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Preliminaries Construction D’s Construction A′

Notation

F2 = {0, 1} is the binary field.
Z = {. . . ,−1, 0, 1, . . .} is the set of integers.
R is the set of real numbers.

A binary linear code C of length n is a subspace of Fn
2. Elements

of C are called codewords.

A lattice Λ of dimension n is a discrete additive subgroup of Rn.

Let ψ be the natural embedding of Fn
2 into Zn.
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Construction A simply “lifts” the code.

Definition of Construction A

Let C be a binary linear code of length n, then

ΛA = ψ(C )⊕ 2Zn

is a lattice of dimension n.



Preliminaries Construction D’s Construction A′

Construction A simply “lifts” the code.

Consider a code C = {(0, 0), (1, 1)} ∈ F2
2.

Construction A,
ΛA = ψ(C )⊕ 2Zn

gives the checkerboard lattice D2.



Preliminaries Construction D’s Construction A′

Construction A simply “lifts” the code.

Consider a code C = {(0, 0), (1, 1)} ∈ F2
2.

Construction A,
ΛA = ψ(C )⊕ 2Zn

gives the checkerboard lattice D2.



Preliminaries Construction D’s Construction A′

Construction A simply “lifts” the code.

Consider a code C = {(0, 0), (1, 1)} ∈ F2
2.

Construction A,
ΛA = ψ(C )⊕ 2Zn

gives the checkerboard lattice D2.



Preliminaries Construction D’s Construction A′

Construction D’s use nested codes.

Definition of Construction D (Forney 1988)

Let
C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn

2

be a family of nested binary linear codes. Let

ΓD = ψ(C0)⊕ 2ψ(C1)⊕ . . .⊕ 2a−1ψ(Ca−1)⊕ 2aZn.

Let R(r ,m) be the Reed-Muller code of length n = 2m and order
r . From the chain R(0,m) ⊂ R(1,m) ⊂ . . . ⊂ R(m,m),
Construction D yields the Barnes-Wall lattices.
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Construction D’s use nested codes.

Definition of Construction D (Barnes and Sloane 1983)

Let
C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn

2

be a family of nested binary linear codes. Let ki = dim(Ci ) and let
b1,b2, . . . ,bn be a basis of Fn

2 such that b1, . . . ,bki span Ci . The
lattice ΛD consists of all vectors of the form∑
bj0 among
generators

for C0

ψ(bj0)+2
∑

bj1 among
generators

for C1

ψ(bj1)+. . .+2a−1
∑

bj1 among
generators
for Ca−1

ψ(bja−1)+2al

where αj ∈ {0, 1} and l ∈ Zn.

Let R(r ,m) be the Reed-Muller code of length n = 2m and order
r . From the chain R(0,m) ⊂ R(1,m) ⊂ . . . ⊂ R(m,m),
Construction D yields the Barnes-Wall lattices.
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Construction D can fail.

Definition of Construction D

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. Let

ΓD = ψ(C0)⊕ 2ψ(C1)⊕ . . .⊕ 2a−1ψ(Ca−1)⊕ 2aZn.

Let ΛD be the smallest lattice that contains ΓD .

Let c1, c2 ∈ Ci , and let c3 be the sum of c1 and c2 over F2. Then,

ψ(c1) + ψ(c2)− ψ(c3)

may or may not be in ΓD .

So, ΓD may or may not be a lattice whereas ΛD is always a lattice.

Question: Is ΛD = ΛD? What make Construction D works for
Reed-Muller code?
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Let ∗ denote componentwise multiplication (known also as the
Schur product or Hadamard product). If
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

2, then

x ∗ y := (x1y1, . . . , xnyn) ∈ Fn
2.

Now, if z is the binary sum of x and y, then

ψ(x) + ψ(y)− ψ(z) = 2ψ(x ∗ y).

Given a chain C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 of binary linear

codes, if the Schur product of any two codewords of Ci is
contained in Ci+1 for all i , then we say that the chain is closed
under Schur product.
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Theorem (K. and O.)

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. The following statements are equivalent.

1. C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 is closed under Schur

product.
2. ΓD is a lattice.
3. ΓD = ΛD .



Preliminaries Construction D’s Construction A′

Theorem (K. and O.)

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. The following statements are equivalent.

1. C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 is closed under Schur

product.
2. ΓD is a lattice.
3. ΓD = ΛD .

Proof (3.⇒ 2.): Trivial.
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Proof (2.⇒ 1.): Pick c1, c2 ∈ Ci such that c1 ∗ c2 /∈ Ci+1 and
consider

ψ(c1) + ψ(c2)− ψ(c3)

where c3 is the binary sum of c1 and c2.
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ΓD = ΛD = ΛA from Construction A using C0.
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Theorem (K. and O.)

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. The following statements are equivalent.

1. C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 is closed under Schur

product.
2. ΓD is a lattice.
3. ΓD = ΛD .

Proof (1.⇒ 3.): We do induction on a. When a = 1,
ΓD = ΛD = ΛA from Construction A using C0.

For inductive step, use standard set arguments to show that
ΓD = ΛD .
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Theorem (K. and O.)

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. The following statements are equivalent.

1. C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 is closed under Schur

product.
2. ΓD is a lattice.
3. ΓD = ΛD .

Since a family of Reed-Muller codes is closed under Schur
product, Construction D yields the lattice same lattice as
Construction D.

Lattices from Construction D is independent of the basis of
Reed-Muller codes.

In general, the sum of all lattices constructible from
Construction D yields the lattice from Construction D using
the same nested codes.
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Ua := F2[u]/ua, a polynomial quotient ring where u is a variable.

A linear code over Ua of length n is a submodule of Un
a .

Φ is the embedding given by

Φ : Ua → R
a−1∑
j=0

bju
j 7→

a−1∑
j=0

ψ(bj)2j .

We will also use Φ as a bit-wise embedding from Un
a into Rn.

Definition of Construction A′ (Harshan, Viterbo, Belfiore 2012)

Let C be a linear code over Ua of length n, then

ΓA′ = Φ(C )⊕ 2aZn.
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Consider a code C of length 2 over U3 generated by
[ 1 + u 1 + u + u2 ].
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Consider a code C of length 2 over U3 generated by
[ 1 + u 1 + u + u2 ]. Then, we have

C = {(0, 0), (u, u), (u2, u2), (u + u2, u + u2), (1, 1 + u2),

(1 + u2, 1), (1 + u, 1 + u + u2), (1 + u + u2, 1 + u)}
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Consider a code C of length 2 over U3 generated by
[ 1 + u 1 + u + u2 ]. Then, we have

C = {(0, 0), (u, u), (u2, u2), (u + u2, u + u2), (1, 1 + u2),

(1 + u2, 1), (1 + u, 1 + u + u2), (1 + u + u2, 1 + u)}

and ΓA′ = Φ(C )⊕ 8Z2.
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Let C be the code generated by the generator matrix[
1 1
0 u

]⊗m
,

then Construction A′ yields the Barnes-Walls lattices.
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Definition of Construction D

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a family of nested binary

linear codes. Let
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Proposition (K. and O.)

Let C0 ⊆ C1 ⊆ . . . ⊆ Ca−1 ⊆ Ca = Fn
2 be a chain of binary linear

codes. Then,

C = C0 ⊕ uC1 ⊕ . . .⊕ ua−1Ca−1

is a code over Ua, and
ΓD = ΓA′ .

Corollary

ΓA′ from Construction A′ may not be a lattice.

Any lattice constructible using Construction D is also
constructible using Construction A′ (converse not true from
the previous example).
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