Construction A simply "lifts" the code.

Definition of Construction A

Let C be a binary linear code of length n, then

$$
\Lambda_{A}=\psi(C) \oplus 2 \mathbb{Z}^{n}
$$

is a lattice of dimension n.

Construction A simply "lifts" the code.

Consider a code $C=\{(0,0),(1,1)\} \in \mathbb{F}_{2}^{2}$.

Construction A simply "lifts" the code.

Consider a code $C=\{(0,0),(1,1)\} \in \mathbb{F}_{2}^{2}$. Construction A,

$$
\Lambda_{A}=\psi(C) \oplus 2 \mathbb{Z}^{n}
$$

gives the checkerboard lattice D_{2}.

Construction A simply "lifts" the code.

Consider a code $C=\{(0,0),(1,1)\} \in \mathbb{F}_{2}^{2}$. Construction A,

$$
\Lambda_{A}=\psi(C) \oplus 2 \mathbb{Z}^{n}
$$

gives the checkerboard lattice D_{2}.

Construction D's use nested codes.

Definition of Construction D (Forney 1988)

Let

$$
C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}
$$

be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Construction D's use nested codes.

Definition of Construction $\overline{\mathrm{D}}$ (Forney 1988)

Let

$$
C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}
$$

be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n}
$$

Let $R(r, m)$ be the Reed-Muller code of length $n=2^{m}$ and order r. From the chain $R(0, m) \subset R(1, m) \subset \ldots \subset R(m, m)$,
Construction $\overline{\mathrm{D}}$ yields the Barnes-Wall lattices.

Construction D's use nested codes.

Definition of Construction D (Barnes and Sloane 1983)

Let

$$
C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}
$$

be a family of nested binary linear codes. Let $k_{i}=\operatorname{dim}\left(C_{i}\right)$ and let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ be a basis of \mathbb{F}_{2}^{n} such that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k_{i}}$ span C_{i}. The lattice Λ_{D} consists of all vectors of the form

$$
\begin{aligned}
& \sum_{\substack{\mathbf{b}_{j_{0}} \text { among } \\
\text { generators } \\
\text { for } C_{0}}} \psi\left(\mathbf{b}_{j_{0}}\right)+2 \sum_{\substack{\mathbf{b}_{j_{1}} \text { among } \\
\text { generators } \\
\text { for } C_{1}}} \psi\left(\mathbf{b}_{j_{1}}\right)+\ldots+2^{a-1} \sum_{\substack{\mathbf{b}_{j_{1}} \text { among } \\
\text { generators } \\
\text { for } C_{a-1}}} \psi\left(\mathbf{b}_{j_{a-1}}\right)+2^{a} \mid \\
& \text { where } \alpha_{j} \in\{0,1\} \text { and } \mid \in \mathbb{Z}^{n} .
\end{aligned}
$$

Construction D's use nested codes.

Definition of Construction D (Barnes and Sloane 1983)

Let

$$
C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}
$$

be a family of nested binary linear codes. Let $k_{i}=\operatorname{dim}\left(C_{i}\right)$ and let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ be a basis of \mathbb{F}_{2}^{n} such that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k_{i}}$ span C_{i}. The lattice Λ_{D} consists of all vectors of the form

where $\alpha_{j} \in\{0,1\}$ and $\mathbf{I} \in \mathbb{Z}^{n}$.

Let $R(r, m)$ be the Reed-Muller code of length $n=2^{m}$ and order r. From the chain $R(0, m) \subset R(1, m) \subset \ldots \subset R(m, m)$,
Construction D yields the Barnes-Wall lattices.

Construction D's use nested codes.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Definition of Construction D

Let $k_{i}=\operatorname{dim}\left(C_{i}\right)$ and let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ be a basis of \mathbb{F}_{2}^{n} such that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k_{i}}$ span C_{i}. The lattice Λ_{D} consists of all vectors of the form

where $\alpha_{j} \in\{0,1\}$ and $\mathbf{I} \in \mathbb{Z}^{n}$.

Construction D can fail.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n}
$$

Let $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$, and let \mathbf{c}_{3} be the sum of \mathbf{c}_{1} and \mathbf{c}_{2} over \mathbb{F}_{2}. Then,

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

may or may not be in $\Gamma_{\bar{D}}$.

Construction $\overline{\mathrm{D}}$ can fail.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Let $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$, and let \mathbf{c}_{3} be the sum of \mathbf{c}_{1} and \mathbf{c}_{2} over \mathbb{F}_{2}. Then,

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

may or may not be in $\Gamma_{\bar{D}}$.
So, $\Gamma_{\bar{D}}$ may or may not be a lattice whereas Λ_{D} is always a lattice.

Construction $\overline{\mathbf{D}}$ can fail.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Let $\Lambda_{\bar{D}}$ be the smallest lattice that contains $\Gamma_{\bar{D}}$.

Let $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$, and let \mathbf{c}_{3} be the sum of \mathbf{c}_{1} and \mathbf{c}_{2} over \mathbb{F}_{2}. Then,

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

may or may not be in $\Gamma_{\bar{D}}$.
So, $\Gamma_{\bar{D}}$ may or may not be a lattice whereas Λ_{D} is always a lattice.

Construction $\overline{\mathrm{D}}$ can fail.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n}
$$

Let $\Lambda_{\bar{D}}$ be the smallest lattice that contains $\Gamma_{\bar{D}}$.

Let $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$, and let \mathbf{c}_{3} be the sum of \mathbf{c}_{1} and \mathbf{c}_{2} over \mathbb{F}_{2}. Then,

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

may or may not be in $\Gamma_{\bar{D}}$.
So, $\Gamma_{\bar{D}}$ may or may not be a lattice whereas Λ_{D} is always a lattice.
Question: Is $\Lambda_{\bar{D}}=\Lambda_{D}$? What make Construction $\overline{\mathrm{D}}$ works for Reed-Muller code?

Construction D can fail.

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Let $\Lambda_{\bar{D}}$ be the smallest lattice that contains $\Gamma_{\bar{D}}$.

Let $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$, and let \mathbf{c}_{3} be the sum of \mathbf{c}_{1} and \mathbf{c}_{2} over \mathbb{F}_{2}. Then,

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

may or may not be in $\Gamma_{\bar{D}}$.
So, $\Gamma_{\bar{D}}$ may or may not be a lattice whereas Λ_{D} is always a lattice.
Question: Is $\Lambda_{\bar{D}}=\Lambda_{D}$? What make Construction $\overline{\mathrm{D}}$ works for Reed-Muller code?

Let $*$ denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$, then

$$
\mathbf{x} * \mathbf{y}:=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \in \mathbb{F}_{2}^{n} .
$$

Let $*$ denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$, then

$$
\mathbf{x} * \mathbf{y}:=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \in \mathbb{F}_{2}^{n} .
$$

Now, if \mathbf{z} is the binary sum of \mathbf{x} and \mathbf{y}, then

$$
\psi(\mathbf{x})+\psi(\mathbf{y})-\psi(\mathbf{z})=2 \psi(\mathbf{x} * \mathbf{y})
$$

Let $*$ denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$, then

$$
\mathbf{x} * \mathbf{y}:=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \in \mathbb{F}_{2}^{n} .
$$

Now, if \mathbf{z} is the binary sum of \mathbf{x} and \mathbf{y}, then

$$
\psi(\mathbf{x})+\psi(\mathbf{y})-\psi(\mathbf{z})=2 \psi(\mathbf{x} * \mathbf{y})
$$

Given a chain $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ of binary linear codes, if the Schur product of any two codewords of C_{i} is contained in C_{i+1} for all i, then we say that the chain is closed under Schur product.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

Proof (3. \Rightarrow 2.): Trivial.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

Proof (2. $\Rightarrow 1$.): Pick $\mathbf{c}_{1}, \mathbf{c}_{2} \in C_{i}$ such that $\mathbf{c}_{1} * \mathbf{c}_{2} \notin C_{i+1}$ and consider

$$
\psi\left(\mathbf{c}_{1}\right)+\psi\left(\mathbf{c}_{2}\right)-\psi\left(\mathbf{c}_{3}\right)
$$

where \mathbf{c}_{3} is the binary sum of \mathbf{c}_{1} and \mathbf{c}_{2}.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

Proof (1. \Rightarrow 3.): We do induction on a. When $a=1$, $\Gamma_{\bar{D}}=\Lambda_{D}=\Lambda_{A}$ from Construction A using C_{0}.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

Proof (1. \Rightarrow 3.): We do induction on a. When $a=1$, $\Gamma_{\bar{D}}=\Lambda_{D}=\Lambda_{A}$ from Construction A using C_{0}.
For inductive step, use standard set arguments to show that $\Gamma_{\bar{D}}=\Lambda_{D}$.

Theorem (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. The following statements are equivalent.

1. $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ is closed under Schur product.
2. $\Gamma_{\bar{D}}$ is a lattice.
3. $\Gamma_{\bar{D}}=\Lambda_{D}$.

- Since a family of Reed-Muller codes is closed under Schur product, Construction $\overline{\mathrm{D}}$ yields the lattice same lattice as Construction D.
- Lattices from Construction D is independent of the basis of Reed-Muller codes.
- In general, the sum of all lattices constructible from Construction D yields the lattice from Construction D using the same nested codes.
$\mathcal{U}_{a}:=\mathbb{F}_{2}[u] / u^{a}$, a polynomial quotient ring where u is a variable.
A linear code over \mathcal{U}_{a} of length n is a submodule of \mathcal{U}_{a}^{n}.
$\mathcal{U}_{a}:=\mathbb{F}_{2}[u] / u^{a}$, a polynomial quotient ring where u is a variable.
A linear code over \mathcal{U}_{a} of length n is a submodule of \mathcal{U}_{a}^{n}.
Φ is the embedding given by

$$
\begin{array}{rllc}
\Phi: \mathcal{U}_{a} & \rightarrow & \mathbb{R} \\
\sum_{j=0}^{a-1} b_{j} u^{j} & \mapsto & \sum_{j=0}^{a-1} \psi\left(b_{j}\right) 2^{j} .
\end{array}
$$

We will also use Φ as a bit-wise embedding from \mathcal{U}_{a}^{n} into \mathbb{R}^{n}.
$\mathcal{U}_{a}:=\mathbb{F}_{2}[u] / u^{a}$, a polynomial quotient ring where u is a variable.
A linear code over \mathcal{U}_{a} of length n is a submodule of \mathcal{U}_{a}^{n}.
Φ is the embedding given by

$$
\begin{array}{rlcc}
\Phi: \mathcal{U}_{a} & \rightarrow & \mathbb{R} \\
\sum_{j=0}^{a-1} b_{j} u^{j} & \mapsto & \sum_{j=0}^{a-1} \psi\left(b_{j}\right) 2^{j} .
\end{array}
$$

We will also use Φ as a bit-wise embedding from \mathcal{U}_{a}^{n} into \mathbb{R}^{n}.
Definition of Construction A^{\prime} (Harshan, Viterbo, Belfiore 2012)
Let C be a linear code over \mathcal{U}_{a} of length n, then

$$
\Gamma_{A^{\prime}}=\Phi(C) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Consider a code C of length 2 over \mathcal{U}_{3} generated by $\left[\begin{array}{cc}1+u & 1+u+u^{2}\end{array}\right]$.

Consider a code C of length 2 over \mathcal{U}_{3} generated by $\left[\begin{array}{ll}1+u & 1+u+u^{2}\end{array}\right]$. Then, we have

$$
\begin{aligned}
C=\{ & (0,0),(u, u),\left(u^{2}, u^{2}\right),\left(u+u^{2}, u+u^{2}\right),\left(1,1+u^{2}\right), \\
& \left.\left(1+u^{2}, 1\right),\left(1+u, 1+u+u^{2}\right),\left(1+u+u^{2}, 1+u\right)\right\}
\end{aligned}
$$

Consider a code C of length 2 over \mathcal{U}_{3} generated by $\left[\begin{array}{cc}1+u & 1+u+u^{2}\end{array}\right]$. Then, we have

$$
\begin{aligned}
C=\{ & (0,0),(u, u),\left(u^{2}, u^{2}\right),\left(u+u^{2}, u+u^{2}\right),\left(1,1+u^{2}\right), \\
& \left.\left(1+u^{2}, 1\right),\left(1+u, 1+u+u^{2}\right),\left(1+u+u^{2}, 1+u\right)\right\}
\end{aligned}
$$

and $\Gamma_{A^{\prime}}=\Phi(C) \oplus 8 \mathbb{Z}^{2}$.

Let C be the code generated by the generator matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & u
\end{array}\right]^{\otimes m}
$$

then Construction A^{\prime} yields the Barnes-Walls lattices.
Φ is the embedding given by

$$
\begin{array}{rlcc}
\Phi: \quad \mathcal{U}_{a} & \rightarrow & \mathbb{R} \\
\sum_{j=0}^{a-1} b_{j} u^{j} & \mapsto & \sum_{j=0}^{a-1} \psi\left(b_{j}\right) 2^{j} .
\end{array}
$$

Definition of Construction A^{\prime}

Let C be a linear code over \mathcal{U}_{a} of length n, then

$$
\Gamma_{A^{\prime}}=\Phi(C) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Let C be the code generated by the generator matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & u
\end{array}\right]^{\otimes m}
$$

then Construction A^{\prime} yields the Barnes-Walls lattices.
Φ is the embedding given by

$$
\begin{array}{rlcc}
\Phi: \quad \mathcal{U}_{a} & \rightarrow & \mathbb{R} \\
\sum_{j=0}^{a-1} b_{j} u^{j} & \mapsto & \sum_{j=0}^{a-1} \psi\left(b_{j}\right) 2^{j} .
\end{array}
$$

Definition of Construction A^{\prime}

Let C be a linear code over \mathcal{U}_{a} of length n, then

$$
\Gamma_{A^{\prime}}=\Phi(C) \oplus 2^{a} \mathbb{Z}^{n} .
$$

Definition of Construction $\overline{\mathrm{D}}$

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a family of nested binary linear codes. Let

$$
\Gamma_{\bar{D}}=\psi\left(C_{0}\right) \oplus 2 \psi\left(C_{1}\right) \oplus \ldots \oplus 2^{a-1} \psi\left(C_{a-1}\right) \oplus 2^{a} \mathbb{Z}^{n}
$$

Proposition (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a chain of binary linear codes. Then,

$$
C=C_{0} \oplus u C_{1} \oplus \ldots \oplus u^{a-1} C_{a-1}
$$

is a code over \mathcal{U}_{a}, and

$$
\Gamma_{\bar{D}}=\Gamma_{A^{\prime}} .
$$

Proposition (K. and O.)

Let $C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{a-1} \subseteq C_{a}=\mathbb{F}_{2}^{n}$ be a chain of binary linear codes. Then,

$$
C=C_{0} \oplus u C_{1} \oplus \ldots \oplus u^{a-1} C_{a-1}
$$

is a code over \mathcal{U}_{a}, and

$$
\Gamma_{\bar{D}}=\Gamma_{A^{\prime}} .
$$

Corollary

- $\Gamma_{A^{\prime}}$ from Construction A^{\prime} may not be a lattice.
- Any lattice constructible using Construction $\overline{\mathrm{D}}$ is also constructible using Construction A^{\prime} (converse not true from the previous example).
- E. S. Barnes and N. J. A. Sloane, New Lattice Packings of Spheres, Can. J. Math. 35 (1983), no. 1, 117-130.
- J. H. Conway, and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, Third Edition, 1998, Springer-Verlag, New York.
- G. D. Forney, Coset Codes-Part II: Binary Lattices and Related Codes, IEEE Trans. Inform. Theory 34 (1988), no. 5, 1152-1187.
- J. Harshan, E. Viterbo, and J.-C. Belfiore, Construction of Barnes-Wall Lattices from Linear Codes over Rings, Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, pp. 3110-3114, July 1-6, 2012.
- J. Harshan, E. Viterbo, and J.-C. Belfiore, Practical Encoders and Decoders for Euclidean Codes from Barnes-Wall Lattices, available on arXiv:1203.3282v2 [cs.IT], March 2012.
- W. Kositwattanarerk and Frédérique Oggier, On Construction D and Related Constructions of Lattices from Linear Codes, to appear.

