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Introduction

Linear code An [n, k, d; q] linear code is a k-dimensional GF (q) linear

subspace of GF (q)n with minimum Hamming distance d. For an

[n, k, d; q] linear code C, let Ai be the number of codewords in C with

Hamming weight i. The weight distribution {A0, A1, · · · , An} is an

important research object in coding theory.
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Introduction

Cyclic code In a linear code C, if, for any codeword

(c0, c1, · · · , cn−1) ∈ C, the cyclic shifts (ci, ci+1, · · · , ci−1) for all i,

1 ≤ i ≤ n − 1 are codewords in C, then C is called cyclic code. It is well

known that any k-dimensional q-ary cyclic code of length n with

gcd(n, q) = 1 is generated by a polynomial g(x) ∈ GF (q)[x] of degree

n − k which is a divisor of xn − 1.
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Introduction

The reciprocal polynomial h(x) of h∗(x) = (xn − 1)/g(x), i.e.,

h(x) = xdeg(h∗(x))h∗(x−1) is called the parity check polynomial of C.

The zeroes of h(x) are called the non zeroes of C. We say C is irreducible

if h(x) is irreducible and C has l non zeroes if h(x) is the product of l

irreducible polynomials.
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Main Problem

Notations

• Let p an odd prime, q = ps, r = qm, and GF (pi) be the finite field of

order pi. Let e and h be two integers and eh | q − 1, gcd(eh, m) = 1

and n = r−1
h . Let t be an integer coprime to e.

• Let g be a primitive element of GF (r) (that is, g is the generator of

the multiplicative group GF (r)∗), α = gh and β = gtr−1
e .
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• For j|i, let Trpi/pj : GF (pi) → GF (pj) be the trace mapping defined

by Trpi/pj(x) = x + xpj
+ xp2j

+ · · · + xpj−i
.

• Let ζp = exp(2π
√
−1/p) be a p-th root of unity and

χpi(x) = ζ
Tr

pi/p
(x)

p be the canonical additive character on GF (pi).
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Main Problem

In this talk we will give the weight distribution of the cyclic code C with

non zeroes (αβi)−1 for 0 ≤ i ≤ l − 1. Note that for the special case

t = 1 (then β = g(r−1)/e) and l = 2, the weight distribution of C has

been determined in Ma et al, see

Ma et al, The weight enumerators of a class of cyclic codes, IEEE

Trans. Inf. Theory, vol. 57, no. 1, pp. 397–402, Jan. 2011.
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Main Problem

Thanks to Delsarte’s Theorem, the weights of codewords in the above C
can be expressed as

c(a) = (c0, c1, · · · , cn−1)

for

a = (a0, · · · , al−1) ∈ GF (q)l

where

ci =

l−1
∑

j=0

Trr/q(aj(αβj)i) (0 ≤ i ≤ n − 1).
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For abbreviation, denote by

Z(a) =
∑

ω∈GF (q)∗

n−1
∑

i=0

χr



ω
l−1
∑

j=0

aj(αβj)i



 .

Then the Hamming weight of c(a) is

wH(c(a)) = n − n

q
− 1

q
Z(a).

In this way, the weight distribution of cyclic code C can be derived from

the explicit evaluating of Z(a).
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Auxiliary Tools

Let G be the multiplicative subgroup of GF (r)∗ generated by gh and H

be the subgroup of G generated by geh. Then we have the following

coset factorization

G =
e−1
⋃

i=0

ghiH.

WCC 13, Bergen Apr. 18, 2013 First Previous Next Last 11



Auxiliary Tools

Note that GF (q)∗ is the multiplicative subgroup of GF (r)∗ generated by

g(r−1)/(q−1) and gcd(eh,m) = 1.

Lemma 1. For any u ∈ GF (r)∗, there are exactly q−1
eh pairs

(w, x) ∈ GF (q)∗ × H such that u = wx.
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Auxiliary Tools

Note that β = gt(r−1)/e. The Reed-Solomn code RS(β, e, l) over GF (r)

generated by

GRS(β, e, l) =



















1 1 1 · · · 1

1 β β2 · · · βe−1

... ... ... · · · ...

1 βl−1 β2(l−1) · · · β(e−1)(l−1)



















is an MDS (maximum distance separable) code with parameter

[e, l, e − l + 1; r].
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Auxiliary Tools

The weight distribution of RS(β, e, l) is as follows.

Lemma 2. Let Bi be the number of codewords in RS(β, e, l) with

weight i. Then

Bi =



























1, for i = 0

(

e
i

)

(r − 1)
i−e+l−1
∑

j=0

(−1)j
(

i−1
j

)

ri−e+l−j−1, for e − l + 1 ≤ i ≤ e

0, otherwise.
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Main Result

Note that G is the cyclic group generated by α = gh. Recall

β = gt(r−1)/e with gcd(t, e) = 1. Then

Z(a) =
∑

ω∈GF (q)∗

∑

x∈G

χr

(

ω
l−1
∑

j=0

ajx
1+

t(r−1)
eh j

)

(By the factorization G =
e−1
⋃

i=0

ghiH)

=
∑

ω∈GF (q)∗

e−1
∑

i=0

∑

y∈H

χr

(

ω
l−1
∑

j=0

aj(g
hiy)1+

t(r−1)
eh j

)
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Main Result

(By y
t(r−1)

eh = 1 for any y ∈ H)

=
∑

ω∈GF (q)∗

e−1
∑

i=0

∑

y∈H

χr

(

l−1
∑

j=0

ajβ
ij
(

ghiωy
)

)

(By Lemma 1)

= q−1
eh

e−1
∑

i=0

∑

z∈GF (r)∗
χr

(

l−1
∑

j=0

ajβ
ijz

)

.
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Denote by ci =
l−1
∑

j=0

ajβ
ij. Then

c′(a) = (c0, c1, · · · , ce−1) = (a0, a1, · · · , ae−1) · GRS(β, e, l)

is a codeword of RS(β, e, l). Note that the inner sum

∑

z∈GF (r)∗

χr (ciz) =







r − 1 if ci = 0,

−1 if ci 6= 0.

Therefore

Z(a) = q−1
eh ((r − 1) · (e − wH(c′(a))) − wH(c′(a)))

= q−1
eh ((r − 1)e − rwH(c′(a))) .
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and

wH(c(a)) =
q − 1

q

r − 1

h
− 1

q
Z(a) =

(q − 1)qm−1

eh
wH(c′(a)).
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Main Result

From the weight distribution of RS(β, e, l), we obtain the weight

enumerator of the code C with nonzeroes αβi (0 ≤ i ≤ l − 1 ≤ e − 1).

Theorem 1. The cyclic code C has parameter

[r−1
h , lm, qm−1(q−1)

eh (e − l + 1); q] and its weight enumerator is

AC(x) =
e
∑

i=e−l+1

(

e

i

)

(r−1)
i−e+l−1
∑

j=0

(−1)j

(

i − 1

j

)

ri−e+l−j−1·x
qm−1(q−1)

eh i.
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Main Result

Remarks

(1). When l = 1, then the code C is the Simplex code which has only one

nonzero weight.

(2). When l = 2 and t = 1, the code C has been studied in Ma et al.

(3). In general, the code C has l nonzero weights: qm−1(q−1)
eh i for

e − l + 1 ≤ i ≤ e.
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Main Result

Example When q = 7, m = 2, e = l = 3 and h = 1, the code C has

parameters [48, 6, 14; 7]. Using Magma, we can calculate the weight

enumerator of C

AC(x) = 1 + 144 x14 + 6912 x28 + 117649 x42

which coincides with Theorem 1. The dual of C is an [48, 42, 4; 7] code.
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Conclusion and Further Work

In this talk we discussed the weight distribution of some cyclic codes

whose dual has l zeroes, where l ≤ e and eh | q − 1.

We only focus on the case gcd(eh, m) = 1. For the more general case

gcd(eh, m) > 1, the result will become more complicated. For some

simple cases, for example gcd(eh, m) = 2 and l = 3, we can determine

the weight distribution which will be included in an extended version.

The general case is still open.
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Thanks!
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