On the exact number of solutions of certain linearized equations

Ferruh Özbudak

Department of Mathematics and Institute of Applied Mathematics, METU, Ankara, Turkey.
*joint work with Zülfükar Saygı
** This work is supported by TÜBITAK TBAG-109T672 and TBAG-109T344.
18 April 2013

Outline

- Notations
- Motivation of the work
- Main Result
- Application
- Remarks

Notations

- p be an odd prime,
- n, k be positive integers,
- \mathbb{F}_{q} be a finite field with q elements, where $q=p^{k}$,
- We set $e=\operatorname{gcd}(n, k), n_{1}=n / e, q_{1}=p^{e}$ and $q_{2}=p^{n k / e}$,
- Norm be the relative norm map from $\mathbb{F}_{p^{n}}$ to $\mathbb{F}_{q_{1}}$, where (that is, $\operatorname{Norm}(x)=x^{\frac{p^{n}-1}{q_{1}-1}}$ for any $x \in \mathbb{F}_{p^{n}}$).

Extensions of $\mathbb{F}_{q_{1}}$

We work on the following extensions of $\mathbb{F}_{q_{1}}$:

Motivation

Lemma (Trachtenberg)

Let r, s, and t be pairwise relatively prime. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, $m \leq s$, be a set of elements of $\mathbb{F}_{p^{r s}}$ which are linearly independent over $\mathbb{F}_{p^{r}}$. Then $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ are linearly independent over $\mathbb{F}_{p^{r t}}$.

Lemma

Let $\mathcal{B} \subseteq \mathbb{F}_{p^{n}}$ be a non-empty set. If \mathcal{B} is linearly independent over $\mathbb{F}_{q_{1}}$, then \mathcal{B} is also linearly independent over \mathbb{F}_{q}

- Our lemma is a stronger version of the Trachtenberg's lemma.

Motivation

Lemma (Trachtenberg)

Let r, s, and t be pairwise relatively prime. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, $m \leq s$, be a set of elements of $\mathbb{F}_{p^{r s}}$ which are linearly independent over $\mathbb{F}_{p^{r}}$. Then $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ are linearly independent over $\mathbb{F}_{p^{r t}}$.

Lemma

Let $\mathcal{B} \subseteq \mathbb{F}_{p^{n}}$ be a non-empty set. If \mathcal{B} is linearly independent over $\mathbb{F}_{q_{1}}$, then \mathcal{B} is also linearly independent over \mathbb{F}_{q}.

- Our lemma is a stronger version of the Trachtenberg's lemma.

Motivation

- It is possible to decide the number of solutions of certain linearized equations using our lemma.
- But, it is not easy to find the exact number of solutions of that equation.
- In many cases we can easily find the exact number of solutions of linearized equations depending on the coefficients of that equation.

A Useful Result

Proposition

Let $\alpha \in \mathbb{F}_{p^{n}} \backslash\{0\}$ and $N(\alpha)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
z^{q}-\alpha z=0 .
$$

Let ψ_{α} be the map on $\mathbb{F}_{p^{n}}$ given by

$$
\begin{aligned}
\psi_{\alpha}: \mathbb{F}_{p^{n}} & \rightarrow \mathbb{F}_{p^{n}} \\
x & \mapsto x^{q}-\alpha x .
\end{aligned}
$$

Then we have

$$
N(\alpha)= \begin{cases}1, & \text { if } \quad \operatorname{Norm}(\alpha) \neq 1 \\ q_{1}, & \text { if } \quad \operatorname{Norm}(\alpha)=1\end{cases}
$$

A Useful Result

Proposition

Let $\alpha \in \mathbb{F}_{p^{n}} \backslash\{0\}$ and $N(\alpha)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
z^{q}-\alpha z=0 .
$$

Let ψ_{α} be the map on $\mathbb{F}_{p^{n}}$ given by

$$
\begin{aligned}
\psi_{\alpha}: \mathbb{F}_{p^{n}} & \rightarrow \mathbb{F}_{p^{n}} \\
x & \mapsto x^{q}-\alpha x .
\end{aligned}
$$

Then we have

$$
N(\alpha)=\left\{\begin{array}{lll}
1, & \text { if } & \operatorname{Norm}(\alpha) \neq 1 \\
q_{1}, & \text { if } & \operatorname{Norm}(\alpha)=1
\end{array}\right.
$$

A Useful Result Cont.

Proposition continued

Let $A_{\alpha}(T) \in \mathbb{F}_{p^{n}}[T]$ be the $\mathbb{F}_{q_{1}}$-linearized polynomial given by

$$
\begin{align*}
A_{\alpha}(T)= & T^{q_{1}^{n_{1}-1}}+\alpha^{q_{1}^{n_{1}-1}} T^{q_{1}^{n_{1}-2}}+\alpha^{q_{1}^{n_{1}-1}+q_{1}^{n_{1}-2}} T^{q_{1}^{n_{1}-3}} \tag{1}\\
& +\cdots+\alpha^{q_{1}^{n_{1}-1}}+q_{1}^{n_{1}-2}+\cdots+q_{1}^{2} T^{q_{1}}+\alpha^{q_{1}^{n_{1}-1}+q_{1}^{n_{1}-2}+\cdots+q_{1}} T .
\end{align*}
$$

If $\operatorname{Norm}(\alpha)=1$, then we also have the followings:
(1) $\operatorname{Ker} \psi_{\alpha}$ is the roots of the polynomial $T^{q_{1}}-\alpha T$ over $\mathbb{F}_{p^{n}}$. This polynomial is separable and splits over $\mathbb{F}_{p^{n}}$.
(2) $\operatorname{Im} \psi_{\alpha}$ is the roots of the polynomial $A_{\alpha}(T)$. This polynomial is separable and splits over $\mathbb{F}_{p^{n}}$.

A Useful Result Cont.

Proposition continued

Let $A_{\alpha}(T) \in \mathbb{F}_{p^{n}}[T]$ be the $\mathbb{F}_{q_{1}}$-linearized polynomial given by

$$
\begin{align*}
& A_{\alpha}(T)= T^{q_{1}^{n_{1}-1}}+\alpha^{q_{1}^{n_{1}-1}} T^{q_{1}^{n_{1}-2}}+\alpha^{q_{1}^{n_{1}-1}}+q_{1}^{n_{1}-2} \tag{1}\\
& T^{q_{1}^{n_{1}-3}} \\
&+\cdots+\alpha^{q_{1}^{n_{1}-1}}+q_{1}^{n_{1}-2}+\cdots+q_{1}^{2} T^{q_{1}}+\alpha^{q_{1}^{n_{1}-1}+q_{1}^{n_{1}-2}+\cdots+q_{1}} T .
\end{align*}
$$

If $\operatorname{Norm}(\alpha)=1$, then we also have the followings:
(1) $\operatorname{Ker} \psi_{\alpha}$ is the roots of the polynomial $T^{q_{1}}-\alpha T$ over $\mathbb{F}_{p^{n}}$. This polynomial is separable and splits over $\mathbb{F}_{p^{n}}$.
(2) $\operatorname{Im} \psi_{\alpha}$ is the roots of the polynomial $A_{\alpha}(T)$. This polynomial is separable and splits over $\mathbb{F}_{p^{n}}$.

Main Result

Theorem

Let α, β be nonzero elements of $\mathbb{F}_{p^{n}}$. Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right)=z^{q^{2}}-\left(\alpha+\beta^{q}\right) z^{q}+\alpha \beta z=0 .
$$

Let $C_{\alpha, \beta}$ denote the constant in $\mathbb{F}_{p^{n}}$ defined as

Then $N(\alpha, \beta) \in\left\{1, q_{1}, q_{1}^{2}\right\}$. Moreover we have the followings:
(1) $N(\alpha, \beta)=1$ if and only if $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $N(\alpha, \beta)=q_{1}$ if and only if one of the followings hold:
(1) $\operatorname{Norm}(\alpha)=1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta)=1$.
(0) $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta} \neq 0$.
(3) $N(\alpha, \beta)=q_{1}^{2}$ if and only if $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta}=0$.

Main Result

Theorem

Let α, β be nonzero elements of $\mathbb{F}_{p^{n}}$. Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right)=z^{q^{2}}-\left(\alpha+\beta^{q}\right) z^{q}+\alpha \beta z=0 .
$$

Let $C_{\alpha, \beta}$ denote the constant in $\mathbb{F}_{p^{n}}$ defined as
$C_{\alpha, \beta}=\frac{1}{\beta}+\frac{\alpha}{\beta^{q_{1}+1}}+\frac{\alpha^{q_{1}+1}}{\beta^{q_{1}^{2}+q_{1}+1}}+\cdots+\frac{\alpha^{q_{1}^{n_{1}-3}+\cdots+q_{1}+1}}{\beta^{q_{1}^{n_{1}-2}+\cdots+q_{1}+1}}+\alpha^{q^{q_{1}-2}+\cdots+q_{1}+1}$.
Then $N(\alpha, \beta) \in\left\{1, q_{1}, q_{1}^{2}\right\}$. Moreover we have the followings:
(1) $N(\alpha, \beta)=1$ if and only if $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $N(\alpha, \beta)=q_{1}$ if and only if one of the followings hold:
(1) $\operatorname{Norm}(\alpha)=1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta)=1$.
(3) $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta} \neq 0$.
(3) $N(\alpha, \beta)=q_{1}^{2}$ if and only if $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta}=0$.

Main Result

Theorem

Let α, β be nonzero elements of $\mathbb{F}_{p^{n}}$. Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right)=z^{q^{2}}-\left(\alpha+\beta^{q}\right) z^{q}+\alpha \beta z=0 .
$$

Let $C_{\alpha, \beta}$ denote the constant in $\mathbb{F}_{p^{n}}$ defined as

$$
C_{\alpha, \beta}=\frac{1}{\beta}+\frac{\alpha}{\beta^{q_{1}+1}}+\frac{\alpha^{q_{1}+1}}{\beta^{q_{1}^{2}+q_{1}+1}}+\cdots+\frac{\alpha^{q_{1}^{n_{1}-3}+\cdots+q_{1}+1}}{\beta^{q_{1}^{n_{1}-2}+\cdots+q_{1}+1}}+\alpha^{q_{1}^{q_{1}-2}+\cdots+q_{1}+1} .
$$

Then $N(\alpha, \beta) \in\left\{1, q_{1}, q_{1}^{2}\right\}$. Moreover we have the followings:
(1) $N(\alpha, \beta)=1$ if and only if $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $N(\alpha, \beta)=q_{1}$ if and only if one of the followings hold:
(1) $\operatorname{Norm}(\alpha)=1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta)=1$.
(3) $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta} \neq 0$.
(3) $N(\alpha, \beta)=q_{1}^{2}$ if and only if $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta}=0$.

Main Result

Theorem

Let α, β be nonzero elements of $\mathbb{F}_{p^{n}}$. Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^{n}}$ such that

$$
\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right)=z^{q^{2}}-\left(\alpha+\beta^{q}\right) z^{q}+\alpha \beta z=0 .
$$

Let $C_{\alpha, \beta}$ denote the constant in $\mathbb{F}_{p^{n}}$ defined as

$$
C_{\alpha, \beta}=\frac{1}{\beta}+\frac{\alpha}{\beta^{q_{1}+1}}+\frac{\alpha^{q_{1}+1}}{\beta^{q_{1}^{2}+q_{1}+1}}+\cdots+\frac{\alpha^{q_{1}^{n_{1}-3}+\cdots+q_{1}+1}}{\beta^{q_{1}^{n_{1}-2}+\cdots+q_{1}+1}}+\alpha^{q_{1}^{q_{1}-2}+\cdots+q_{1}+1}
$$

Then $N(\alpha, \beta) \in\left\{1, q_{1}, q_{1}^{2}\right\}$. Moreover we have the followings:
(1) $N(\alpha, \beta)=1$ if and only if $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $N(\alpha, \beta)=q_{1}$ if and only if one of the followings hold:
(1) $\operatorname{Norm}(\alpha)=1$ and $\operatorname{Norm}(\beta) \neq 1$.
(2) $\operatorname{Norm}(\alpha) \neq 1$ and $\operatorname{Norm}(\beta)=1$.
(3) $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta} \neq 0$.
(3) $N(\alpha, \beta)=q_{1}^{2}$ if and only if $\operatorname{Norm}(\alpha)=\operatorname{Norm}(\beta)=1$ and $C_{\alpha, \beta}=0$.

More results

Proposition

Let $m \geq 2$ be an integer. Let

$$
A(T)=T^{q^{m}}+A_{m-1} T^{q^{m-1}}+\cdots+A_{1} T^{q}+A_{0} T \in \mathbb{F}_{p^{n}}[T]
$$

be an \mathbb{F}_{q}-linearized polynomial with $A_{0} \neq 0$.
If there exists $\eta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that $A(\eta)=0$, then there exist $\beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ and $\mathbb{F}_{q^{-}}$-linearized monic and separable polynomial $B(T) \in \mathbb{F}_{p^{n}}[T]$ such that

$$
A(T)=B(T) \circ\left(T^{q}-\beta T\right)
$$

- This result is well known if $k \mid n$.
- It is a slight extension, including the case $k \nmid n$ as well.

A Remark

Let $a, b \in \mathbb{F}_{p^{n}} \backslash\{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^{n}}$ s.t.

$$
z^{q^{2}}+a z^{q}+b z=0
$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
- If there exist $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that

$$
\begin{equation*}
z^{q^{2}}+a z^{q}+b z=\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right) \tag{2}
\end{equation*}
$$

then N is computed explicitly using our Theorem as $N=N(\alpha, \beta)$.

- If there is no $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that (2) holds, then $N=1$ by our Proposition.

A Remark

Let $a, b \in \mathbb{F}_{p^{n}} \backslash\{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^{n}}$ s.t.

$$
z^{q^{2}}+a z^{q}+b z=0 .
$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
- If there exist $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that

$$
\begin{equation*}
z^{q^{2}}+a z^{q}+b z=\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right), \tag{2}
\end{equation*}
$$

then N is computed explicitly using our Theorem as $N=N(\alpha, \beta)$.

- If there is no $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that (2) holds, then $N=1$ by our Proposition.

A Remark

Let $a, b \in \mathbb{F}_{p^{n}} \backslash\{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^{n}}$ s.t.

$$
z^{q^{2}}+a z^{q}+b z=0
$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
- If there exist $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that

$$
\begin{equation*}
z^{q^{2}}+a z^{q}+b z=\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right), \tag{2}
\end{equation*}
$$

then N is computed explicitly using our Theorem as $N=N(\alpha, \beta)$.

- If there is no $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that (2) holds, then $N=1$ by our Proposition.

An example

Example

Let $p=3, n=3, k=1$ and
γ be a primitive element in $\mathbb{F}_{3^{3}}$, s.t. $\gamma^{3}+2 \gamma+1=0$.
Then by computer search we see that

$$
z^{9}+\gamma^{7} z^{3}+z
$$

can not be written of the form $\left(z^{3}-\alpha z\right) \circ\left(z^{3}-\beta z\right)$ for all $\alpha, \beta \in \mathbb{F}_{3^{3}} \backslash\{0\}$.

A connection of the factorization problem above with a result of Bluher

- We want to find $\alpha, \beta \in \mathbb{F}_{p^{n}} \backslash\{0\}$ such that

$$
\begin{aligned}
z^{q^{2}}+a z^{q}+b z & =\left(z^{q}-\alpha z\right) \circ\left(z^{q}-\beta z\right) \\
& =z^{q^{2}}-\left(\alpha+\beta^{q}\right) z^{q}+\alpha \beta z
\end{aligned}
$$

which means that

$$
a=\alpha+\beta^{q} \text { and } b=\alpha \beta
$$

- Then by substituting $\alpha=b / \beta$ in the first equality

$$
a=\frac{b}{\beta}+\beta^{q} .
$$

- That is, β is a solution of the equation

$$
0=x^{q+1}-a x+b \in \mathbb{F}_{p^{n}}[x] .
$$

A result of Trachtenberg

Proposition (Trachtenberg)

Let γ be a nonzero element of $\mathbb{F}_{p^{n}}$ where p is prime and n is odd. Then the equation

$$
\begin{equation*}
z^{p^{4 m}}-(2 \gamma)^{p^{2 m}} z^{p^{2 m}}+z=0 \tag{3}
\end{equation*}
$$

has exactly 1 , p^{e}, or $p^{2 e}$ roots in $\mathbb{F}_{p^{n}}$, where $e=\operatorname{gcd}(m, n)$.

- Remark that using our Theorem and Proposition it possible to find the exact number of roots of (3) depending on γ. Note that $k=2 m$ in our notation.

More equations

Now, it is possible to find the exact number of solutions of the following linearized equations depending on the coefficients of that equation.

$$
\begin{equation*}
z^{q^{3}}+a z^{q^{2}}+b z^{q}+c z=0 \tag{4}
\end{equation*}
$$

- The problem of finding the exact number of solutions of (4) can be reduced to a "factorization" problem.
- Note that using Trachtenberg's Lemma the number of solutions of (4) is in the set $\left\{1, q_{1}, q_{1}^{2}, q_{1}^{3}\right\}$.
- But in many cases depending on the coefficients of the equations, the number of solutions of (4) will not take all the values in the set $\left\{1, q_{1}, q_{1}^{2}, q_{1}^{3}\right\}$.

A result of Trachtenberg

Proposition

Let γ be a nonzero element of $\mathbb{F}_{p^{n}}$ where p is an odd prime and n is odd. Then the equation

$$
\begin{equation*}
z^{p^{p^{m}}}-\gamma^{p^{3 m}} z^{p^{4 m}}-\gamma^{p^{2 m}} z^{p^{2 m}}+z=0 \tag{5}
\end{equation*}
$$

has exactly 1 , p^{e}, or $p^{2 e}$ roots in $\mathbb{F}_{p^{n}}$, where $e=\operatorname{gcd}(m, n)$.

- The proof of the proposition is suggested by L. Welch.
- The equation (5) is of the form

$$
0=z^{q^{3}}+b^{p^{(k / 2)}} z^{q^{2}}+b z^{q}+z \in \mathbb{F}_{p^{n}}[z] \quad(k=2 m) .
$$

Remarks on the last result

$$
\begin{equation*}
z^{p^{6 m}}-\gamma^{p^{3 m}} z^{p^{4 m}}-\gamma^{p^{2 m}} z^{p^{2 m}}+z=0 \tag{6}
\end{equation*}
$$

- If the equation (6) has a nonzero root then
$z^{q^{3}}+b^{p^{(k / 2)}} z^{q^{2}}+b z^{q}+z=\left(z^{q}-\alpha_{1} z\right) \circ\left(z^{q}-\alpha_{2} z\right) \circ\left(z^{q}-\alpha_{3} z\right)$
for some $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{p^{n}}$.
- Using this observation it is proved that the equation (6) can not have q_{1}^{3} solutions in $\mathbb{F}_{p^{n}}$.
- Furthermore, using similar techniques as in our Theorem it is possible to make further improvements depending on the values of α_{1}, α_{2} and α_{3}.

Thank you for your attention...

