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Alice, Bob, and Eve

Suppose that Alice wants to transmit information to Bob over a potentially
noisy wireless channel, while an eavesdropper, (St)Eve, listens in.
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Alice, Bob, and Eve

This wireless channel can be modeled by the equations

Yb = Hpx + z (1)
Ye = Hex + ze (2)

where

@ x € R" is the vector intended for transmission.
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Alice, Bob, and Eve

This wireless channel can be modeled by the equations

Yb = Hpx + z (1)
Ye = Hex + ze (2)

where
@ x € R" is the vector intended for transmission.
e Hp, He € M,(R) are Bob's and Eve's fading matrices, respectively.
@ 2,2, € R are the corresponding noise vectors, whose entries are
Gaussian random variables with variance 07, 02.
@ ¥p,Ye € R" are the vectors received by Bob and Eve.

We assume that Ug >> ai, i.e. that Eve's channel is much noisier than
Bob's.
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Coset Coding

Alice uses coset coding, a variant of lattice coding, to confuse Eve.

Alice selects a “fine” lattice A, whose elements encode data intended for
Bob. At the same time, Alice chooses a “coarse” sublattice

Ae - /\b7 (3)

containing random bits intended to confuse Eve.
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Coset Coding

Alice now sends codewords of the form
X=r+c (4)

where r is a random element of A, intended to confuse Eve, and c is a
coset representative of A, in Ap.

Alice's strategy ensures that Eve can easily recover the “random” data r,
but not the actual data c.
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Coset Coding

In practice, we construct Eve's codebook from a finite subset Cg of A,
which we'll define as

Cri={x€Ne:||X|]|lc <R} (5)

for some positive R > 0. In this picture, the blue dots represent elements
of Ae, and R = 5:

=
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Probability of Eve's Correct Decision

Given the above scheme to be employed by Alice, what is the probability
that Eve correctly decodes the data ¢? It is known that this probability can

be estimated by
1
Pe < Clo2, M) > 1 ER
x€Cr x;#0 !
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Probability of Eve's Correct Decision

Given the above scheme to be employed by Alice, what is the probability
that Eve correctly decodes the data ¢? It is known that this probability can

be estimated by
Pe < C Ueva Z H | |3 (6)
x€Cr x;#0 Xi

This bound motivates the following design criteria for Eve's lattice. For a
fixed dimension n, find the lattice A which minimizes the inverse norm sum

=Y I 5 )

x€Cr x;j7#0
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Algebraic Lattices

From now on, we'll only deal with the case of n = 2. For algebraic lattices,
the inverse norm sum takes a particularly interesting form.

Let K = Q(V/d) be a totally real quadratic number field with ring of
integers O, and Gal(K/Q) = (o).

For example, one could take K = Q(v/5), so that O = Z[H—z\/g] and
o(V5) = V5.
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Algebraic Lattices

We can embed Ok < R? as a lattice A via the canonical embedding

A :={(x,0(x)) : x € Ok}. (8)

In this case, the inverse norm sum becomes

1 1
w0 =2 11 p = 2 wigop ©)

x€Cr x;#0

where N : K — Q is the field norm, defined by N(x) = x - o(x).
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The Inverse Norm Sum

From now on, we identify Ok with the lattice A it determines in R2. How
do we estimate

SRs)= Y Lo (10)

57
2 NG
lIxllc <R

and study how it grows as R — 0o?
For any x € Ok, we have N(x) € Z. Thus any x € Ok lives on one of the

hyperbolas XY = +k for some integer k, allowing for a convenient
geometrical grouping of the codewords.
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Estimating the Inverse Norm Sum
Now let
bi.r = #{x € Ok 1 [N(x)| = k, ||x||cc < R} (11)

so that, for example, by g is the number of units inside the bounding box.
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Estimating the Inverse Norm Sum

Now let
bik.r = #{x € Ok : |[N(x)| = k,||x||« < R} (11)

so that, for example, by g is the number of units inside the bounding box.

We have the following bounds for Sp(R, s):

bir < SA(R,s) < (k(s)bigr ), (12)
where
Gle)= 3 Loy (13)
K N(a)® ks
aCOk k>1
a principal

is the partial zeta function of K, so that aj is the number of principal
ideals of norm k in O.
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Estimating the Inverse Norm Sum

Proof: (See also paper by Vehkalahti et al) Rewrite the inverse norm sum

as
1 bk.r
SA(R.s) = Xg;}( INGOF ~ 2 ke (14)
[Ix[lc <R -

Taking log | - | of each coordinate, one sees that by g < a,l(blyR for all k > 0:
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Experimental Data

How good are these estimates? Let's take K = Q(V/5):

)] | bir [ Sa(R:3) | b1,rCK(3)
10 | 10.0472 | 10.2755
18 | 18.2576 | 18.4959
26 | 26.4809 | 26.7162
34 | 34.7068 | 34.9366
42 | 42,9276 | 43.1570
50 | 51.2105 | 51.3774

—
o
o ;| & w| o =2
=)

In order for these estimates to be practically useful, we have to have a way
of calculating (% (s), which is equivalent to calculating a} for k =1,...,N.
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Evaluating the Partial Zeta Function

First, let us suppose that kK = p is prime, and we wish to calculate the
number a,:g of principal ideals of norm p in Ok.

The only ideals, principal or otherwise, in K which have norm p, must
appear in the prime factorization of the ideal (p) in Ok.
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Evaluating the Partial Zeta Function

First, let us suppose that kK = p is prime, and we wish to calculate the
number a,:g of principal ideals of norm p in Ok.

The only ideals, principal or otherwise, in K which have norm p, must
appear in the prime factorization of the ideal (p) in Ok.

Let D be the discriminant of K. The ideal (p) factors in Ok as
(p) is prime iff (p, D) = 1,D # y? (mod p), for any y € Z
() ={ wap#q if(p,D)=1,D=y? (mod p), for some y € Z
p? iff p|D
(15)

and we say that p is inert, split, or ramified in K, respectively.
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Evaluating the Partial Zeta Function

If p is inert, so that (p) is prime, then the only prime ideal appearing in the
factorization of (p) is (p) itself. But this ideal has norm p?, so in this case
1
a, =0.
p
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Evaluating the Partial Zeta Function

If p is inert, so that (p) is prime, then the only prime ideal appearing in the

factorization of (p) is (p) itself. But this ideal has norm p?, so in this case
1
a, =0.

p

If p is split, so that (p) = pq, then p and q are Galois conjugate and
therefore simultaneously principal or non-prinicipal. Hence ail, =0 or 2,
accordingly.
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Evaluating the Partial Zeta Function

If p is inert, so that (p) is prime, then the only prime ideal appearing in the

factorization of (p) is (p) itself. But this ideal has norm p?, so in this case
1
a, =0.

p

If p is split, so that (p) = pq, then p and q are Galois conjugate and
therefore simultaneously principal or non-prinicipal. Hence ail, =0 or 2,
accordingly.

If p is ramified, so that (p) = p?, then p is the only ideal of norm p. So
a,l7 = 0 or 1, depending on whether p is principal.

Algorithms for determining whether or not an ideal in a ring of integers is
principal are implemented in SAGE.
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Evaluating the Partial Zeta Function

What to do if k = pj* - - p&m is not prime?

If k is composite, one can use the prime factorization of k, and how the p;
factor in K, to list all of the ideals of norm k. It's easier to see this by
example.
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Evaluating the Partial Zeta Function

Example: Let K = Q(+/229), and let k = 225 = 32.52 Let us calculate
al,s. In K the ideals (3) and (5) both split, and we have factorizations

(3) = p3a3, p3 = (3, (1— \/@)/2), 03 = (3, 1+ \/@)/2)
(5) = psqs, ps = (5, (7— \/ﬂ)/2>, qs = (5, (7 + \/@)/2)
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Evaluating the Partial Zeta Function

Example Let K = Q(+/229), and let k =225 = 32.52 Let us calculate
al,s. In K the ideals (3) and (5) both split, and we have factorizations

(3) = p3a3, p3 = (3, (1— \/@)/2) L3 = (3, 1+ \/@)/2)
(5) = psgs, ps = (5, (71— \/@)/2) , 5 = (5, (7+ \/@)/2)
thus the list of all ideals of norm k is

p3p2, p3qspZ, a3p2, p3psds, P3dsPsds, 43Psds, P3q2, P3q3qs, 4392

Exactly three of these ideals are principal, so that al,s = 3. Specifically,

2.2

p3as = (2 — V229), p3qsqs = (2 + v/229), paqspsgs = (15).
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Conclusion

Design criteria for coset coding using algebraic lattices over fading wiretap
channels consists of studying the inverse norm sum,

SA(R,s)= ) N(i)' (16)
iR

which itself is inversely proportional to the regulator of K, and directly
proportional to the values of the partial zeta function of K.

Further work consists of studying for which number fields both of these
quantities are optimal, as well as extending results to MIMO systems.
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The End! Thanks!

The End! Thanks!
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