▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On Construction D and Related Constructions of Lattices from Linear Codes

Wittawat Kositwattanarerk and Frédérique Oggier

Division of Mathematical Sciences Nanyang Technological University, Singapore

April 18, 2013

Notation

$$\begin{split} \mathbb{F}_2 &= \{0,1\} \text{ is the binary field.} \\ \mathbb{Z} &= \{\ldots,-1,0,1,\ldots\} \text{ is the set of integers.} \\ \mathbb{R} \text{ is the set of real numbers.} \end{split}$$

Notation

$$\begin{split} \mathbb{F}_2 &= \{0,1\} \text{ is the binary field.} \\ \mathbb{Z} &= \{\dots,-1,0,1,\dots\} \text{ is the set of integers.} \\ \mathbb{R} \text{ is the set of real numbers.} \end{split}$$

A binary linear code C of length n is a subspace of \mathbb{F}_2^n . Elements of C are called codewords.

A lattice Λ of dimension *n* is a discrete additive subgroup of \mathbb{R}^n .

Notation

$$\begin{split} \mathbb{F}_2 &= \{0,1\} \text{ is the binary field.} \\ \mathbb{Z} &= \{\dots,-1,0,1,\dots\} \text{ is the set of integers.} \\ \mathbb{R} \text{ is the set of real numbers.} \end{split}$$

A binary linear code C of length n is a subspace of \mathbb{F}_2^n . Elements of C are called codewords.

A lattice Λ of dimension *n* is a discrete additive subgroup of \mathbb{R}^n .

Let ψ be the natural embedding of \mathbb{F}_2^n into \mathbb{Z}^n .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Construction A simply "lifts" the code.

Definition of Construction A

Let C be a binary linear code of length n, then

$$\Lambda_{A} = \psi(C) \oplus 2\mathbb{Z}^{n}$$

is a lattice of dimension n.

Construction A simply "lifts" the code.

Consider a code $C = \{(0,0), (1,1)\} \in \mathbb{F}_2^2$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Construction A simply "lifts" the code.

Consider a code $C = \{(0,0), (1,1)\} \in \mathbb{F}_2^2$. Construction A,

$$\Lambda_{A}=\psi(C)\oplus 2\mathbb{Z}^{r}$$

gives the checkerboard lattice D_2 .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Construction A simply "lifts" the code.

Consider a code $C = \{(0,0), (1,1)\} \in \mathbb{F}_2^2$. Construction A,

$$\Lambda_{\mathcal{A}} = \psi(\mathcal{C}) \oplus 2\mathbb{Z}'$$

gives the checkerboard lattice D_2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Construction D's use nested codes.

Definition of Construction \overline{D} (Forney 1988)

Let

$$C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$$

be a family of nested binary linear codes. Let

 $\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$

Construction D's use nested codes.

Definition of Construction \overline{D} (Forney 1988)

Let

$$C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$$

be a family of nested binary linear codes. Let

$$\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{\mathfrak{a}-1}\psi(C_{\mathfrak{a}-1}) \oplus 2^{\mathfrak{a}}\mathbb{Z}^n.$$

Let R(r, m) be the Reed-Muller code of length $n = 2^m$ and order r. From the chain $R(0, m) \subset R(1, m) \subset \ldots \subset R(m, m)$, Construction \overline{D} yields the Barnes-Wall lattices.

Construction D's use nested codes.

Definition of Construction D (Barnes and Sloane 1983)

Let

$$C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$$

be a family of nested binary linear codes. Let $k_i = \dim(C_i)$ and let $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ be a basis of \mathbb{F}_2^n such that $\mathbf{b}_1, \ldots, \mathbf{b}_{k_i}$ span C_i . The lattice Λ_D consists of all vectors of the form

$$\sum_{\substack{\mathbf{b}_{j_0} \text{ among} \\ \text{generators} \\ \text{for } \mathcal{C}_0}} \psi(\mathbf{b}_{j_0}) + 2 \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } \mathcal{C}_1}} \psi(\mathbf{b}_{j_1}) + \ldots + 2^{a-1} \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } \mathcal{C}_{a-1}}} \psi(\mathbf{b}_{j_{a-1}}) + 2^a \mathbf{I}$$

where $\alpha_j \in \{0,1\}$ and $\mathbf{I} \in \mathbb{Z}^n$.

Construction D's use nested codes.

Definition of Construction D (Barnes and Sloane 1983)

Let

$$C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$$

be a family of nested binary linear codes. Let $k_i = \dim(C_i)$ and let $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ be a basis of \mathbb{F}_2^n such that $\mathbf{b}_1, \ldots, \mathbf{b}_{k_i}$ span C_i . The lattice Λ_D consists of all vectors of the form

$$\sum_{\substack{\mathbf{b}_{j_0} \text{ among} \\ \text{generators} \\ \text{for } C_0}} \psi(\mathbf{b}_{j_0}) + 2 \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } C_1}} \psi(\mathbf{b}_{j_1}) + \ldots + 2^{a-1} \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } C_{a-1}}} \psi(\mathbf{b}_{j_{a-1}}) + 2^{a} \mathbf{I}$$

where $\alpha_j \in \{0,1\}$ and $\mathbf{I} \in \mathbb{Z}^n$.

Let R(r, m) be the Reed-Muller code of length $n = 2^m$ and order r. From the chain $R(0, m) \subset R(1, m) \subset \ldots \subset R(m, m)$, Construction D yields the Barnes-Wall lattices.

Construction D's use nested codes.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

$$\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$$

Definition of Construction D

Let $k_i = \dim(C_i)$ and let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ be a basis of \mathbb{F}_2^n such that $\mathbf{b}_1, \dots, \mathbf{b}_{k_i}$ span C_i . The lattice Λ_D consists of all vectors of the form

$$\sum_{\substack{\mathbf{b}_{j_0} \text{ among} \\ \text{generators} \\ \text{for } C_0}} \psi(\mathbf{b}_{j_0}) + 2 \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } C_1}} \psi(\mathbf{b}_{j_1}) + \ldots + 2^{a-1} \sum_{\substack{\mathbf{b}_{j_1} \text{ among} \\ \text{generators} \\ \text{for } C_{a-1}}} \psi(\mathbf{b}_{j_{a-1}}) + 2^a \mathbf{I}$$

where $\alpha_j \in \{0,1\}$ and $\mathbf{I} \in \mathbb{Z}^n$.

Construction \overline{D} can fail.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

$$\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$$

Let $c_1, c_2 \in C_i$, and let c_3 be the sum of c_1 and c_2 over \mathbb{F}_2 . Then,

$$\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$$

may or may not be in $\Gamma_{\overline{D}}$.

Construction D can fail.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

$$\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$$

Let $\mathbf{c}_1, \mathbf{c}_2 \in C_i$, and let \mathbf{c}_3 be the sum of \mathbf{c}_1 and \mathbf{c}_2 over \mathbb{F}_2 . Then,

$$\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$$

may or may not be in $\Gamma_{\overline{D}}$.

So, $\Gamma_{\overline{D}}$ may or may not be a lattice whereas Λ_D is always a lattice.

Construction \overline{D} can fail.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

 $\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$

Let $\Lambda_{\overline{D}}$ be the smallest lattice that contains $\Gamma_{\overline{D}}$.

Let $c_1, c_2 \in C_i$, and let c_3 be the sum of c_1 and c_2 over \mathbb{F}_2 . Then,

$$\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$$

may or may not be in $\Gamma_{\overline{D}}$.

So, $\Gamma_{\overline{D}}$ may or may not be a lattice whereas Λ_D is always a lattice.

Construction \overline{D} can fail.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

 $\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$

Let $\Lambda_{\overline{D}}$ be the smallest lattice that contains $\Gamma_{\overline{D}}$.

Let $c_1, c_2 \in C_i$, and let c_3 be the sum of c_1 and c_2 over \mathbb{F}_2 . Then,

$$\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$$

may or may not be in $\Gamma_{\overline{D}}$.

So, $\Gamma_{\overline{D}}$ may or may not be a lattice whereas Λ_D is always a lattice. Question: Is $\Lambda_{\overline{D}} = \Lambda_D$? What make Construction \overline{D} works for

Reed-Muller code?

Construction \overline{D} can fail.

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

 $\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$

Let $\Lambda_{\overline{D}}$ be the smallest lattice that contains $\Gamma_{\overline{D}}$.

Let $c_1, c_2 \in C_i$, and let c_3 be the sum of c_1 and c_2 over \mathbb{F}_2 . Then,

 $\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$

may or may not be in $\Gamma_{\overline{D}}$.

So, $\Gamma_{\overline{D}}$ may or may not be a lattice whereas Λ_D is always a lattice.

Question: Is $\Lambda_{\overline{D}} = \Lambda_D$? What make Construction \overline{D} works for Reed-Muller code?

Let * denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_2^n$, then

$$\mathbf{x} * \mathbf{y} := (x_1 y_1, \ldots, x_n y_n) \in \mathbb{F}_2^n.$$

Let * denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_2^n$, then

$$\mathbf{x} * \mathbf{y} := (x_1 y_1, \ldots, x_n y_n) \in \mathbb{F}_2^n.$$

Now, if z is the binary sum of x and y, then

$$\psi(\mathbf{x}) + \psi(\mathbf{y}) - \psi(\mathbf{z}) = 2\psi(\mathbf{x} * \mathbf{y}).$$

Let * denote componentwise multiplication (known also as the Schur product or Hadamard product). If $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_2^n$, then

$$\mathbf{x} * \mathbf{y} := (x_1 y_1, \ldots, x_n y_n) \in \mathbb{F}_2^n.$$

Now, if z is the binary sum of x and y, then

$$\psi(\mathbf{x}) + \psi(\mathbf{y}) - \psi(\mathbf{z}) = 2\psi(\mathbf{x} * \mathbf{y}).$$

Given a chain $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ of binary linear codes, if the Schur product of any two codewords of C_i is contained in C_{i+1} for all *i*, then we say that the chain is **closed under Schur product**.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product.
- 2. $\Gamma_{\overline{D}}$ is a lattice.
- 3. $\Gamma_{\overline{D}} = \Lambda_D$.

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product. 2. $\Gamma_{\overline{D}}$ is a lattice.
- 2. $\Gamma_{\overline{D}}$ is a lattice 3. $\Gamma_{\overline{D}} = \Lambda_D$.

Proof (3. \Rightarrow 2.): Trivial.

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product. 2. $\Gamma_{\overline{D}}$ is a lattice.
- 3. $\Gamma_{\overline{D}} = \Lambda_D$.

Proof (2. \Rightarrow 1.): Pick $\mathbf{c}_1, \mathbf{c}_2 \in C_i$ such that $\mathbf{c}_1 * \mathbf{c}_2 \notin C_{i+1}$ and consider

$$\psi(\mathbf{c}_1) + \psi(\mathbf{c}_2) - \psi(\mathbf{c}_3)$$

where \mathbf{c}_3 is the binary sum of \mathbf{c}_1 and \mathbf{c}_2 .

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product. 2. $\Gamma_{\overline{D}}$ is a lattice.
- 3. $\Gamma_{\overline{D}} = \Lambda_D$.

Proof (1. \Rightarrow 3.): We do induction on *a*. When *a* = 1, $\Gamma_{\overline{D}} = \Lambda_D = \Lambda_A$ from Construction A using *C*₀.

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product. 2. $\Gamma_{\overline{D}}$ is a lattice.
- 3. $\Gamma_{\overline{D}} = \Lambda_D$.

Proof (1. \Rightarrow 3.): We do induction on *a*. When *a* = 1, $\Gamma_{\overline{D}} = \Lambda_D = \Lambda_A$ from Construction A using *C*₀.

For inductive step, use standard set arguments to show that $\Gamma_{\overline{D}}=\Lambda_D.$

Theorem (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. The following statements are equivalent.

- 1. $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ is closed under Schur product. 2. $\Gamma_{\overline{D}}$ is a lattice.
- 3. $\Gamma_{\overline{D}}^{\mathcal{L}} = \Lambda_{D}$.
 - Since a family of Reed-Muller codes is closed under Schur product, Construction \overline{D} yields the lattice same lattice as Construction D.
 - Lattices from Construction D is independent of the basis of Reed-Muller codes.
 - In general, the sum of all lattices constructible from Construction D yields the lattice from Construction D using the same nested codes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathcal{U}_a := \mathbb{F}_2[u]/u^a$, a polynomial quotient ring where u is a variable.

A linear code over \mathcal{U}_a of length *n* is a submodule of \mathcal{U}_a^n .

 $\mathcal{U}_a := \mathbb{F}_2[u]/u^a$, a polynomial quotient ring where u is a variable.

A linear code over \mathcal{U}_a of length *n* is a submodule of \mathcal{U}_a^n .

 Φ is the embedding given by

$$\Phi: \quad \mathcal{U}_{a} \quad \to \qquad \mathbb{R}$$
$$\sum_{j=0}^{a-1} b_{j} u^{j} \quad \mapsto \quad \sum_{j=0}^{a-1} \psi(b_{j}) 2^{j}.$$

We will also use Φ as a bit-wise embedding from \mathcal{U}_a^n into \mathbb{R}^n .

 $\mathcal{U}_a := \mathbb{F}_2[u]/u^a$, a polynomial quotient ring where u is a variable.

A linear code over \mathcal{U}_a of length *n* is a submodule of \mathcal{U}_a^n .

 Φ is the embedding given by

$$\Phi: \quad \mathcal{U}_a \quad \to \qquad \mathbb{R}$$
$$\sum_{j=0}^{a-1} b_j u^j \quad \mapsto \quad \sum_{j=0}^{a-1} \psi(b_j) 2^j.$$

We will also use Φ as a bit-wise embedding from \mathcal{U}_a^n into \mathbb{R}^n .

Definition of Construction A' (Harshan, Viterbo, Belfiore 2012) Let C be a linear code over U_a of length n, then

$$\Gamma_{\mathcal{A}'} = \Phi(\mathcal{C}) \oplus 2^{\mathfrak{a}}\mathbb{Z}^n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider a code C of length 2 over U_3 generated by [$1 + u - 1 + u + u^2$].

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Consider a code *C* of length 2 over U_3 generated by $[1 + u \quad 1 + u + u^2]$. Then, we have

$$C = \{(0,0), (u,u), (u^2, u^2), (u+u^2, u+u^2), (1, 1+u^2), (1+u^2, 1), (1+u, 1+u+u^2), (1+u+u^2, 1+u)\}$$

Consider a code *C* of length 2 over U_3 generated by $[1+u \quad 1+u+u^2]$. Then, we have

$$C = \{(0,0), (u, u), (u^2, u^2), (u + u^2, u + u^2), (1, 1 + u^2), (1 + u^2, 1), (1 + u, 1 + u + u^2), (1 + u + u^2, 1 + u)\}$$

and $\Gamma_{A'} = \Phi(C) \oplus 8\mathbb{Z}^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Let C be the code generated by the generator matrix

$$\left[\begin{array}{cc}1&1\\0&u\end{array}\right]^{\otimes m},$$

then Construction A' yields the Barnes-Walls lattices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Φ is the embedding given by

$$\Phi: \quad \mathcal{U}_a \quad \to \qquad \mathbb{R}$$
$$\sum_{j=0}^{a-1} b_j u^j \quad \mapsto \quad \sum_{j=0}^{a-1} \psi(b_j) 2^j.$$

Definition of Construction A'

Let C be a linear code over \mathcal{U}_a of length n, then

 $\Gamma_{\mathcal{A}'} = \Phi(\mathcal{C}) \oplus 2^{\mathfrak{a}}\mathbb{Z}^n.$

Let C be the code generated by the generator matrix

$$\begin{bmatrix} 1 & 1 \\ 0 & u \end{bmatrix}^{\otimes m},$$

then Construction A' yields the Barnes-Walls lattices.

Φ is the embedding given by

$$\Phi: \quad \mathcal{U}_a \quad \to \qquad \mathbb{R}$$
$$\sum_{j=0}^{a-1} b_j u^j \quad \mapsto \quad \sum_{j=0}^{a-1} \psi(b_j) 2^j.$$

Definition of Construction A'

Let C be a linear code over \mathcal{U}_a of length n, then

 $\Gamma_{\mathcal{A}'} = \Phi(\mathcal{C}) \oplus 2^{\mathsf{a}}\mathbb{Z}^{n}.$

Definition of Construction \overline{D}

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a family of nested binary linear codes. Let

 $\Gamma_{\overline{D}} = \psi(C_0) \oplus 2\psi(C_1) \oplus \ldots \oplus 2^{a-1}\psi(C_{a-1}) \oplus 2^a \mathbb{Z}^n.$

Proposition (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a chain of binary linear codes. Then,

$$C = C_0 \oplus uC_1 \oplus \ldots \oplus u^{a-1}C_{a-1}$$

is a code over \mathcal{U}_a , and

$$\Gamma_{\overline{D}} = \Gamma_{A'}.$$

Proposition (K. and O.)

Let $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1} \subseteq C_a = \mathbb{F}_2^n$ be a chain of binary linear codes. Then,

$$C = C_0 \oplus uC_1 \oplus \ldots \oplus u^{a-1}C_{a-1}$$

is a code over \mathcal{U}_a , and

$$\Gamma_{\overline{D}} = \Gamma_{A'}.$$

Corollary

- $\Gamma_{A'}$ from Construction A' may not be a lattice.
- Any lattice constructible using Construction D is also constructible using Construction A' (converse not true from the previous example).

Preliminaries

References

- E. S. Barnes and N. J. A. Sloane, New Lattice Packings of Spheres, Can. J. Math. **35** (1983), no. 1, 117–130.
- J. H. Conway, and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, Third Edition, 1998, Springer-Verlag, New York.
- G. D. Forney, Coset Codes–Part II: Binary Lattices and Related Codes, IEEE Trans. Inform. Theory **34** (1988), no. 5, 1152–1187.
- J. Harshan, E. Viterbo, and J.-C. Belfiore, Construction of Barnes-Wall Lattices from Linear Codes over Rings, Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, pp. 3110-3114, July 1-6, 2012.
- J. Harshan, E. Viterbo, and J.-C. Belfiore, Practical Encoders and Decoders for Euclidean Codes from Barnes-Wall Lattices, available on arXiv:1203.3282v2 [cs.IT], March 2012.
- W. Kositwattanarerk and Frédérique Oggier, On Construction D and Related Constructions of Lattices from Linear Codes, to appear.