Weight Distribution of Cyclic Codes with Several Non-zeroes

Jinquan Luo

Department of Informatics, University of Bergen, Norway

Outline

- Introduction
- Main problem
- Auxiliary tools
- Main result
- Conclusion and further work

Introduction

Linear code An [n, k, d; q] linear code is a k-dimensional GF(q) linear subspace of $GF(q)^n$ with minimum Hamming distance d. For an [n, k, d; q] linear code C, let A_i be the number of codewords in C with Hamming weight i. The weight distribution $\{A_0, A_1, \dots, A_n\}$ is an important research object in coding theory.

Introduction

Cyclic code In a linear code C, if, for any codeword $(c_0, c_1, \cdots, c_{n-1}) \in C$, the cyclic shifts $(c_i, c_{i+1}, \cdots, c_{i-1})$ for all i, $1 \leq i \leq n-1$ are codewords in C, then C is called cyclic code. It is well known that any k-dimensional q-ary cyclic code of length n with gcd(n,q) = 1 is generated by a polynomial $g(x) \in GF(q)[x]$ of degree n-k which is a divisor of $x^n - 1$.

Introduction

The reciprocal polynomial h(x) of $h^*(x) = (x^n - 1)/g(x)$, i.e., $h(x) = x^{\deg(h^*(x))}h^*(x^{-1})$ is called the parity check polynomial of C. The zeroes of h(x) are called the non zeroes of C. We say C is irreducible if h(x) is irreducible and C has l non zeroes if h(x) is the product of lirreducible polynomials.

Main Problem

Notations

.

- Let p an odd prime, q = p^s, r = q^m, and GF(pⁱ) be the finite field of order pⁱ. Let e and h be two integers and eh | q − 1, gcd(eh, m) = 1 and n = ^{r-1}/_h. Let t be an integer coprime to e.
- Let g be a primitive element of GF(r) (that is, g is the generator of the multiplicative group $GF(r)^*$), $\alpha = g^h$ and $\beta = g^{t\frac{r-1}{e}}$.

- For j|i, let $\operatorname{Tr}_{p^i/p^j}: GF(p^i) \to GF(p^j)$ be the trace mapping defined by $\operatorname{Tr}_{p^i/p^j}(x) = x + x^{p^j} + x^{p^{2j}} + \dots + x^{p^{j-i}}$.
- Let $\zeta_p = \exp(2\pi\sqrt{-1}/p)$ be a *p*-th root of unity and $\chi_{p^i}(x) = \zeta_p^{\operatorname{Tr}_{p^i/p}(x)}$ be the canonical additive character on $GF(p^i)$.

Main Problem

In this talk we will give the weight distribution of the cyclic code C with non zeroes $(\alpha\beta^i)^{-1}$ for $0 \le i \le l-1$. Note that for the special case t = 1 (then $\beta = g^{(r-1)/e}$) and l = 2, the weight distribution of C has been determined in Ma et al, see

Ma et al, The weight enumerators of a class of cyclic codes, *IEEE Trans. Inf. Theory*, vol. 57, no. 1, pp. 397–402, Jan. 2011.

Main Problem

Thanks to Delsarte's Theorem, the weights of codewords in the above $\ensuremath{\mathcal{C}}$ can be expressed as

$$c(\mathbf{a}) = (c_0, c_1, \cdots, c_{n-1})$$

for

$$\mathbf{a} = (a_0, \cdots, a_{l-1}) \in GF(q)^l$$

where

$$c_i = \sum_{j=0}^{l-1} \operatorname{Tr}_{r/q}(a_j(\alpha \beta^j)^i) \quad (0 \le i \le n-1).$$

For abbreviation, denote by

$$Z(\mathbf{a}) = \sum_{\omega \in GF(q)^*} \sum_{i=0}^{n-1} \chi_r \left(\omega \sum_{j=0}^{l-1} a_j (\alpha \beta^j)^i \right).$$

Then the Hamming weight of $c(\mathbf{a})$ is

$$w_H(c(\mathbf{a})) = n - \frac{n}{q} - \frac{1}{q}Z(\mathbf{a}).$$

In this way, the weight distribution of cyclic code C can be derived from the explicit evaluating of $Z(\mathbf{a})$.

Let G be the multiplicative subgroup of $GF(r)^*$ generated by g^h and H be the subgroup of G generated by g^{eh} . Then we have the following coset factorization

$$G = \bigcup_{i=0}^{e-1} g^{hi} H.$$

Note that $GF(q)^*$ is the multiplicative subgroup of $GF(r)^*$ generated by $g^{(r-1)/(q-1)}$ and gcd(eh, m) = 1.

Lemma 1. For any $u \in GF(r)^*$, there are exactly $\frac{q-1}{eh}$ pairs $(w, x) \in GF(q)^* \times H$ such that u = wx.

Note that $\beta = g^{t(r-1)/e}$. The Reed-Solomn code $\mathcal{RS}(\beta, e, l)$ over GF(r) generated by

$$G_{RS}(\beta, e, l) = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \beta & \beta^2 & \cdots & \beta^{e-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \beta^{l-1} & \beta^{2(l-1)} & \cdots & \beta^{(e-1)(l-1)} \end{pmatrix}$$

is an MDS (maximum distance separable) code with parameter [e, l, e - l + 1; r].

The weight distribution of $\mathcal{RS}(\beta, e, l)$ is as follows.

Lemma 2. Let B_i be the number of codewords in $\mathcal{RS}(\beta, e, l)$ with weight *i*. Then

$$B_{i} = \begin{cases} 1, & \text{for } i = 0\\ \binom{e}{i}(r-1) \sum_{j=0}^{i-e+l-1} (-1)^{j} \binom{i-1}{j} r^{i-e+l-j-1}, & \text{for } e-l+1 \le i \le e\\ 0, & \text{otherwise.} \end{cases}$$

Note that G is the cyclic group generated by $\alpha = g^h$. Recall $\beta = g^{t(r-1)/e}$ with gcd(t,e) = 1. Then

$$Z(\mathbf{a}) = \sum_{\omega \in GF(q)^*} \sum_{x \in G} \chi_r \left(\omega \sum_{j=0}^{l-1} a_j x^{1 + \frac{t(r-1)}{eh}j} \right)$$

(By the factorization $G = \bigcup_{i=0}^{e-1} g^{hi}H$)
$$= \sum_{\omega \in GF(q)^*} \sum_{i=0}^{e-1} \sum_{y \in H} \chi_r \left(\omega \sum_{j=0}^{l-1} a_j (g^{hi}y)^{1 + \frac{t(r-1)}{eh}j} \right)$$

$$(\operatorname{By} y^{\frac{t(r-1)}{eh}} = 1 \text{ for any } y \in H)$$

$$= \sum_{\omega \in GF(q)^*} \sum_{i=0}^{e-1} \sum_{y \in H} \chi_r \left(\sum_{j=0}^{l-1} a_j \beta^{ij} \left(g^{hi} \omega y \right) \right)$$

$$(\operatorname{By Lemma 1})$$

$$= \frac{q-1}{eh} \sum_{i=0}^{e-1} \sum_{z \in GF(r)^*} \chi_r \left(\sum_{j=0}^{l-1} a_j \beta^{ij} z \right).$$

Denote by
$$c_i = \sum_{j=0}^{l-1} a_j \beta^{ij}$$
. Then
 $c'(\mathbf{a}) = (c_0, c_1, \cdots, c_{e-1}) = (a_0, a_1, \cdots, a_{e-1}) \cdot G_{RS}(\beta, e, l)$

is a codeword of $\mathcal{RS}(\beta,e,l).$ Note that the inner sum

$$\sum_{z \in GF(r)^*} \chi_r(c_i z) = \begin{cases} r-1 & \text{if } c_i = 0, \\ -1 & \text{if } c_i \neq 0. \end{cases}$$

Therefore

$$Z(\mathbf{a}) = \frac{q-1}{eh} ((r-1) \cdot (e - w_H(c'(\mathbf{a}))) - w_H(c'(\mathbf{a})))$$

= $\frac{q-1}{eh} ((r-1)e - rw_H(c'(\mathbf{a}))).$

 $\quad \text{and} \quad$

$$w_H(c(\mathbf{a})) = \frac{q-1}{q} \frac{r-1}{h} - \frac{1}{q} Z(\mathbf{a}) = \frac{(q-1)q^{m-1}}{eh} w_H(c'(\mathbf{a})).$$

WCC 13, Bergen Apr. 18, 2013 First Previous Next Last

From the weight distribution of $\mathcal{RS}(\beta, e, l)$, we obtain the weight enumerator of the code C with nonzeroes $\alpha\beta^i$ ($0 \le i \le l-1 \le e-1$). **Theorem 1.** The cyclic code C has parameter $[\frac{r-1}{h}, lm, \frac{q^{m-1}(q-1)}{eh}(e-l+1); q]$ and its weight enumerator is $A_{\mathcal{C}}(x) = \sum_{i=e-l+1}^{e} {e \choose i} (r-1)^{i-e+l-1} (-1)^{j} {i-1 \choose j} r^{i-e+l-j-1} \cdot x^{\frac{q^{m-1}(q-1)}{eh}i}.$

Remarks

- (1). When l = 1, then the code C is the Simplex code which has only one nonzero weight.
- (2). When l = 2 and t = 1, the code C has been studied in Ma et al.
- (3). In general, the code C has l nonzero weights: $\frac{q^{m-1}(q-1)}{eh}i$ for $e-l+1 \le i \le e$.

Example When q = 7, m = 2, e = l = 3 and h = 1, the code C has parameters [48, 6, 14; 7]. Using Magma, we can calculate the weight enumerator of C

$$A_{\mathcal{C}}(x) = 1 + 144 \, x^{14} + 6912 \, x^{28} + 117649 \, x^{42}$$

which coincides with Theorem 1. The dual of C is an [48, 42, 4; 7] code.

Conclusion and Further Work

In this talk we discussed the weight distribution of some cyclic codes whose dual has l zeroes, where $l \leq e$ and $eh \mid q - 1$.

We only focus on the case gcd(eh, m) = 1. For the more general case gcd(eh, m) > 1, the result will become more complicated. For some simple cases, for example gcd(eh, m) = 2 and l = 3, we can determine the weight distribution which will be included in an extended version. The general case is still open.

Thanks!