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Fy = {0, 1} is the binary field.
Z={...,—1,0,1,...} is the set of integers.
R is the set of real numbers.

A binary linear code C of length n is a subspace of F]. Elements
of C are called codewords.

A lattice A of dimension n is a discrete additive subgroup of R".

Let 9 be the natural embedding of F} into Z".



Construction A simply “lifts” the code.

Definition of Construction A
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Definition of Construction D
Let ki = dim(C;) and let by, by, ..., b, be a basis of F5 such that
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Construction D's

Let * denote componentwise multiplication (known also as the
Schur product or Hadamard product). If
Xx=(Xx1,.--y%n), Y = (¥1,...,¥n) € FJ, then

x*y = (xiy1,...,Xnyn) € F3.
Now, if z is the binary sum of x and y, then
Y(x) +Y(y) — ¥(z) = 2(x x y).

Given a chain (o C ¢ C ... C C,—1 € C, = 7 of binary linear
codes, if the Schur product of any two codewords of C; is
contained in Cjy1 for all /i, then we say that the chain is closed
under Schur product.
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Theorem (K. and O.)

Let (o € G C ... C Co—1 € C, =] be a family of nested binary
linear codes. The following statements are equivalent.

1. G CGC...C C1 € G =F]is closed under Schur
product.

2. ['5 is a lattice.
3. T'5=Ap.

Proof (1. = 3.): We do induction on a. When a =1,
5 = Ap = Aa from Construction A using Cp.

For inductive step, use standard set arguments to show that
5= Np.



Construction D's

Theorem (K. and O.)

Let (o € G C ... C Co—1 € C, =] be a family of nested binary
linear codes. The following statements are equivalent.

1. G CGC...C C1 € G =F]is closed under Schur
product.

2. ['5 is a lattice.
3. T'5=Ap.

@ Since a family of Reed-Muller codes is closed under Schur
product, Construction D vyields the lattice same lattice as
Construction D.

o Lattices from Construction D is independent of the basis of
Reed-Muller codes.

@ In general, the sum of all lattices constructible from
Construction D yields the lattice from Construction D using
the same nested codes.
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U, = TFy[u]/u?, a polynomial quotient ring where u is a variable.
A linear code over U, of length n is a submodule of ¢/].

® is the embedding given by

d u, — R
a—1 a—1
S obid = > (b)Y
j=0 j=0

We will also use ® as a bit-wise embedding from ¢/ into R".

Definition of Construction A’ (Harshan, Viterbo, Belfiore 2012)

Let C be a linear code over U, of length n, then

a4 = q)(C) @ 2°7".
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® is the embedding given by
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Definition of Construction A’

Let C be a linear code over U, of length n, then

FA/ = ¢(C) @ 297",

Definition of Construction D
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linear codes. Let
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Construction A

Proposition (K. and O.)
Let (o € GG C ... C Go—1 € G, =F] be a chain of binary linear
codes. Then,

C=GCGauG®...ouv" 1C 1

is a code over U£, and
5="Ta.

Corollary
@ 4 from Construction A’ may not be a lattice.

@ Any lattice constructible using Construction D is also
constructible using Construction A’ (converse not true from
the previous example).
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