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Coding Strategy for the Wiretap Rayleigh Fading Channel

Coset encoding:

a sublattice Λe of Λb and partition Λb into a union
of disjoint cosets of the form

Λe + c

where c = (c1, c2, ..., cn) ∈ Λb ⊂ Rn.

The message intended for Bob, s is labelled by s 7→ Λe + c(s).

Lattice encoding: The transmitted lattice point x ∈ Λe + c(s) ⊂ Λb
is chosen randomly.

x = r + c(s) ∈ Λe + c(s) ⇔ random vector r ∈ Λe
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Code Design Criterion
(J.C. Belfiore and F.Oggier, 2011)

P̄c,e ≈ (
γe
4

)
n
2 Vol(Λb)

1

γ
3
2
dx

e

∑
x∈Λe,x 6=0

∏
xi 6=0

1

|xi|3

where
Λb (resp.Λe) is the lattice intended for Bob (resp.Eve),
γe is Eve’s average Signal to Noise Ratio(SNR),
x = (x1, x2, ..., xn),
Vol(Λb) is the volume of Λb,
dx = |{xi : xi 6= 0}| is the minimum diversity of x.

Coding criterion:

To minimize ∑
x∈Λe,x 6=0

∏
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Ideal Lattices

Let K be a totally real number field of degree n, with ring of
integers OK , and real embeddings σ1, ..., σn.

If {ω1, . . . , ωn} is a Z-basis of I, the generator matrix M of the
corresponding ideal lattice (I, qα) = {x = uM |u ∈ Zn} is given by

M =


√
α1σ1(ω1)

√
α2σ2(ω1) . . .

√
αnσn(ω1)
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... . . .

...√
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√
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√
αnσn(ωn)


where αj = σj(α), for all j.
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In addition to K as a totally real number field,

• K is a Galois extension.

• Class number of K is 1.

Thus x′ ∈ I = (β)OK , NK/Q(x′) = NK/Q(β)NK/Q(x) for some
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where Ai refers to number of algebraic integers with a norm of ±i.



In practice, we consider finite constellation so that only finitely
many integers are considered in the sum.

Instead we will consider in analysing the following∑
x∈OK∩R,x6=0

1

|NK/Q(x)|3

where R decides the shape of the finite constellation.
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Integers with norms at least 2 depend on

• ramification in K

• the class number of K

• density of units
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Norms and Ramification

Let p be a prime, then p ∈ pOK .

N(pOK) = N(

g∏
i=1

peii ) =

g∏
i=1

N(pi)
ei = |NK/Q(p)| = pn

where all pi are distinct prime ideals and ei = e for all i.

In particular, if p is totally ramified(g = 1 and e1 = n) or if p
totally splits(g = n and e = 1), then

N(p)n = pn, or
n∏
i=1

N(pi) = pn.

This shows the existence of an ideal above p of norm p.

We can further identify a generator with norm p.
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Norms and Ramification

Moreover, if we have e = g = 1, we will force the smallest norm
involving only the prime p to be at least pn.

This kind of prime p, we call it inert prime and it is desirable to
have those smaller primes remain inert.

Example

If 2 is inert prime, then x ∈ OK with N(x) = 2k for k ≥ n.
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Figure: Cyclotomic Field and its Maximal Real Subfield



Theorem
(D.A.Marcus,1977)
Let q be a rational prime different from p, then q is unramified in
Q(ζp) and in fact

(q)Z[ζp] = q1...qg

with mutually distinct prime ideals qi and each of inertial degree
f = f(qi/q) equal to the order of q in (Z/p)×,i.e., f is the least
natural number such that

qf ≡ 1 (mod p).



Consider the special case when p = 2p′ + 1, with p′ a prime.

Lemma
Suppose that p = 2p′ + 1, where both p and p′ are prime (such a
prime p′ is called a Sophie Germain prime). Then the primes
smaller than p are inert in Q(ζp + ζ−1

p ).

Example

Consider Q(ζ23), with 23 = 2 · 11 + 1. The primes 2, 3, 5, 7, 11,
13, 17, 19 are all inert in Q(ζ23 + ζ−1

23 ).
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Units and Regulator

Let L be a number field of degree n and signature (r1, r2). Set
r = r1 + r2 − 1. The density of units in K is related to its
regulator R.

Definition
Given a basis e1, . . . , er for the group of units modulo the group of
roots of unity. The regulator of K is

R = |det(log |σi(ej)|)1≤i,j≤r|,

where |σi(ej)| denotes the absolute value for the real embeddings,
and the square of the complex absolute value for the complex ones.
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Theorem
(G.R.Everest, J.H.Loxton, 1993)
Let w be the number of roots of unity in L. The number of units
U(q) such that max1≤i≤d |σi(u)| < q in K is given by

U(q) =
w(r + 1)r

Rr!
(log q)r +O((log q)r−1−(cR2/r)−1

)

as q →∞ and c = 6 · 2× 1012d10(1 + 2 log d).



Table: Some totally real number fields K of Cyclotomic Fields.

K ⊂ Q(ζp) R p(X) primes

Q(ζ11) 1.63 x5 + x4 − 4x3 − 3x2 + 3x + 1 11 ramifies

Q(ζ31) 30.36 x5 − 9x4 + 20x3 − 5x2 − 11x− 1 5 splits

Q(ζ41) 123.32 x5 − x4 − 16x3 − 5x2 + 21x + 9 3 splits

Q(ζ23) 1014.31 x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6

−56x5 − 35x4 + 35x3 + 15x2 − 6x− 1 23 ramifies

Q(ζ67) 330512.24 x11 − x10 − 30x9 + 63x8 + 220x7 − 698x6

−101x5 + 1960x4 − 1758x3 + 35x2 + 243x + 29 29 splits

For the case of degree 5,

2 · 54

4!R
(log q)

4
=

625

12R
(log q)

4

yielding respectively

∼ 32(log q)
4
, ∼ 0.4(log q)

4

for the smallest and biggest regulators shown in Table 1.
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Conclusion

• Code design criterion for fast fading channel is analysed in
designing the lattice code that provides confusion to the
eavedropper.

• Identifying totally real number fields with prescribed
ramification and regulator provide some thought in the design
of wiretap codes for fast fading channels.
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