On the exact number of solutions of certain linearized equations

Ferruh Özbudak

Department of Mathematics and Institute of Applied Mathematics, METU, Ankara, Turkey.

*joint work with Zülfükar Saygı ** This work is supported by TÜBİTAK TBAG–109T672 and TBAG–109T344.

18 April 2013

(人間) とうり くうり

- Notations
- Motivation of the work
- Main Result
- Application
- Remarks

- 4 回 2 - 4 三 2 - 4 三 2

æ

- p be an odd prime,
- n, k be positive integers,
- \mathbb{F}_q be a finite field with q elements, where $q = p^k$,

• We set
$$e = \gcd(n, k)$$
, $n_1 = n/e$, $q_1 = p^e$ and $q_2 = p^{nk/e}$,

• Norm be the relative norm map from \mathbb{F}_{p^n} to \mathbb{F}_{q_1} , where (that is, $\operatorname{Norm}(x) = x^{\frac{p^n-1}{q_1-1}}$ for any $x \in \mathbb{F}_{p^n}$).

マロト マヨト マヨト

We work on the following extensions of \mathbb{F}_{q_1} :

2

_∢≣≯

Lemma (Trachtenberg)

Let r,s, and t be pairwise relatively prime. Let $\sigma_1, \sigma_2, \ldots, \sigma_m$, $m \leq s$, be a set of elements of $\mathbb{F}_{p^{rs}}$ which are linearly independent over \mathbb{F}_{p^r} . Then $\sigma_1, \sigma_2, \ldots, \sigma_m$ are linearly independent over $\mathbb{F}_{p^{rt}}$.

_emma

Let $\mathcal{B} \subseteq \mathbb{F}_{p^n}$ be a non-empty set. If \mathcal{B} is linearly independent over \mathbb{F}_{q_1} , then \mathcal{B} is also linearly independent over \mathbb{F}_q .

• Our lemma is a stronger version of the Trachtenberg's lemma.

Lemma (Trachtenberg)

Let r,s, and t be pairwise relatively prime. Let $\sigma_1, \sigma_2, \ldots, \sigma_m$, $m \leq s$, be a set of elements of $\mathbb{F}_{p^{rs}}$ which are linearly independent over \mathbb{F}_{p^r} . Then $\sigma_1, \sigma_2, \ldots, \sigma_m$ are linearly independent over $\mathbb{F}_{p^{rt}}$.

Lemma

Let $\mathcal{B} \subseteq \mathbb{F}_{p^n}$ be a non-empty set. If \mathcal{B} is linearly independent over \mathbb{F}_{q_1} , then \mathcal{B} is also linearly independent over \mathbb{F}_q .

• Our lemma is a stronger version of the Trachtenberg's lemma.

- It is possible to decide the number of solutions of certain linearized equations using our lemma.
- But, it is not easy to find the exact number of solutions of that equation.
- In many cases we can easily find the exact number of solutions of linearized equations depending on the *coefficients* of that equation.

向下 イヨト イヨト

A Useful Result

Proposition

Let $\alpha \in \mathbb{F}_{p^n} \setminus \{0\}$ and $N(\alpha)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$z^q - \alpha z = 0.$$

Let ψ_{α} be the map on \mathbb{F}_{p^n} given by

$$\begin{array}{rcccc} \psi_{\alpha} : & \mathbb{F}_{p^n} & \to & \mathbb{F}_{p^n} \\ & x & \mapsto & x^q - \alpha x. \end{array}$$

Then we have

$$N(\alpha) = \begin{cases} 1, & \text{if } \operatorname{Norm}(\alpha) \neq 1, \\ q_1, & \text{if } \operatorname{Norm}(\alpha) = 1. \end{cases}$$

イロト イヨト イヨト イヨト

Proposition

Let $\alpha \in \mathbb{F}_{p^n} \setminus \{0\}$ and $N(\alpha)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$z^q - \alpha z = 0.$$

Let ψ_{α} be the map on \mathbb{F}_{p^n} given by

$$\begin{array}{rcccc} \psi_{\alpha} : & \mathbb{F}_{p^n} & \to & \mathbb{F}_{p^n} \\ & x & \mapsto & x^q - \alpha x. \end{array}$$

Then we have

$$N(\alpha) = \begin{cases} 1, & \text{if } \operatorname{Norm}(\alpha) \neq 1, \\ q_1, & \text{if } \operatorname{Norm}(\alpha) = 1. \end{cases}$$

• 3 > 1

2

Proposition continued

Let $A_{\alpha}(T) \in \mathbb{F}_{p^n}[T]$ be the \mathbb{F}_{q_1} -linearized polynomial given by

$$\begin{aligned} A_{\alpha}(T) &= T^{q_{1}^{n_{1}-1}} + \alpha^{q_{1}^{n_{1}-1}} T^{q_{1}^{n_{1}-2}} + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2}} T^{q_{1}^{n_{1}-3}} \\ &+ \dots + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2} + \dots + q_{1}^{2}} T^{q_{1}} + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2} + \dots + q_{1}} T. \end{aligned}$$

If $Norm(\alpha) = 1$, then we also have the followings:

- Kerψ_α is the roots of the polynomial T^{q1} αT over F_{pⁿ}.
 This polynomial is separable and splits over F_{pⁿ}.
- Im ψ_α is the roots of the polynomial A_α(T). This polynomial is separable and splits over F_{pⁿ}.

マロト イヨト イヨト

Proposition continued

Let $A_{\alpha}(T) \in \mathbb{F}_{p^n}[T]$ be the \mathbb{F}_{q_1} -linearized polynomial given by

$$\begin{aligned} \mathcal{A}_{\alpha}(T) &= T^{q_{1}^{n_{1}-1}} + \alpha^{q_{1}^{n_{1}-1}} T^{q_{1}^{n_{1}-2}} + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2}} T^{q_{1}^{n_{1}-3}} \\ &+ \dots + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2} + \dots + q_{1}^{2}} T^{q_{1}} + \alpha^{q_{1}^{n_{1}-1} + q_{1}^{n_{1}-2} + \dots + q_{1}} T. \end{aligned}$$

If $Norm(\alpha) = 1$, then we also have the followings:

- Kerψ_α is the roots of the polynomial T^{q1} αT over F_{pⁿ}. This polynomial is separable and splits over F_{pⁿ}.
- Im ψ_α is the roots of the polynomial A_α(T). This polynomial is separable and splits over F_{pⁿ}.

(4 同) (4 回) (4 回)

Theorem

Let α, β be nonzero elements of \mathbb{F}_{p^n} . Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$(z^{q} - \alpha z) \circ (z^{q} - \beta z) = z^{q^{2}} - (\alpha + \beta^{q}) z^{q} + \alpha \beta z = 0.$$

Let $C_{\alpha,\beta}$ denote the constant in \mathbb{F}_{p^n} defined as

$$C_{\alpha,\beta} = \frac{1}{\beta} + \frac{\alpha}{\beta^{q_1+1}} + \frac{\alpha^{q_1+1}}{\beta^{q_1^2+q_1+1}} + \dots + \frac{\alpha^{q_1^{n_1-3}+\dots+q_1+1}}{\beta^{q_1^{n_1-2}+\dots+q_1+1}} + \alpha^{q_1^{n_1-2}+\dots+q_1+1}.$$

Then $N(\alpha, \beta) \in \{1, q_1, q_1^2\}$. Moreover we have the followings:

1 $N(\alpha, \beta) = 1$ if and only if $Norm(\alpha) \neq 1$ and $Norm(\beta) \neq 1$.

2 $N(\alpha, \beta) = q_1$ if and only if one of the followings hold:

• Norm
$$(\alpha) = 1$$
 and Norm $(\beta) \neq 1$.

- **2** Norm $(\alpha) \neq 1$ and Norm $(\beta) = 1$.
- So $\operatorname{Norm}(\alpha) = \operatorname{Norm}(\beta) = 1$ and $C_{\alpha,\beta} \neq 0$.

3 $N(\alpha, \beta) = q_1^2$ if and only if $Norm(\alpha) = Norm(\beta) = 1$ and $C_{\alpha,\beta} = 0$.

Theorem

Let α, β be nonzero elements of \mathbb{F}_{p^n} . Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$(z^{q} - \alpha z) \circ (z^{q} - \beta z) = z^{q^{2}} - (\alpha + \beta^{q}) z^{q} + \alpha \beta z = 0.$$

Let $C_{\alpha,\beta}$ denote the constant in \mathbb{F}_{p^n} defined as

$$C_{\alpha,\beta} = \frac{1}{\beta} + \frac{\alpha}{\beta^{q_1+1}} + \frac{\alpha^{q_1+1}}{\beta^{q_1^2+q_1+1}} + \dots + \frac{\alpha^{q_1^{n_1-3}+\dots+q_1+1}}{\beta^{q_1^{n_1-2}+\dots+q_1+1}} + \alpha^{q_1^{n_1-2}+\dots+q_1+1}.$$

Then $N(\alpha, \beta) \in \{1, q_1, q_1^2\}$. Moreover we have the followings:

1 $N(\alpha, \beta) = 1$ if and only if $Norm(\alpha) \neq 1$ and $Norm(\beta) \neq 1$.

2 $N(\alpha, \beta) = q_1$ if and only if one of the followings hold:

• Norm
$$(\alpha) = 1$$
 and Norm $(\beta) \neq 1$.

- **2** Norm $(\alpha) \neq 1$ and Norm $(\beta) = 1$.
- So $\operatorname{Norm}(\alpha) = \operatorname{Norm}(\beta) = 1$ and $C_{\alpha,\beta} \neq 0$.

3 $N(\alpha, \beta) = q_1^2$ if and only if $Norm(\alpha) = Norm(\beta) = 1$ and $C_{\alpha,\beta} = 0$.

Theorem

Let α, β be nonzero elements of \mathbb{F}_{p^n} . Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$(z^{q} - \alpha z) \circ (z^{q} - \beta z) = z^{q^{2}} - (\alpha + \beta^{q}) z^{q} + \alpha \beta z = 0.$$

Let $C_{\alpha,\beta}$ denote the constant in \mathbb{F}_{p^n} defined as

$$C_{\alpha,\beta} = \frac{1}{\beta} + \frac{\alpha}{\beta^{q_1+1}} + \frac{\alpha^{q_1+1}}{\beta^{q_1^2+q_1+1}} + \dots + \frac{\alpha^{q_1^{n_1-3}+\dots+q_1+1}}{\beta^{q_1^{n_1-2}+\dots+q_1+1}} + \alpha^{q_1^{n_1-2}+\dots+q_1+1}.$$

Then $N(\alpha, \beta) \in \{1, q_1, q_1^2\}$. Moreover we have the followings:

1 $N(\alpha, \beta) = 1$ if and only if $Norm(\alpha) \neq 1$ and $Norm(\beta) \neq 1$.

2 $N(\alpha, \beta) = q_1$ if and only if one of the followings hold:

• Norm
$$(\alpha) = 1$$
 and Norm $(\beta) \neq 1$.

2 Norm
$$(\alpha) \neq 1$$
 and Norm $(\beta) = 1$.

• Norm
$$(\alpha) = \text{Norm}(\beta) = 1$$
 and $C_{\alpha,\beta} \neq 0$.

3 $N(\alpha, \beta) = q_1^2$ if and only if $Norm(\alpha) = Norm(\beta) = 1$ and $C_{\alpha,\beta} = 0$.

Theorem

Let α, β be nonzero elements of \mathbb{F}_{p^n} . Let $N(\alpha, \beta)$ denote the number of $z \in \mathbb{F}_{p^n}$ such that

$$(z^{q} - \alpha z) \circ (z^{q} - \beta z) = z^{q^{2}} - (\alpha + \beta^{q}) z^{q} + \alpha \beta z = 0.$$

Let $C_{\alpha,\beta}$ denote the constant in \mathbb{F}_{p^n} defined as

$$C_{\alpha,\beta} = \frac{1}{\beta} + \frac{\alpha}{\beta^{q_1+1}} + \frac{\alpha^{q_1+1}}{\beta^{q_1^2+q_1+1}} + \dots + \frac{\alpha^{q_1^{n_1-3}+\dots+q_1+1}}{\beta^{q_1^{n_1-2}+\dots+q_1+1}} + \alpha^{q_1^{n_1-2}+\dots+q_1+1}.$$

Then $N(\alpha, \beta) \in \{1, q_1, q_1^2\}$. Moreover we have the followings:

() $N(\alpha, \beta) = 1$ if and only if $Norm(\alpha) \neq 1$ and $Norm(\beta) \neq 1$.

2 $N(\alpha, \beta) = q_1$ if and only if one of the followings hold:

Proposition

Let $m \ge 2$ be an integer. Let

$$A(T) = T^{q^m} + A_{m-1}T^{q^{m-1}} + \dots + A_1T^q + A_0T \in \mathbb{F}_{p^n}[T]$$

be an \mathbb{F}_q -linearized polynomial with $A_0 \neq 0$. If there exists $\eta \in \mathbb{F}_{p^n} \setminus \{0\}$ such that $A(\eta) = 0$, then there exist $\beta \in \mathbb{F}_{p^n} \setminus \{0\}$ and \mathbb{F}_q -linearized monic and separable polynomial $B(T) \in \mathbb{F}_{p^n}[T]$ such that

$$A(T) = B(T) \circ (T^q - \beta T).$$

- This result is well known if $k \mid n$.
- It is a slight extension, including the case $k \nmid n$ as well.

Let $a, b \in \mathbb{F}_{p^n} \setminus \{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^n}$ s.t.

$$z^{q^2} + az^q + bz = 0.$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
 - If there exist $\alpha, \beta \in \mathbb{F}_{p^n} \setminus \{0\}$ such that

$$z^{q^2} + az^q + bz = (z^q - \alpha z) \circ (z^q - \beta z), \qquad (2)$$

then N is computed explicitly using our Theorem as $N = N(\alpha, \beta)$.

 If there is no α, β ∈ 𝔽_{pⁿ} \ {0} such that (2) holds, then N = 1 by our Proposition.

・ロン ・回と ・ヨン・

Let $a, b \in \mathbb{F}_{p^n} \setminus \{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^n}$ s.t.

$$z^{q^2} + az^q + bz = 0.$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
 - If there exist $\alpha, \beta \in \mathbb{F}_{p^n} \setminus \{0\}$ such that

$$z^{q^2} + az^q + bz = (z^q - \alpha z) \circ (z^q - \beta z), \qquad (2)$$

then N is computed explicitly using our Theorem as $N = N(\alpha, \beta)$.

 If there is no α, β ∈ 𝔽_{pⁿ} \ {0} such that (2) holds, then N = 1 by our Proposition.

・ロン ・回と ・ヨン・

Let $a, b \in \mathbb{F}_{p^n} \setminus \{0\}$. Let N denote the number of $z \in \mathbb{F}_{p^n}$ s.t.

$$z^{q^2} + az^q + bz = 0.$$

- The main problem is to compute N explicitly.
- This problem is now reduced to a "factorization" problem in the following sense:
 - If there exist $\alpha, \beta \in \mathbb{F}_{p^n} \setminus \{0\}$ such that

$$z^{q^2} + az^q + bz = (z^q - \alpha z) \circ (z^q - \beta z), \qquad (2)$$

then N is computed explicitly using our Theorem as $N = N(\alpha, \beta)$.

 If there is no α, β ∈ 𝔽_{pⁿ} \ {0} such that (2) holds, then N = 1 by our Proposition.

Example

Let p = 3, n = 3, k = 1 and γ be a primitive element in \mathbb{F}_{3^3} , s.t. $\gamma^3 + 2\gamma + 1 = 0$. Then by computer search we see that

$$z^9 + \gamma^7 z^3 + z$$

can not be written of the form $(z^3 - \alpha z) \circ (z^3 - \beta z)$ for all $\alpha, \beta \in \mathbb{F}_{3^3} \setminus \{0\}.$

・ロン ・回と ・ヨン・

A connection of the factorization problem above with a result of Bluher

• We want to find $\alpha, \beta \in \mathbb{F}_{p^n} \setminus \{0\}$ such that

$$z^{q^{2}} + az^{q} + bz = (z^{q} - \alpha z) \circ (z^{q} - \beta z)$$
$$= z^{q^{2}} - (\alpha + \beta^{q}) z^{q} + \alpha \beta z,$$

which means that

$$a = \alpha + \beta^q$$
 and $b = \alpha \beta$.

• Then by substituting $\alpha=b/\beta$ in the first equality

$$a = \frac{b}{\beta} + \beta^q.$$

• That is, β is a solution of the equation

$$0 = x^{q+1} - ax + b \in \mathbb{F}_{p^n}[x].$$

Proposition (Trachtenberg)

Let γ be a nonzero element of \mathbb{F}_{p^n} where p is prime and n is odd. Then the equation

$$z^{p^{4m}} - (2\gamma)^{p^{2m}} z^{p^{2m}} + z = 0$$
(3)

has exactly 1, p^e , or p^{2e} roots in \mathbb{F}_{p^n} , where e = gcd(m, n).

 Remark that using our Theorem and Proposition it possible to find the exact number of roots of (3) depending on γ. Note that k = 2m in our notation. Now, it is possible to find the exact number of solutions of the following linearized equations depending on the coefficients of that equation.

$$z^{q^3} + az^{q^2} + bz^q + cz = 0. (4)$$

- The problem of finding the exact number of solutions of (4) can be reduced to a "factorization" problem.
- Note that using Trachtenberg's Lemma the number of solutions of (4) is in the set {1, q₁, q₁², q₁³}.
- But in many cases depending on the coefficients of the equations, the number of solutions of (4) will not take all the values in the set {1, q₁, q₁², q₁³}.

(4月) (4日) (4日)

Proposition

Let γ be a nonzero element of \mathbb{F}_{p^n} where p is an odd prime and n is odd. Then the equation

$$z^{p^{6m}} - \gamma^{p^{3m}} z^{p^{4m}} - \gamma^{p^{2m}} z^{p^{2m}} + z = 0$$
(5)

has exactly 1, p^e , or p^{2e} roots in \mathbb{F}_{p^n} , where e = gcd(m, n).

• The proof of the proposition is suggested by L. Welch.

• The equation (5) is of the form

$$0 = z^{q^3} + b^{p^{(k/2)}} z^{q^2} + bz^q + z \in \mathbb{F}_{p^n}[z] \quad (k = 2m).$$

A (1) > (1) > (1)

Remarks on the last result

$$z^{p^{6m}} - \gamma^{p^{3m}} z^{p^{4m}} - \gamma^{p^{2m}} z^{p^{2m}} + z = 0$$
(6)

• If the equation (6) has a nonzero root then

$$z^{q^{3}} + b^{p^{(k/2)}} z^{q^{2}} + bz^{q} + z = (z^{q} - \alpha_{1}z) \circ (z^{q} - \alpha_{2}z) \circ (z^{q} - \alpha_{3}z)$$

for some $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}_{p^n}$.

- Using this observation it is proved that the equation (6) can not have q₁³ solutions in F_{pⁿ}.
- Furthermore, using similar techniques as in our Theorem it is possible to make further improvements depending on the values of α_1 , α_2 and α_3 .

Thank you for your attention...

• 3 > 1